The present disclosure relates to compressors used for compressing a fluid such as air, and more particularly relates to compressors and compressor housings for redirecting a portion of a compressor fluid.
Compressors, such as axial and centrifugal compressors, are used in a variety of applications for compressing fluids. Centrifugal compressors are particularly suitable for applications in which a relatively low overall pressure ratio is needed. A single-stage centrifugal compressor can achieve peak pressure ratios approaching about 4.0 and is much more compact in size than an axial flow compressor of equivalent pressure ratio. Accordingly, centrifugal compressors are commonly used in turbochargers for boosting the performance of gasoline and diesel engines for vehicles.
In various applications, it is important for the compressor to have a wide operating envelope, as measured between the “choke line” at which the mass flow rate through the compressor reaches a maximum possible value because of sonic flow conditions in the compressor blade passages, and the “surge line” at which the compressor begins to surge with reduction in flow at constant pressure ratio or increase in pressure ratio at constant flow. Compressor surge is a compression system instability associated with flow oscillations through the whole compressor system. It is usually initiated by aerodynamic stall or flow separation in one or more of the compressor components as a result of exceeding the limiting flow incidence angle to the compressor blades or exceeding the limiting flow passage loading. For example, in a turbocharger, compressor surge can occur when the engine is operating at high load or torque and low engine speed, or when the engine is operating at a low engine speed with a high rate of exhaust fluid recirculation from the engine exhaust side to the intake side. Compressor surge can also occur when a relatively high specific torque output is required of an engine with a variable nozzle turbine (VNT) or an electrically assisted turbocharger. Additionally, surge can occur when a quick boosting response is required using an electrically assisted turbocharger and/or VNT turbocharger, or when the engine is suddenly decelerated, e.g., if the throttle valve is closed while shifting between gears.
As a result of any of the foregoing operating conditions, the compressor can surge as the axial component of absolute flow velocity entering the compressor is low in comparison to the blade tip speed in the tangential direction, thus resulting in the blades of the compressor operating at a high incidence angle, which leads to flow separation and/or stalling of the blades. Compressor surge can cause severe aerodynamic fluctuation in the compressor, increase the noise of the compressor, and reduce the efficiency of the compressor. In some cases, compressor surge can result in damage to the engine or its intake pipe system.
Thus, there exists a need for an improved apparatus and method for providing compressed fluid, such as in a turbocharger, while reducing the occurrence of compressor surge. In some cases, the prevention of compressor surge can expand the useful operating range of the compressor.
The present disclosure is directed to a compressor and/or compressor housing for redirecting a portion of a fluid being compressed. Such redirection of the fluid may be followed in some cases by recirculation of the affected fluid in order to modify or improve an aspect of compressor performance.
One aspect of the disclosure is directed to a housing for a compressor. Specifically, the housing is incorporated as part of a compressor having a duct defining a main gas flow axis and blades that draw a fluid through the duct. As such, the blades impart to the fluid a momentum along a main gas flow direction and a swirl. The housing includes a volute configured to extend substantially circumferentially around and fluidly communicate with the duct at a first location. This volute may be in addition to a standard discharge volute that may be incorporated into the compressor housing. The volute may be configured to direct a fluid portion flowing thereinto from the duct to have a velocity with a component in a first circumferential direction generally aligned with the swirl. The housing may also include at least one conduit, such as a pipe, in fluid communication with the first volute. The conduit may be configured to receive the fluid portion from the volute and to redirect the fluid portion to have a velocity with a first component along the main gas flow axis in a direction opposite the main gas flow direction and a second component in a second circumferential direction opposite to the first circumferential direction.
The conduit may include an entrance region configured to receive fluid flowing therein having a velocity with a component in the first circumferential direction, and may further include an exit region configured to direct fluid flowing therein to have a velocity with a component along the second circumferential direction. A smooth transition may be included between the entrance and exit regions. In some embodiments, the conduit may be configured such that a cross section thereof is spatially separate from a cross section of the duct.
The housing may additionally include a supplemental volute, which is configured to extend substantially circumferentially around and fluidly communicate with the duct, possibly at a second location that is spaced upstream from the first location along the main gas flow axis. When a supplemental volute is included, the conduit may extend between the volute and the supplemental volute. The conduit fluidly communicates with the supplemental volute such that the fluid portion flows from the conduit into the supplemental volute and is directed by the supplemental volute to have a velocity with a component in the second circumferential direction. In some embodiments, the supplemental volute may be substantially closed off from the duct and may include an exit port that extends only partially around the supplemental volute for fluidly communicating with the duct. The exit port may be configured to direct fluid flowing therethrough into the duct with a velocity with a first component in the main gas flow direction and a second component in the second circumferential direction. In some embodiments, the housing may also include a discharge volute configured to receive fluid compressed by the compressor blades and to supply fluid to a component separate from the compressor
Another aspect of the disclosure is directed to a housing for a compressor, the compressor having a duct defining a main gas flow axis and blades that draw a fluid through the duct and impart thereto a momentum along a main gas flow direction and a swirl. The housing includes a first volute configured to extend substantially circumferentially around and fluidly communicate at a first location with the duct; at least a second volute configured to extend substantially circumferentially around and fluidly communicate with the duct at a second location spaced along the main gas flow axis from the first location; and at least one conduit providing fluid communication between said first and at least second volutes, said at least one conduit defining a conduit axis that is spaced apart from the main gas flow axis.
Yet another aspect of the disclosure is directed to a housing for a compressor, the compressor having a duct defining a main gas flow axis and blades that draw a fluid through the duct and impart thereto a momentum along a main gas flow direction and a swirl, said housing comprising: a first volute configured to extend substantially circumferentially around and fluidly communicate with the duct; a second volute configured to extend substantially circumferentially around and fluidly communicate with the duct, said second volute being substantially closed off from said duct and including an exit port for fluidly communicating with the compressor inlet. The housing further includes at least one conduit providing fluid communication between the first and second volutes.
In one embodiment, the conduit is configured to accept the fluid portion from said first volute and to redirect the fluid portion to have a velocity with a first component along the main gas flow axis in a direction opposite the main gas flow direction and a second component in a second circumferential direction opposite to the first circumferential direction.
Still another aspect of the disclosure is directed to a compressor. The compressor includes a duct defining a main gas flow axis and a row of compressor blades that draw a fluid through the duct. The blades impart to the fluid a momentum along a main gas flow direction and a swirl. A discharge volute is configured to receive fluid compressed by the compressor blades and to supply fluid to a component separate from the compressor. A housing includes a first volute configured to extend substantially circumferentially around and fluidly communicate with the duct. The first volute may be configured to direct a fluid portion flowing thereinto from the duct to have a velocity with a component in a first circumferential direction generally aligned with the swirl. The housing may also include a bleed passage that provides fluid communication between the duct and the first volute, the bleed passage being located intermediate a leading edge and a trailing edge of the row of compressor blades. The housing further includes a second volute configured to extend substantially circumferentially around and fluidly communicate with the duct. The second volute may be substantially closed off from said duct and include an exit port for fluidly communicating with the duct. The exit port may extend only partially around the second volute, and may be configured to direct fluid flowing therethrough into the duct with a velocity with a first component in the main gas flow direction and a second component in the second circumferential direction. The housing still further includes at least one conduit providing fluid communication between the first volute and second volutes. The conduit may include an entrance region proximal to the first volute and configured to receive therein the fluid portion having the velocity with the component in the first circumferential direction. The conduit may also include an exit region proximal to the second volute and configured to direct the fluid portion to have a velocity with a component along the second circumferential direction opposed to the first circumferential direction. A smooth transition may be included in the conduit between the entrance and exit regions. The second volute may be configured to receive the fluid portion from the exit region and to direct the fluid portion to have a velocity with a component in the second circumferential direction.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings in which some but not all embodiments of the inventions are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
Referring to
The compressor 100 also includes a housing 110, which may or may not be integrated with the duct 102. The housing 110 may include a first volute 112 and, in some cases, a second volute 114 (also respectively referred to as “volute” and “supplemental volute”). The first and second volutes 112, 114 may be configured to extend substantially circumferentially around and to fluidly communicate with the duct 102. For example, the first volute 112 may communicate with the duct 102 via a bleed passage 116, which may extend circumferentially around duct 102. Bleed passage 116 may be located beyond blade leading edge 105a, beyond blade trailing edge 105b, or intermediate blade leading edge 105a and blade trailing edge 105b. In some embodiments, second volute 114 may be substantially closed off from duct 102, with an exit port 118 providing the main, or perhaps only, fluid communication between second volute 114 and duct 102. In some embodiments, first volute is spaced along axis A from second volute in direction d. The locations at which first volute 112 and second volute 114 respectively fluidly communicate with duct 102, such as via bleed passage 116 and exit port 118, respectively, may be similarly spaced apart.
Housing 110 may also include at least one conduit 120, such as a pipe or a channel, providing fluid communication between first volute 112 and second volute 114. Generally, conduit 120 may be configured such that a cross section of conduit 120 is spatially separate from a cross section of duct 102, and as such, conduit 120 provides a secondary gas flow path along which fluid may flow in a direction with a component substantially opposite the main gas flow direction d. Conduit 120 may include an entrance region 122 proximal to first volute 112 and an exit region 124 proximal to second volute 114, and may have a (possibly smooth) transition region 126 between the entrance and exit regions 122, 124. In embodiments lacking a second volute, conduit 220 may include an exit region 124 that fluidly communicates with duct 102, and the exit region 124 may extend partially or almost completely around duct 102 (for configurations in which conduit 220 extends almost completely around duct 102, conduit 120 tends to replace the function of a second volute).
Referring to
The portion of the compressor fluid that enters first volute 212 tends to travel from first volute 212 into conduit 220. Conduit 220 may be configured to receive fluid having a velocity aligned with the swirl s, such as the fluid flowing in first volute 212. For example, conduit 220 may have an entrance region 222 that gradually branches from first volute 212. Conduit 220 may also be configured to direct fluid flowing therethrough to have a velocity with a component along a second circumferential direction that is opposed to the first circumferential direction (i.e., opposed to swirl s, or in the “−s” direction). As such, conduit 220 may act to redirect the fluid flowing therein and to reverse the circumferential component of fluid velocity. For example, conduit 220 may be configured to physically reverse direction such that a fluid flowing through conduit 220 will similarly reverse direction. This reversal of direction may be effected by incorporating into conduit 220 an exit region 224 directed in the −s direction and a transition region 226 that connects the entrance region 222 and exit region 224 and turns back on itself.
The fluid portion traveling in conduit 220 may be received by second volute 214, for example, by configuring exit region 224 and second volutes 214 such that exit region 224 gradually merges with second volute 214. Second volute 214 is then configured to direct the received fluid portion to have a velocity with a component in the second circumferential direction. Second volute 214 may be substantially closed off from duct 202 other than by exit port 218. Exit port 218 may be configured such that fluid flowing therefrom has a velocity with a component along axis A and a component in the direction −s opposed to the swirl s (as illustrated schematically in
In accordance with at least some of the embodiments described herein, the re-circulated injected fluid is able to cause a redistribution of the flow field in the compressor. This can have a beneficial impact on the surge phenomenon. It is further believed that imparting to the re-circulated injected fluid both an axial velocity component and a rotational velocity component opposed to the swirl, through the acceleration of the fluid by the conduit and associated volutes oriented as described above, contributes to the ability to beneficially impact the surge phenomenon.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. For example, while the previously described embodiments invoke a centrifugal compressor, various types of compressors may be configured consistently with the present disclosure, including any type of compressor that imparts both linear and angular momentum to a fluid being compressed thereby. Also, some embodiments may utilize only a single volute, the lone volute being connected to a conduit that serves to reverse the direction of flow before injecting the reversed flow into the duct of the compressor. Further, some embodiments may employ several conduits, such as a series of pipes or channels, distributed around the compressor. Finally, in some embodiments, the housing for the compressor may only include one volute, that being the discharge volute, from which a conduit extends. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.