The present invention relates generally to compressor systems, such as a compressor for use in a turbocharger for an internal combustion engine, and more particularly relates to recirculation in such a compressor to prevent or reduce the occurrence of surging.
Turbochargers are typically used to increase the power output of an internal combustion engine such as in an automobile or other vehicle. A conventional turbocharger includes a turbine and a compressor. The turbine is rotatably driven by the exhaust gas from the engine. A shaft connects the turbine to the compressor and thereby rotates the compressor. As the compressor rotates, it compresses air that is then delivered to the engine as intake air. The increase in pressure of the intake air increases the power output of the engine. In a typical turbocharger for an internal combustion engine of an automobile, the compressor is a centrifugal compressor, i.e., air enters the compressor in a generally axial direction and exits the compressor in a generally radial direction.
Compressor surge refers to a generally undesirable operating condition in which the flow begins to separate on the compressor blades because of excessive incidence angle. Surge typically occurs when the compressor is operated with a relatively high pressure ratio and with low flow therethrough. For example, compressor surge can occur when the engine is operating at high load or torque and low engine speed, or when the engine is operating at a low engine speed with a high rate of exhaust gas recirculation from the engine exhaust side to the intake side. Compressor surge can also occur when a relatively high specific power output, e.g., more than about 70 to 80 kilowatts per liter, is required of an engine with an electrically assisted turbocharger. Additionally, surge can occur when a quick compressor response is required using an electrically assisted turbocharger and/or variable nozzle turbine (VNT) turbocharger, or when the engine is suddenly decelerated, e.g., if the throttle valve is closed while shifting between gears.
As a result of any of the foregoing operating conditions, the compressor can surge as the axial component of absolute flow velocity entering the compressor is low in comparison to the blade tip speed in the tangential direction, thus resulting in the blades of the compressor operating at a high incidence angle, which leads to flow separation and/or stalling of the blades. Compressor surge can cause severe aerodynamic fluctuation in the compressor, increase the noise of the compressor, and reduce the efficiency of the compressor. In some cases, compressor surge can result in damage to the engine or its intake pipe system.
Thus, there exists a need for an improved apparatus and method for providing compressed gas, such as in a turbocharger, while reducing the occurrence of compressor surge. In some cases, the prevention of compressor surge can expand the useful operating range of the compressor.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, this invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
Referring now to the figures and, in particular,
As shown in
The housing 12 defines one or more injection ports 36 that are configured to receive compressed air from the compressor wheel 16 and recirculate the compressed air to the inlet passage 20. Each injection port 36 defines an outlet 38 on a radially inner surface 40 of the housing 12. For example, each injection port 36 can be fluidly connected to a flow channel 42 that extends between the injection port 36 and an inlet 44 that receives compressed air from the compressor wheel 16, as shown in
Each injection port 36 and flow channel 42 can define any of various configurations. For example, the inlet 44 of each flow channel 42 can be disposed at a shroud portion 46 of the surface 40 adjacent an edge 48 of the compressor wheel blades 18 between the leading and trailing edges 32, 34. Alternatively, as shown in
Each injection port 36 can extend in a radial direction between a respective one of the flow channels 42 and the outlet 38. Alternatively, the injection ports 36 can be configured at an angle relative to the radial direction. For example, as shown in
In some cases, the configuration of the injection ports 36 and/or the fluid channels 42 can be configured to facilitate the manufacture of the housing 12. For example, as shown in
Alternatively, in another embodiment of the present invention, the housing 12 can include multiple body portions that are individually formed and then assembled during manufacture of the compressor 10. In this regard,
The outlet 38 of each injection port 36 is typically disposed proximate to the leading edges 32 of the compressor wheel 16. For example, as illustrated in
In any case, the recirculation of air through the injection ports 36 can reduce the likelihood and occurrence of surging of the compressor 10. Although the present invention is not intended to be limited to any particular theory of operation, it is believed that the provision of recirculated air through the injection ports 36 can increase the axial velocity of the air in the inlet passage 20, thereby reducing the incidence angle of the flow at the leading edges 32 of the blades 18 and thus reducing surging. Further, the recirculation also increases the radial velocity of the flow exiting the compressor 10 into the diffuser passage 22, thereby reducing the likelihood of flow separation along the shroud 46 adjacent the trailing edges 34 of the blades 18 in the diffuser 22. In some cases, the direction of the recirculated flow from the outlets 38 can be designed to also improve the prevention of surging, e.g., by angling the injection ports 36 relative to the axial direction or circumferentially relative to the radial direction.
The recirculation of air through the injection port 36 typically reduces the efficiency of the compressor 10 in at least some modes of operation. Therefore, the compressor 10 can be configured to provide an amount of recirculated air flow that sufficiently reduces the occurrence of surging as required for a particular application, while minimizing the reduction in efficiency. The amount of recirculated air flow can be determined according to the placement of the inlets 44 of the flow channels 42, the operating pressures at the inlets 44 of the flow channels 42 and the outlets 38 of the injection ports 36, the size and configuration of the flow channels 42 and injection ports 36, the number of the flow channels 42 and injection ports 36, and the like. The control of a flow of recirculated air is described in copending International Application No. PCT/US 2004/017819, titled “COMPRESSOR WITH CONTROLLABLE RECIRCULATION AND METHOD THEREFOR,” filed concurrently herewith, the entirety of which is incorporated herein by reference.
As described above, the recirculation of air to the inlet passage can reduce surging in the compressor and expand the useful working area of the compressor.
Many modifications and other embodiments of the invention set forth herein will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. For example, it is appreciated that each of the components of the present invention can be formed of any conventional structural materials including, for example, steels, titanium, aluminum, and other metals. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2004/017866 | 6/7/2004 | WO | 00 | 6/5/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/121560 | 12/22/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5246335 | Mitsubori et al. | Sep 1993 | A |
6447241 | Nakao | Sep 2002 | B2 |
6726441 | Sumser et al. | Apr 2004 | B2 |
7775759 | Sirakov et al. | Aug 2010 | B2 |
Number | Date | Country |
---|---|---|
2003314496 | Nov 2003 | JP |
WO 2005068842 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070224032 A1 | Sep 2007 | US |