The subject-matter disclosed herein relates to gas compressor arrangements and to methods for operating a compressor, in particular to an arrangement and a method making use of process gasses containing hydrocarbons such as methane, ethane and butane.
A compressor arrangement comprises at least a compressor, for example a centrifugal compressor, fluidly connected to a suction duct and a discharge duct. In order to avoid surges in the compressor, the suction duct and the discharge duct are fluidly connected through a recycle duct controlled by an anti-surge valve. The recycle duct creates a loop between the compressor outlet and the compressor inlet and allows protecting the compressor from surge through the anti-surge valve.
In order to perform some maintenance, some repair operations or any other prolonged stop due to plant operations, the compressor is stopped and depressurized. The final portion of the suction duct, the initial portion of the discharge duct and the recycle duct are also depressurized.
A common practice for depressurizing the inner volume of a compressor and the ducts connected to it consists in releasing the process gas directly into the atmosphere or to burn it with a flare stack. However this practice leads to the release of greenhouse gasses in the atmosphere, which constitutes both a loss of a valuable good and an emission of potent greenhouse gasses (for example methane has 28 to 34 more greenhouse power than carbon dioxide over 100 years).
In addition, some compressors currently employed in the industry cause other emissions of hydrocarbon gasses. They may have mechanical dry gas seals which, in order to avoid contact between moving parts, tolerate a slow and constant leakage of process gas which is vented in the atmosphere or flared. Also, dry gas seals of compressors comprise a stand-by filter, which is kept in reserve and ready to replace the operating filter. In order to prevent condensations when the stand-by filter is put into use, the stand-by filter and the gas inside it are kept warm by spilled process gas. The spilled gas is then vented in the atmosphere or flared.
Additionally, compressors are often driven by a gas turbine and the process gas, thanks to its pressure, may also be used to initiate rotation of the gas turbine before starting combustion; in this case, (un-combusted) process gas at the outlet of the turbine is released in the atmosphere or flared.
The gas turbine driving the compressor benefits from heating of the turbine fuel inlet duct prior to startup of the turbine in order to avoid condensation of the propellant. Such heating is also performed by spilling fuel gas, which is vented in the atmosphere or flared afterwards.
According to an aspect, the subject-matter disclosed herein relates to a compressor arrangement comprising: at least one main compressor having a main inlet and a main outlet; an additional compressor having an additional inlet and an additional outlet; a piping system arranged to supply gas to the main inlet and to collect gas from the main outlet; one or more components emitting depressurized gas, each component having a collector arranged to collect the depressurized gas; wherein the additional inlet is fluidly coupled with one or more of the collectors; and wherein the additional inlet is fluidly coupled with the piping system and arranged to extract gas from the piping system when the main compressor is shut down.
According to another aspect, the subject-matter disclosed herein relates to a method for operating a compressor, comprising the steps of: collecting a depressurized gas from the compressor while the compressor is running or starting up; pumping the depressurized gas into a pressurized duct; shutting the compressor down; collecting a process gas from the compressor while the compressor is not running, and pumping the process gas into the pressurized duct.
A more complete appreciation of the disclosed embodiments of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The subject matter herein disclosed relates to compressor arrangements and a methods of operating a compressor.
A compressor arrangement, in particular for Oil & Gas applications, is arranged to receive a flow of hydrocarbon gas, process it, and discharge it at a higher pressure. In these types of applications, the incoming gas flow is already pressurized upstream of the compressor arrangement, i.e. it is at a high pressure for example at 40 bar. The compressor arrangement processes the incoming gas flow by increases its pressure at an even-higher level, for example at 80 bar.
Such compressor arrangement comprises a main compressor, in particular a centrifugal compressor, and a piping system which is fluidly connected to the inlet and the outlet of the main compressor. The piping system includes at least a suction duct, a discharge duct and preferably a recycle duct arranged to create a loop between the compressor inlet and the compressor outlet.
The compressor arrangement disclosed herein further includes an additional compressor, in particular a reciprocating compressor, fluidly connected to the piping system. During shutdown of the main compressor, the piping system is substantially isolated and a substantial amount of process gas remains trapped in the piping system and inside the main compressor. A purpose of the additional compressor is to pump the process gas out of the piping system after shutdown so that then it is possible to inspect, maintain or repair the main compressor without discharging any substantial amount of process gas into the atmosphere or flaring it.
In particular, the additional compressor is arranged to collect the process gas trapped in the piping system and to pump it in a suction header or a pressurized duct upstream of the piping system. The additional compressor is therefore configured to increase the pressure of the trapped gas up to the pressure inside the suction header (for example 40 bar).
It is another purpose of the additional compressor to recycle depressurized un-combusted gas lost by the compressor arrangement for example through leakage and venting. In fact, one or more components of the compressor arrangement may emit depressurized hydrocarbon gas. For example, the main compressor may have mechanical dry gas seals which, while operating, cause by design a continuous leakage of process gas and are therefore a source of depressurized gas. In addition, such dry gas seals may comprise filters which are preferably kept warm while not operating. In order to keep the non-operating filters and the gas they contain warm, the compressor assembly may comprise a spilled gas system which circulates (warm) process gas inside the filter of the main compressor and constitutes an additional source of depressurized gas.
According to some embodiments, the compressor arrangement comprises a gas turbine driving the main compressor and other components, related to the gas turbine, emitting depressurized gas. For example, the gas turbine may have a pneumatic starter which employs (pressurized) process gas for starting the gas turbine and emits depressurized gas. Additionally, the gas turbine has a fuel duct which requires heating prior to starting up the turbine to prevent condensation in the gas fuel. Such heating may be accomplished by flowing (warm) process gas, which is then emitted as depressurized gas.
In order to prevent the depressurized gas to be discharged or flared into the atmosphere, the compressor arrangement comprises one or more collectors arranged to collect the depressurized gas emitted from one or more of the above-mentioned components. Such collector is fluidly coupled with the additional compressor in order to pressurize and recycle the collected depressurized gas.
According to preferred embodiments, the compressor arrangement comprises an accumulation vessel positioned downstream of the collector in order to store the depressurized gas collected from the gas emitting components and the additional compressor is fluidly connected with the accumulation vessel.
The accumulation vessel and the additional compressor can be sized and configured to perform the task of emptying the piping system in a predetermined amount of time after the shutdown of the main compressor. The additional compressor configured in such way is oversized for the task of recycling the depressurized gas during the operation of the main compressor resulting from leakages. The accumulation vessel allows the additional compressor the work in intermittent runs and the depressurized gas is stored in the accumulation vessel between the runs.
Reference now will be made in detail to embodiments of the disclosure, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the disclosure, not limitation of the disclosure. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present disclosure without departing from the scope or spirit of the disclosure. Reference throughout the specification to “one embodiment” or “an embodiment” or “some embodiments” means that the particular feature, structure or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrase “in one embodiment” or “in an embodiment” or “in some embodiments” in various places throughout the specification is not necessarily referring to the same embodiment(s). Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
When introducing elements of various embodiments the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
According to one aspect and with reference to
The compressor arrangement 1 comprises at least one main compressor 100, in particular a centrifugal compressor. Depending on the design requirements of the compressor arrangement 1, the latter may comprise two or more main compressors 100, arranged in series and/or in parallel.
The main compressor 100 has a main inlet 101 arranged to receive a flow of hydrocarbon gas to be processed and a main outlet 106 arranged to discharge the processed flow. The main compressor 100 further comprises one or more mechanical seals 125, in particular a dry gas seal, interposed between the shaft and the outer body of the main compressor 100 itself.
Such dry gas seals rely on continuous gas spilling from the main compressor 100 in order to maintain a buffer of flowing gas between its moving parts. The mechanical seal 125 has a gas inlet arranged to collect spilled process gas from the compressor arrangement 1 and a gas outlet arranged to emit leakage depressurized gas. Inside the seal, the gas flows from the gas inlet to the gas outlet and creates buffer between its moving parts. Preferably, the mechanical seals 125 comprise a collector 126 arranged to collect the depressurized gas emitted at the gas outlet. With the expression “depressurized gas” it is intended gas containing hydrocarbons emitted at a pressure lower than the pressure of the process gas upstream of the main compressor 100.
The compressor arrangement 1 further comprises filters for the buffer gas upstream of the mechanical seals 125 in order to prevent liquids, particles and other solid matter having a diameter above a predetermined limit from entering the seal and deteriorating it. At least one operational filter is used for filtering the buffer gas while at least one clean stand-by filter is kept in reserve to be switched with the operational filter in order to avoid a stop of the main compressor 100 when the operational filter is dirty. The compressor arrangement 1 comprises a stand-by filter warm-up system 127 arranged to warm-up the filter kept in reserve with spilled process gas, which has a temperature comprised between 70° C. and 95° C. The stand-by filter warm-up system 127 is configured to keep the gas inside the stand-by filter warm in order to avoid condensations when the stand-by filter is activated. The spilled gas is emitted by the stand-by filter warm-up system 127 after circulation in the stand-by filter and constitutes another source of leaked depressurized gas. The stand-by filter warm-up system 127 preferably comprises a collector 128 arranged to collect the depressurized gas downstream of the stand-by filter.
The main compressor 100 is fluidly coupled with a piping system 110 arranged to supply gas to the main inlet 101 and to collect gas from the main outlet 106. The piping system 110 has a system inlet 111 configured for a fluid connection with an upstream gas source and a system outlet 116 configured for a fluid connection with a downstream gas receiving device. A suction header may be arranged at the system inlet and a discharge header may be arranged at the system outlet. The piping system 110 comprises an inlet duct 112 extending from the system inlet 111 to the main inlet 101 and an outlet duct 117 extending from the main outlet 106 to the system outlet 116. A suction isolation valve 113 is positioned at the system inlet 111 and is arranged to open or close a fluid connection between the inlet duct 112 and the upstream gas source. A discharge isolation valve 118 is positioned at the system outlet 116 and is arranged to open or close a fluid connection between the outlet duct 117 and the downstream gas receiving device.
The piping system 110 further comprises at least one return duct 120 fluidly connecting the main outlet 106 with the main inlet 101. An anti-surge valve 121 is installed in the return duct 120 and is arranged to control a recycle flow through the return duct 120 in order to prevent surges in the main compressor 100 and/or to equalize the pressures in case of an emergency shutdown.
As shown in
Preferably, the compressor arrangement 1 comprises a heating system 132 arranged to circulate spilled process or fuel gas in the fuel duct 131 prior to a start-up of the gas turbine 130. The heating system 132 prevents condensation of the fuel gas at entering the gas turbine 130 caused by convection with the fuel duct 131 itself. Such spilled gas constitutes a source of depressurized gas and the heating system 132 preferably comprises a collector 133 arranged to collect it.
In a possible embodiment, also shown in
The annexed
The annexed
Preferably, the compressor arrangement 1 comprises an accumulation vessel 140 fluidly coupled with one or more of the collectors described above in order to receive and store the depressurized gas flowing from the components emitting it. The compressor arrangement 1 may comprise other collectors fluidly coupled with the accumulation vessel 140 and arranged to collect depressurized gas emitted from any component of the compressor arrangement 1.
In the embodiment of
The compressor arrangement 1 further comprises an additional compressor 150, preferably a reciprocating compressor, having an inlet for receiving gas hereby called “additional inlet 151” and an outlet for emitting gas hereby called “additional outlet 156”.
The additional inlet 151 is fluidly coupled with the piping system 110 through a first duct 152 which houses a piping valve 153 which can be opened and closed. Alternatively, the additional inlet 151 may be fluidly coupled with the inner chamber of the main compressor 100, which also fluidly communicates with the piping system 110.
The additional inlet 151 is also fluidly coupled with the accumulation vessel 140 thorough a second duct 154. A valve may be installed in the second duct 154 for opening and closing it.
By selecting the position of the collector valve(s) 141 and the piping valve 153, the additional compressor 150 may be configurable to receive gas from the accumulation vessel 140 or from the piping system 110.
An atmospheric vent 145 controlled by a valve is fluidly coupled with the collector(s) and configured to release the depressurized gas in the atmosphere when the accumulation valves 141 are closed, which can happen when the piping valves 153 are open because the additional compressor 150 is extracting fluid from the piping system 110. An additional venting valve (not illustrated in the attached drawings) may be fluidly coupled with the piping system 110 and arranged to release in the atmosphere the gas contained in the piping system 110 and in the main compressor 100. Such additional valve may be opened in case there is a need to depressurize the compression arrangement 1 and the piping valve 153 cannot be opened or the additional compressor 150 cannot be activated. A flare stack may be arranged to burn flammable gasses released by the atmospheric vent 145 and/or by the additional venting valve.
The additional outlet 156 of the additional compressor 150 is either fluidly coupled with the system inlet 111 upstream of the suction isolation valve 113 or with the system outlet 116 downstream of the discharge isolation valve 118. In the embodiment of
The additional compressor 150 is able to extract the process gas trapped in the piping system 110 after the main compressor 100 is shut down and the suction and discharge isolation valves 113 and 118 have been closed. Such gas is then pumped upstream or downstream of the piping system 110 and is prevented from being released or flared into the atmosphere.
Preferably, the additional compressor 150 is configured to extract the gas from the piping system 110 in order to lower the pressure in the piping system 110 from an operating pressure of around 60 bar (at the shutdown of the main compressor 100) to a final pressure equal or lower than 10 bar, preferably equal or lower than 3 bar, in an interval of time comprised between 15 minutes and 20 hours, preferably between 2 hours and 10 hours. In a preferred embodiment, the additional compressor 150 has a power comprised between 10 kW and 150 kW and a flow rate comprised between 100 Nm3/hr and 2000 Nm3/hr.
The additional compressor 150 configured as described above is able to extract the depressurized gas accumulated in the accumulation vessel 140 and to pump it upstream or downstream of the piping system 110 during the operation of the main compressor 100, thereby preventing the release of the depressurized gas into the atmosphere.
In a possible embodiment, the accumulation vessel 140 is fluidly coupled with the piping system 110 through a valve and can be arranged to receive gas from the piping system 110 after the shutdown of the compressor 100, before extracting the gas through the additional compressor 150.
The additional compressor 150 configured as described is oversized for the continuous pumping of depressurized gas, therefore the accumulation vessel 140 allows the temporary accumulation of depressurized gas so that the additional compressor 150 can be activated intermittently to empty the accumulation vessel 140 when it has reached a certain pressure.
Preferably, the compressor arrangement 1 comprises a control unit configured to turn on and off the additional compressor 150 in order to maintain the pressure in the accumulation vessel 140 between a minimum predetermined value, for example 1.1 bar, and a maximum predetermined value. The maximum predetermined value is preferably lower than 20 bar and even more preferably lower than 6 bar. In a preferred embodiment the maximum predetermined value is around 3 bar.
In an alternative embodiment of the compressor arrangement 1, the compressor arrangement 1 doesn't have an accumulation vessel 140 and the additional inlet 151 is directly connected with one or more of collectors 126, 128, 133 and 136. Preferably, in this embodiment the additional compressor 150 is a variable speed compressor which is able to adapt its flow rate to the rate of the emissions of depressurized gas and is also able to provide the required flow rate to empty the piping system 110 in an interval of time comprised between 15 minutes and 20 hours, preferably between 2 hours and 10 hours.
Preferably, the compressor arrangement 1 further comprises a by-pass valve 158 fluidly coupling the additional inlet 151 with the additional outlet 156, which allows to by-pass the additional compressor. Such by-pass valve 158 may be opened when, after shutting off the main compressor 100, the gas pressure upstream of the suction isolation valve 113 is lower than the pressure in the piping system 110. This allows the process gas to naturally flow outside of the piping system 110.
According to a second aspect and with reference to
While the compressor 100 is running or starting up, the method comprises a step A1 (block 210 in
Preferably, step A1 (block 210 in
A11) (block 211 in
A12) (block 212 in
A13) (block 213 in
A14) (block 214 in
Preferably, step A1 (block 210 in
The method further comprises step A2 (block 220 in
The method further comprises a step A9 (block 290 in
After step B0 (block 300 in
The method further comprises a step B2 (block 320 in
Number | Date | Country | Kind |
---|---|---|---|
102019000013155 | Jul 2019 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/025338 | 7/20/2020 | WO | 00 |