1. Field of the Invention
The present invention relates to hermetic compressor assemblies and methods of assembling the same.
2. Description of the Related Art
Compressor assemblies commonly include a motor and a compression mechanism, both of which are housed within the interior plenum of a hermetically sealed, substantially cylindrical housing, which is specifically formed to accommodate the motor and compression mechanism. The motor and compression mechanism are often heat shrink-fitted within the housing to achieve a tight fit. This tight fit is often necessary to define suction plenums and/or discharge plenums within the interior plenum of the housing. The housings are typically made from steel and are often mounted on, and supported by, support structures such as feet or mounting brackets, which may be further supported on a final assembly. The support structures are typically affixed to the outer surface of the housing using welding techniques, which involve applying high heat to seal or fuse the metal parts together. In addition, other metal parts may be welded to the outer surface of the housing, including terminal assembly covers, terminal fences, and accumulators. Unfortunately, these welding techniques can result in the deformation of the parts being welded. In particular, welding can deform the housing, thereby altering its original shape and structure. This deformation may cause interference in the tight fit between the motor-compression mechanism and the housing and, ultimately, result in leaks between the separate plenums defined within the housing interior.
The motor and compression mechanism of known compressor assemblies include multiple moving parts that cause vibrations. These vibrations are often transferred from the motor, compression mechanism, and/or interior plenum to the housing, mounting brackets, feet and/or the final assembly. These vibrations can result in undesirable noise. Rubber grommets have been attached to the feet or mounting brackets to minimize the noise.
A need remains for a compressor assembly and method of assembling the same that does not deform the parts of the compressor assembly and/or reduces noise vibrations.
The present invention provides a compressor assembly that, in one form, includes a hermetically sealed housing, a motor operatively linked to a compressor mechanism, a support structure, and at least one sheet of closed cell foam material. The motor and compressor mechanism are disposed within the housing, and the housing, the motor and the compressor mechanism define a compressor assembly weight. The at least one sheet of closed cell foam material includes a first major surface and a second major surface disposed opposite the first major surface. The first major surface is adhered to the housing, the second major surface is adhered to the support structure and substantially all of the compressor assembly weight is supported by the at least one sheet of closed cell foam material.
The invention also provides a method of mounting a compressor assembly. The method, in one form, includes operably coupling a motor and a compressor mechanism, mounting the motor and compressor mechanism within a housing, hermetically sealing the housing wherein the motor, the compressor mechanism and the housing define a compressor assembly weight, and mounting the housing to a support structure wherein at least one sheet of closed cell foam material is disposed between the housing and the support structure and substantially all of the compressor assembly weight is transferred to the support structure through the at least one sheet of closed cell foam material.
An advantage of the present invention is that it provides a mounting for a compressor assembly that does not require welding of the compressor housing and the potential distortions of the compressor housing that accompany such welding procedures.
Another advantage of the present invention is that it provides a mounting for a compressor assembly that provides a vibrational damping function.
The above mentioned and other features and objects of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. Although the exemplification set out herein illustrates embodiments of the invention, in several forms, the embodiments disclosed below are not intended to be exhaustive or to be construed as limiting the scope of the invention to the precise forms disclosed.
Referring first to
Referring now to
Turning now to
Turning now to
The use of closed cell foam material 20 to secure support structure 16 to housing 14 eliminates the need for welding and prevents the deformation of housing 14 caused by the high heat of welding. In addition, closed cell foam material 20 supports substantially all of the combined weight of motor-compressor mechanism assembly 12 and housing 14. As a result, closed cell foam material 20 absorbs some of the vibrations that would otherwise be transferred to housing 14 from the moving parts and moving gas within housing 14, thus resulting in a reduction of noise.
Closed cell foam material 20 also defines a width W and a length L. Width W, length L and thickness T of closed cell foam material 20 may vary, however, it is advantageous if width W, length L and thickness T are such that substantially all of the combined weight of the housing 14 and motor-compressor mechanism assembly 12 is supported by closed cell foam material 20 and that housing 14 does not directly contact support structure 16. Advantageously, width W and length L are substantially equal to the width and length of the support portion of support Structure 16 so as to prevent housing 14 from directly contacting support member 17.
Closed cell foam material 20 may be made from any suitable polymer used to make closed cell foam, including acrylic, polystyrene and polyethylene. The density of the foam can vary but is preferably between 35 lbs/ft3 (561 kg/m3) and 42 lbs/ft3 (673 kg/m3), and more preferably between 37 lbs/ft3 (592 kg/m3) and 40 lbs/ft3 (640 kg/m3). Theoretically, the greater the thickness T of closed cell foam material 20, the more vibrations will be absorbed and the greater the reduction of noise. Consequently, the thickness T may vary depending on factors such as the desired noise reduction, material costs and manufacturing efficiency. Advantageously, thickness T is between about 0.045 inches (1.143 mm) and 0.120 inches (3.048 mm).
Referring back to
In addition to support structures, mounting brackets, and terminal cover assemblies, closed cell foam materials 20 may be used in a similar manner to mount other objects to housing 14. For instance, as shown in
While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.