The present disclosure relates generally to a compressor assembly and, more particularly, to a compressor assembly for turbocharger burst containment.
Internal combustion engines, for example, diesel engines, gasoline engines, or natural gas engines employ turbochargers to deliver compressed air for combustion in the engine. A turbocharger compresses air flowing into the engine, helping to force more air into combustion chambers of the engine. The increased supply of air allows for increased fuel combustion in the combustion chambers of the engine, resulting in increased power output from the engine.
A typical turbocharger includes a shaft, a turbine wheel connected to one end of the shaft, a compressor wheel connected to the other end of the shaft, and bearings to support the shaft. Separate housings connected to each other enclose the compressor wheel, the turbine wheel, and the bearings. Exhaust from the engine expands over the turbine wheel and rotates the turbine wheel. The turbine wheel in turn rotates the compressor wheel via the shaft. The compressor wheel receives cool air from the ambient and forces compressed air into combustion chambers of the engine.
Natural inherent material limitations, flaws within the compressor wheel, wear and tear of the compressor stage components, excessive speeds, or debris in the intake air may cause a compressor wheel to fail. To prevent ejection of debris or oil in the event of a compressor wheel failure, turbochargers typically rely on massive housings surrounding the impeller to absorb the tremendous amount of energy released during the failure. The massive housings, however, tend to increase the volume, weight, and cost of the turbocharger. Additionally, although the housings may contain the debris and oil, damage imparted to the housings by the failed compressor wheel components may require expensive and time consuming repairs to the housings, which may place the turbocharger out of service for an extended time period.
U.S. Pat. No. 6,638,007 B2 of Bartholomä et al. that issued on Oct. 28, 2003 (“the '007 patent”) discloses a compressor casing that attempts to retain failed compressor components within the casing. In particular, the '007 patent discloses that the compressor casing has an outer spiral casing fastened using a rigid fixing arrangement to a bearing casing of a turbomachine. The '007 patent further discloses that the spiral casing includes an inner cylinder to which a casing insert piece is attached using a flexible attachment arrangement, forming a hollow space between the casing insert piece and the spiral casing. The '007 patent discloses that the flexible attachment arrangement is less secure against fracture as compared to the rigid fixing arrangement. The '007 patent also discloses that the flexible fixing arrangement of the casing insert piece can absorb considerably more kinetic energy than a rigid fixing arrangement. The '007 patent explains that in an emergency, the casing insert piece can move away from the compressor impeller in the axial direction and that the kinetic energy of the compressor impeller pieces can be largely absorbed by conversion into deformation energy and the heat resulting from it. The '007 patent further explains that the residual kinetic energy of the fragments can be absorbed by the casings.
Although the '007 patent discloses a compressor casing designed to contain pieces of a failed impeller, the disclosed casing may still not be optimal. For example, in the event of impeller failure, the casing insert may detach from the spiral casing and move axially outwards, allowing pieces of the impeller to still impact and damage the bearing casing. This may require expensive and time consuming repairs to the bearing casing before the turbomachine can return to service. Damage to the bearing casing may also allow oil to leak from within the turbomachine.
The compressor assembly of the present disclosure solves one or more of the problems set forth above and/or other problems of the prior art.
In one aspect, the present disclosure is directed to a compressor assembly. The compressor assembly may include a compressor housing. The compressor assembly may also include a compressor impeller disposed within the compressor housing. The compressor impeller may include a hub extending from a hub front end to a hub rear end. The compressor impeller may also include a exducer blade disposed on the hub adjacent the hub rear end. The exducer blade may have a blade rear surface. The compressor impeller may further include a hub extension extending outward from the hub rear end. The compressor assembly may also include an impeller cap disposed on the hub extension. Further, the compressor assembly may include a windage seal disposed on the impeller cap. The windage seal may be separated from the blade rear surface by an axial gap. In addition, the compressor assembly may include a compressor diffuser disposed within the compressor housing. The compressor diffuser may have a diffuser inner surface separated from an outer rim of the exducer blade by a radial gap.
In another aspect, the present disclosure is directed to a turbocharger. The turbocharger may include a turbine housing. The turbocharger may also include a turbine wheel disposed within the turbine housing and configured to be driven by exhaust received from an engine. The turbocharger may further include a compressor housing. The turbocharger may also include a compressor impeller disposed within the compressor housing. The compressor impeller may include a hub extending from a hub front end to a hub rear end. The compressor impeller may also include a exducer blade disposed on the hub adjacent the hub rear end. The exducer blade may have a blade rear surface. The compressor impeller may further include a hub extension extending outward from the hub rear end. The turbocharger may also include an impeller cap disposed on the hub extension. Further, the turbocharger may include a windage seal disposed on the impeller cap. The windage seal may be separated from the blade rear surface by an axial gap. In addition, the turbocharger may include a compressor diffuser disposed within the compressor housing. The compressor diffuser may have a diffuser inner surface separated from an outer rim of the exducer blade by a radial gap. The turbocharger may also include a shaft connecting the impeller cap and the turbine wheel.
Turbine stage 14 may include turbine housing 30 and turbine wheel 32, which may be attached to shaft 18. Exhaust gases exiting the engine may enter turbine housing 30 via turbine inlet 34 and exit turbine housing 30 via turbine outlet 36. As the hot exhaust gases move through turbine housing 30 and expand against the blades of turbine wheel 32, turbine wheel 32 may rotate compressor impeller 16 via shaft 18. Bearings 38 may support shaft 18. Bearings 38 may be disposed in bearing housing 40. Although
Compressor inner volute 54 may include an outer flange 92, inner volute rear wall 94, inner volute spiral 96, and an axial inlet portion 98. Outer flange 92 may have a generally cylindrical outer surface 100, which may be configured to slidingly engage with inner surface 90 of front extension 82 of compressor outer volute 52. Outer flange 92 may also have a generally annular front face 102 disposed generally orthogonal to rotational axis 70. Outer flange 92 may have a length which may be shorter than a length of front extension 82. Inner volute rear wall 94 of compressor inner volute 54 may be disposed between first distal end 88 and outer volute rear wall 78. Inner volute rear wall 94 may be disposed generally orthogonal to rotational axis 70 and may be axially separated from outer volute rear wall 78. Inner volute spiral 96 may extend from first distal end 88 to inner volute rear wall 94. Inner volute spiral 96 may have a generally concave shape and may be disposed opposite outer volute spiral 80. Outer volute spiral 80 and inner volute spiral 96 may form a spiral passageway 104 for air flowing through compressor stage 12. Axial inlet portion 98 of compressor inner volute 54 may extend outward from inner volute rear wall 94 towards front end 72. Axial inlet portion 98 may form a portion of an annular passageway 106 that may direct air to compressor impeller 16.
Inlet flow guide 58 may extend from adjacent front end 72 to second distal end 108 disposed between first distal end 88 and inner volute rear wall 94. Inlet flow guide 58 may include an inlet duct portion 110 and a web 112. Inlet duct portion 110 may have an inner duct surface 114, which may form a portion of annular passageway 104 having an approximately frusto-conical shape. Inlet duct portion 110 may engage with axial inlet portion 98 to form compressor inlet 22 for directing air to compressor impeller 16. Web 112 may extend generally radially outwards from an outer duct surface 116 of inlet duct portion 110. Web 112 may include a generally annular attachment portion 118. Attachment portion 118 may have a generally cylindrical attachment outer surface 120, which may slidingly engage with inner surface 90 of front extension 82. Attachment portion 118 may also have an attachment front face 122 disposed adjacent front end 74 and an attachment rear face 124 disposed opposite attachment front face 122. As illustrated in
Clamping plate 60 may have a generally annular shape and may abut front wall 76 and attachment front face 122. Clamping plate 60 may be attached to compressor outer volute 52 via one or more fasteners 126, which may allow clamping plate 60 to hold inlet flow guide 58 and compressor inner volute 54 within compressor outer volute 52. Clamping plate 60 may be a thin sheet of metal. It is contemplated, however, that clamping plate may be made of any suitably ductile material. A thickness of clamping plate 60 may be selected to allow clamping plate 60 to deflect without experiencing mechanical failure when subjected to loads during the operation of compressor stage 12 or in the event of a failure of compressor impeller 16. Although
Compressor impeller 16 may be disposed within compressor housing 20 formed by compressor outer volute 52, compressor inner volute 54, and inlet flow guide 58. Compressor impeller 16 may include hub 130 and one or more front blades 132, center blades 134, and exducer blades 136, and hub extension 138. Hub 130 may extend from hub front end 140 to hub rear end 142. Hub front end 140 may be disposed adjacent second distal end 108. Front, center, and exducer blades 132, 134, 136 may be disposed in axially separated rows on hub 130. As illustrated in
An outer rim 144 of exducer blade 136 may be disposed between inner volute rear wall 94 and outer volute rear wall 78. Outer rim 144 of exducer blade 136 may have a radius “R1.” Exducer blade 136 may also have a blade rear surface 146. Balancing ring 148 may be disposed on blade rear surface 146 of exducer blade 136. Balancing ring 148 may be a generally annular projection, which may project outward from blade rear surface 146 towards rear end 74. Balancing ring 148 may have an outer radius “R2” that may be smaller than radius R1 of outer rim 144 of exducer blade 136.
Hub extension 138 may project outwards from hub 130 towards rear end 74. Hub extension 138 may extend from adjacent hub rear end 142 to hub extension end 150 which may be disposed between hub rear end 142 and rear end 74. Hub extension 138 may have a radius smaller than outer radii of front, center, or exducer blades 132, 134, 136. Hub extension 138 may have a generally cylindrically shaped hub extension outer surface 152. Hub 130, front blades 132, center blades 134, exducer blades 136, balancing ring 148, and hub extension 138 may form one integrated structure. In one exemplary embodiment, hub 130, front blades 132, center blades 134, exducer blades 136, balancing ring 148, and hub extension 138 may constitute a single machined forging or casting.
Compressor diffuser 56 may be a generally annular structure disposed between outer volute rear wall 78 and inner volute rear wall 94. Compressor diffuser 56 may have a generally cylindrical diffuser inner surface 154 and a generally cylindrical diffuser outer surface 156. Diffuser inner surface 154 may have a radius “R3” and diffuser outer surface 156 may have a radius “R4,” which may be larger than radius R3. Compressor diffuser 56 may be centered on compressor outer volute 52 via one or more alignment pins 158. In one exemplary embodiment as shown in
Impeller cap 62 may be disposed on hub extension 138. Impeller cap 62 may be connected to shaft 18. Impeller cap 62 may include a cap bore 170 extending from cap front end 172 to hub extension end 150. As illustrated in
Windage seal 64 may be disposed between hub rear end 142 and hub extension end 150. Windage seal 64 may include a seal hub 180, seal web 182, and a seal shield 184. Seal hub 180 may have a windage seal bore 186, which may be disposed around cap outer surface 174 of impeller cap 62. Windage seal bore 186 may be separated from cap outer surface 174 by a labyrinth seal (not shown). Seal web 182 may extend radially outward from seal hub 180. Seal web 182 may have a web front surface 188 and a web rear surface 190. Seal shield 184 may be disposed near an outer periphery of seal web 182. Seal shield 184 may project outwards from web front surface 188 towards front end 72 to shield front end 192. Seal Web 182 and seal shield 184 may share a generally cylindrical web outer surface 194 extending between shield front end 192 and web rear surface 190. Seal shield 184 may also have a shield front face 196 disposed adjacent shield front end 192. Shield front face 196 may have a generally annular shape and may be disposed generally orthogonal to rotational axis 70. Shield front face 196 may be axially spaced apart from blade rear surface 146 by axial gap 198. In one exemplary embodiment as illustrated in
The disclosed compressor assembly 50 may be implemented to ensure that debris from a failed compressor impeller 16 may be contained within compressor housing 20, while ensuring that oil from bearing housing 40 does not leak out of turbocharger 10. In particular, compressor assembly 50 may employ a plurality of obstructions to dissipate the energy released during failure of compressor impeller 16 to prevent rupture of compressor housing 20 and bearing housing 40. Compressor assembly 50 may also prevent penetration of bearing housing 40 by fragments of compressor impeller 16, resulting from failure of compressor impeller 16, to ensure that oil from within bearing housing 40 does not leak out of turbocharger 10.
Referring to
Further, as exducer blades 136 are propelled radially outward, balancing ring 148 may come into contact with seal shield 184. Because seal shield 184 overhangs balancing ring 148, an impact of balancing ring 148 with seal shield 184 may cause seal shield 184 to fracture adjacent groove 202. Fragments of exducer blades 136 and seal shield 184 may be driven into contact with outer volute rear wall 78 causing compressor outer volute 52 to absorb the kinetic energy of the fragments. By allowing seal shield 184 to fracture adjacent groove 202, compressor assembly 50 may ensure that seal web 182 remains unruptured, helping to ensure that oil from within bearing housing 40 remains within bearing housing 40 and does not leak out of turbocharger 10. Thus, by focusing the trajectory of the impeller fragments towards seal shield 184 and compressor diffuser 56, compressor assembly 50 may help isolate bearing housing 40 from mechanical damage. Moreover, by maintaining first and second radial gaps 160, 164, compressor assembly 50 may help ensure that some of the energy released due to failure of compressor impeller 16 is absorbed by compressor diffuser 56 instead of requiring compressor outer volute 52 to absorb a majority of the energy. This may also help to limit a thickness of compressor outer volute 52 necessary to contain fragments of compressor impeller 16 within compressor housing 20, which in turn may allow compressor housing to be lighter and less expensive. Further, by using a series of obstructions in the form of balancing ring 148, seal shield 184 and compressor diffuser 56 to absorb the kinetic energy of the impeller fragments, compressor assembly 50 may also help reduce an amount of damage caused to compressor outer volute 52 and bearing housing 40.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed compressor assembly. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed compressor assembly. It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4248566 | Chapman | Feb 1981 | A |
4815931 | Linck | Mar 1989 | A |
4818176 | Huether et al. | Apr 1989 | A |
4930978 | Khanna | Jun 1990 | A |
6012901 | Battig | Jan 2000 | A |
6050095 | Blake | Apr 2000 | A |
6168375 | Larue | Jan 2001 | B1 |
6183195 | Tremaine | Feb 2001 | B1 |
6293263 | Middlebrook | Sep 2001 | B1 |
6638007 | Bartholomä et al. | Oct 2003 | B2 |
7189052 | Jones | Mar 2007 | B2 |
7478532 | Martin et al. | Jan 2009 | B2 |
8328535 | Anschel | Dec 2012 | B2 |
8632304 | Sweetland et al. | Jan 2014 | B2 |
20070065276 | Muller | Mar 2007 | A1 |
20100192570 | Schlienger | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
2015017535 | Jan 2015 | JP |
Entry |
---|
U.S. Appl. No. 14/500,428 of Gary R. Svihla et al. entitled “Compressor Inlet Recirculation System for a Turbocharger” filed Sep. 29, 2014. |
Number | Date | Country | |
---|---|---|---|
20160177965 A1 | Jun 2016 | US |