1. Field of the Invention
The present invention relates to compressor assemblies and, more particularly, to crankcases for use with scroll compressor assemblies.
2. Description of the Related Art
Conventional scroll compressors include mutually engaged fixed and orbiting scroll members wherein a crankcase is disposed on the backside of the orbiting scroll member between the orbiting scroll member and a motor. Conventional crankcases also include a bearing for rotatably supporting a shaft which extends between the motor and the orbiting scroll. A counterweight is typically mounted on the shaft to counterbalance the eccentric load placed on the shaft by the orbiting scroll. Lubricating oil is often collected in a sump defined by the compressor housing and refrigerant entering the compressor housing oftentimes contains small quantities of oil. The lubricating oil must be provided to the surfaces for which lubrication is desired while avoiding the excess accumulation of oil in locations where it may degrade the performance of the compressor. Although various methods of controlling and managing the movement of oil within compressors have been developed, improvements are desirable.
The present invention provides an improved crankcase for a scroll compressor which includes a shield portion partially enclosing a length of the shaft between a thrust surface engageable with the orbiting scroll member and a bearing support portion of the crankcase. A baffle member is also attached to the crankcase. The shield portion of the crankcase and the baffle member attached to the crankcase facilitate the control of oil movement within the compressor assembly.
The invention comprises, in one form thereof, a compressor assembly including a housing defining an interior plenum and having an inlet opening, a stationary scroll member fixed within the housing and an orbiting scroll member disposed within the housing and engaged with the stationary scroll member. An oil sump is disposed within the interior plenum. A shaft, rotatable about a shaft axis, is operably coupled with the orbiting scroll member. A motor is also operably coupled with the shaft. A crankcase is fixed within the housing and is disposed between the orbiting scroll member and the motor. The crankcase has a thrust surface which is engageable with the orbiting scroll member and defines a first opening. The crankcase also includes a bearing support portion which defines a second opening. The shaft freely extends through the first opening and extends through and is bearingly supported at the second opening. The crankcase has a shield portion which extends from proximate the first opening to proximate the second opening and which defines a partial enclosure for the shaft between the first opening and the second opening. The shield portion defines an aperture providing fluid communication between the interior plenum and the partial enclosure. The aperture axially extending from proximate the first opening to proximate the second opening. The shield portion circumferentially extends about the shaft along an arc of at least 180 degrees and is spaced radially outwardly of the shaft. A sheet-like baffle member is secured to the crankcase and positioned proximate the inlet opening.
The invention comprises, in another form thereof, a compressor assembly including a housing defining an interior plenum, a stationary scroll member fixed within the housing and an orbiting scroll member disposed within the housing and engaged with the stationary scroll member. A shaft, rotatable about a shaft axis, is operably coupled with the orbiting scroll member. A motor is also operably coupled with the shaft. A crankcase is disposed between the motor and the orbiting scroll member and includes a thrust surface which is engageable with the orbiting scroll member and defines a first opening. The crankcase also includes a bearing support portion defining a second opening. The shaft extends freely through the first opening and extends through and is bearingly supported at the second opening. The crankcase also includes a plurality of legs extending from proximate the thrust surface in a direction substantially parallel to the shaft axis wherein the legs have distal ends engageable with the motor. The crankcase also has a shield portion extending from proximate the first opening to proximate the second opening and defining a partial enclosure for the shaft between the first opening and the second opening. The aperture provides fluid communication between the interior plenum and the partial enclosure and axially extends from proximate the first opening to proximate the second opening. The shield portion circumferentially extends about the shaft along an arc of at least 180 degrees and is spaced radially outwardly of the shaft and radially inwardly of the plurality of legs. A baffle member is secured to the crankcase and is at least partially disposed radially between the shield portion and the legs.
In alternative forms of the compressor assembly, a counterweight may be disposed on the shaft between the first and second openings within the partial enclosure. The baffle member may be positioned radially outwardly of the aperture defined by the shield portion. The aperture may be positioned at a height above the shaft axis. The crankcase may have an outer perimeter which defines a recess providing access to a working space between the fixed and orbiting scroll members wherein the baffle member is positioned adjacent the recess. The shield portion may extend circumferentially about the shaft through an arc of at least about 270 degrees.
An advantage of the present invention is that the use of a crankcase having a shield portion forming a partial enclosure around the shaft allows a counterweight to be disposed on the shaft within the partial enclosure. By positioning the aperture in the shield portion above the shaft, the counterweight may thereby be shielded from the oil sump. Thus, the counterweight will not impact the oil as it rotates and the fanning action of the counterweight will not agitate the oil in the sump and the open aperture allows refrigerant, at suction pressure when the motor and crankcase are positioned in the low pressure side of the compressor housing, to be communicated between the housing interior and the partial enclosure defined by the shield and through an opening in the thrust surface of the crankcase facing the rear of the orbiting scroll member.
The above mentioned and other features and objects of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. Although the exemplification set out herein illustrates an embodiment of the invention, the embodiment disclosed below is not intended to be exhaustive or to be construed as limiting the scope of the invention to the precise form disclosed.
In accordance with the present invention, a scroll compressor 20 is shown in an exploded view in FIG. 1. Scroll compressor 20 includes a fixed or stationary scroll member 22 which is engaged with an orbiting scroll member 24. Fixed and orbiting scroll members 22, 24 respectively include an involute wrap 26, 28. A refrigerant is compressed between scroll members 22, 24 in pockets which are formed between involute wraps 26, 28 and which migrate radially inwardly as scroll member 24 orbitally moves relative to fixed scroll member 22. The refrigerant enters the space between the scroll members at low pressure through inlet 23 (
A one-way valve allows compressed refrigerant to be discharged into a discharge chamber or plenum 38 and prevents compressed refrigerant located in discharge plenum 38 from reentering discharge port 30. The valve includes an exhaust valve leaf 32 which sealingly engages fixed scroll member 22 at discharge port 30 and an exhaust valve retainer 34. Valve leaf 32 is secured between fixed scroll member 22 and valve retainer 34. Valve retainer 34 has a bend at its distal end which allows valve leaf 32 to flex outwardly away from discharge port 30 when gas is compressed between scroll members 22, 24 and thereby permit the passage of high pressure gas into discharge plenum 38. Valve retainer 34 limits the extent to which valve leaf 32 may flex outwardly away from discharge port 30 to prevent damage from excessive flexing of valve leaf 32. A threaded fastener 36 secures valve retainer 34 and valve leaf 32 to fixed scroll member 22. An alternative valve that may be used with compressor 20 is described by Haller et al. in U.S. Provisional Patent Application Ser. No. 60/412,905 entitled COMPRESSOR HAVING DISCHARGE VALVE filed on Sep. 23, 2002 which is hereby incorporated herein by reference. Pressure relief valve 27 is positioned between scroll members 22, 24 to allow discharge pressure gas to be directed into the suction pressure inlet in the event of overpressurization.
An Oldham ring 44 is disposed between fixed scroll member 22 and orbiting scroll member 24 to control the relative motion between orbiting scroll member 24 and fixed scroll member 22. Orbiting scroll 24 is mounted on an eccentrically positioned extension 48 on shaft 46 and rotation of shaft 46 imparts a relative orbital movement between orbiting scroll 24 and fixed scroll 22. The use of shafts having eccentrically positioned extensions and Oldham rings to impart a relative orbital motion between scroll members of a compressor is well known to those having ordinary skill in the art.
A counterweight 50 (
Two roller bearings 60 are positioned on shaft 46 where shaft 46 respectively engages orbiting scroll 24 and crankcase 62. A ball bearing 64 is positioned near the opposite end of shaft 46 and is mounted within bearing support 66. Shaft 46 may be supported in a manner similar to that described by Haller et al. in U.S. patent application Ser. No. 09/964,241 filed Sep. 26, 2001 entitled SHAFT AXIAL COMPLIANCE MECHANISM and which is hereby incorporated herein by reference.
Crankcase 62 is secured to fixed scroll 22 with threaded fasteners 72 which pass through apertures 74 located in fixed scroll 22 and engage threaded bores 76 in crankcase 62. Crankcase 62 includes a thrust surface 68 which slidably engages orbiting scroll 24 and restricts movement of orbiting scroll 24 away from fixed scroll 22. Crankcase 62 also includes four legs 78 which secure the crankcase to stator 92 as described in greater detail below. Shaft 46 extends through opening 80 in crankcase 62. Crankcase 62 includes a shroud or shield portion 70 which is disposed between legs 78 in the lower portion of the horizontal compressor housing and partially encloses a space within which counterweight 50 rotates. Shroud 70 includes an opening or aperture 81 along its upper portion which permits the equalization of pressure between the space partially enclosed by shroud 70 and the remainder of the low pressure chamber or plenum 39 of compressor 20. Low pressure plenum 39 includes that space within compressor housing 88 located between orbiting scroll 24 and end cap 168 and receives the suction pressure refrigerant which is returned to compressor 20 through inlet tube 86.
A suction baffle 82 (
Crankcase 62 is shown in
Counterweight 50 rotates within the partial enclosure defined by shroud 70. Openings 80 and 302 are located such that they are both generally centered on the substantially horizontally oriented axis defined by shaft 46. Aperture 71 is disposed above shaft 46 and defines the uppermost portion of crankcase 62. In the illustrated embodiment, shroud 70 extends for approximately 270 degrees about the axis defined by shaft 46 and aperture 71 extends for approximately 90 degrees. The partial enclosure defined by shroud 70 shields oil within sump 58 from the fanning action of counterweight 50 thereby preventing agitation of the oil by such fanning action. If oil is pooled at a height were it might be impacted by rotating counterweight 50, shroud 70 also provides a barrier that prevents oil pooled in the bottom of plenum 39 from being impacted by counterweight 50 as counterweight 50 rotates.
Suction baffle 82 attached to crankcase 62 above aperture 71 diverts incoming refrigerant towards recess 85 and inlet 23 whereby the refrigerant may be compressed between scroll members 22, 24. A portion of the refrigerant entering compressor 20 via intake tube 86 is also directed in the opposite direction towards end cap 168 whereby the refrigerant may cool motor 90. Suction baffle 82 also shields the entering refrigerant from oil slung radially outwardly by rotating shaft 46 and rotating counterweight 50 and thereby acts to minimize the quantity of oil circulated through the refrigeration system.
A second embodiment of a crankcase which can be used with compressor 20 is. shown in
Suction baffle 312 (
Turning first to suction baffle 312 shown in
If crankcase 306 and baffle member 312 are used with compressor 20, inlet tube 86 is repositioned to enter housing 88 at a mid-height level as indicated by dashed outline 86a in FIG. 2. Refrigerant entering housing 88 is represented by arrow 334. Arrow 334 together with arrows 336, 338 and 340 represent the flow path of refrigerant from inlet tube 86 to inlet 23 to working space 301 defined between scroll members 22, 24 wherein the refrigerant is compressed. As can be seen in
Baffle member 312 is formed out of a sheet-like material and has a first major surface which defines baffle surface 315. The first and second edges 330, 332 of baffle opening 328 define a plane which is positioned at an angle to baffle surface 315 to facilitate the stripping of oil from refrigerant flowing along baffle surface 315. Suction baffle 312′ includes a similar baffle opening 328′ which is positioned at an angle to baffle surface 315′ to facilitate the stripping of oil from refrigerant flowing along baffle surface 315′ and the plane defined by first and second edges 330′ and 332′ corresponds to edge 329′ shown in FIG. 18.
Baffle member 312 also defines a depression 313 in baffle surface 315 which precedes the first edge 330 of opening 328 in the direction of refrigerant flow along baffle surface 315. Although in the illustrated embodiment the oil stripping opening 328 generally projects radially inwardly with respect to baffle surface 315, opening 328 could alternatively positioned such as by projecting radially outwardly with respect to baffle surface 315. The configuration of opening 328 may be modified to alter the quantity of refrigerant diverted through opening 328.
Although some refrigerant will enter opening 328 where it may function to cool motor 90, most refrigerant entering housing 88 will follow flow path arrows 336, 338 and 340 along baffle surface 315 and enter the working space of compressor 20 through recess 85. Baffle surface 325 on flange 324 inhibits the flow of refrigerant towards end cap 168. Baffle surface 315 extends from vertically below inlet 86 to recess 85′ and together with the interior surface of cylindrical portion 166 of housing 88, baffle surfaces 315 and 325 define a passageway 346 which extends between inlet 86 to housing 88 and inlet 23 to the working space defined between scroll members 22, 24.
A motor 90 is disposed adjacent crankcase 62 and includes a stator 92 and a rotor 94. Bushings 96 are used to properly position stator 92 with respect to crankcase 62 and bearing support 66 when assembling compressor 20. During assembly, crankcase 62, motor 90 and bearing support 66 must have their respective bores through which shaft 46 is inserted precisely aligned. Smooth bore pilot holes 100, 102, 104 which are precisely located relative to these bores are provided in crankcase 62, motor 90 and bearing support 66. Alignment bushings 96 fit tightly within the pilot holes to properly align crankcase 62, motor 90 and bearing support 66. Bolts 98 (
A terminal pin cluster 108 is located on motor 90 and wiring (not shown) connects cluster 108 with a second terminal pin cluster 110 mounted in end cap 168 and through which electrical power is supplied to motor 90. A terminal guard or fence 111 is welded to end cap 168 and surrounds terminal cluster 110. Shaft 46 extends through the bore of rotor 94 and is rotationally secured thereto by a shrink fit whereby rotation of rotor 94 also rotates shaft 46. Rotor 94 includes a counterweight 106 at its end proximate bearing support 66.
As mentioned above, shaft 46 is rotatably supported by ball bearing 64 which is mounted in bearing support 66. Bearing support 66 includes a central boss 112 which defines a substantially cylindrical opening 114 in which ball bearing 64 is mounted. A retaining ring 118 is fitted within a groove 116 located in the interior of opening 114 to retain ball bearing 64 within boss 112. An oil shield 120 is secured to boss 112 and has a cylindrical portion 122 which extends towards motor 90 therefrom. Counterweight 106 is disposed within the space circumscribed by cylindrical portion 122 and is thereby shielded from the oil located in oil sump 58, although it is expected that the oil level 123 will be below oil shield 120 under most circumstances, as shown in FIG. 4. Oil shield 120 is positioned so that it inhibits the impacting of counterweight 106 on oil migrating to oil sump 58 and also inhibits the agitation of oil within oil sump 58 which might be caused by the movement of refrigerant gas created by the rotation of eccentrically positioned counterweight 106. A second substantially cylindrical portion 124 of oil shield 120 has a smaller diameter than the first cylindrical portion 122 and has a plurality of longitudinally extending tabs with radially inwardly bent distal portions. Boss 112 includes a circular groove and oil shield 120 is secured to boss 112 by engaging the radially inwardly bent distal portions with the circular groove. An oil shield which may be used with compressor 20 is described by Skinner in U.S. Provisional Patent Application Ser. No. 60/412,838 entitled COMPRESSOR HAVING COUNTERWEIGHT SHIELD filed on Sep. 23, 2002 which is hereby incorporated herein by reference.
Support arms 134 extend between boss 112 and outer ring 136 of bearing support 66. The outer perimeter of ring 136 is press fit into engagement with housing 88 to secure bearing support 66 therein. The interior perimeter of outer ring 136 faces the windings of stator 92 when bearing support 66 is engaged with motor 90. Flats 138 are located on the outer perimeter of ring 136 and the upper flat 138 facilitates the equalization of pressure within suction plenum by allowing refrigerant to pass between outer ring 136 and housing 88. Flat 138 located along the bottom of ring 136 allows oil in oil sump 58 to pass between ring 136 and housing 88. A notch 140 located on the interior perimeter of outer ring 136 may be used to locate bearing support 66 during machining of bearing support 66 and also facilitates the equalization of pressure within suction plenum 39 by allowing refrigerant to pass between stator 92 and ring 136. The outer perimeter of stator 92 also includes flats to provide passages between stator 92 and housing 88 through which lubricating oil and refrigerant may be communicated.
Support arms 134 are positioned such that the two lowermost arms 134 form an angle of approximately 120 degrees to limit the extent to which the two lowermost arms 134 extend into the oil in sump 58 and thereby limit the displacement of oil within oil sump 58 by such arms 134. A sleeve 142 projects rearwardly from bearing support 66 and provides for uptake of lubricating oil from oil sump 58. An oil pick up tube 144 is secured to sleeve 142 with a threaded fastener 146. An O-ring 148 provides a seal between oil pick up tube 144 and sleeve 142. As shown in
As can be seen in
After the compressor and motor subassembly is assembled and shrink-fitted into cylindrical housing shell 166, fixed scroll member 22 is positioned within discharge end cap 160 and tightly engages the interior surface of end cap 160. Discharge plenum 38 is formed between discharge end cap 160 and fixed scroll member 22. As compressed refrigerant is discharged through discharge port 30 it enters discharge plenum 38 and is subsequently discharged from compressor 20 through discharge tube 164. Compressed refrigerant carries oil with it as it enters discharge plenum 38. Some of this oil will separate from the refrigerant and accumulate in the bottom portion of discharge plenum 38. Discharge tube 164 is located near the bottom portion of discharge plenum 38 so that the vapor flow discharged through tube 164 will carry with it oil which has settled to the bottom portion of discharge plenum 38 and thereby limit the quantity of oil which can accumulate in discharge plenum 38. Although the illustrated embodiment utilizes a short, straight length of tubing to provide discharge tube 164, alternative embodiments of the discharge outlet may also be used. A discharge plenum configuration which may be used with compressor 20 is described by Skinner in U.S. Provisional Patent Application Ser. No. 60/412,871 entitled COMPRESSOR DISCHARGE ASSEMBLY filed on Sep. 23, 2002 which is hereby incorporated herein by reference.
Mounting brackets 206 and 208 are welded to housing 88 and support compressor 20 in a generally horizontal orientation. As can be seen in
While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.
This application claims priority under 35 U.S.C. 119(e) of U.S. provisional patent application Ser. No. 60/412,768 filed on Sep. 23, 2002 entitled COMPRESSOR ASSEMBLY the disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2661172 | Needham | Dec 1953 | A |
3039725 | Kerley, Jr. | Jun 1962 | A |
RE25569 | Coron et al. | May 1964 | E |
3145960 | Langdon | Aug 1964 | A |
3749340 | Williams et al. | Jul 1973 | A |
3785167 | Sahs | Jan 1974 | A |
4089613 | Babbitt, Jr. | May 1978 | A |
4244680 | Ishizuka et al. | Jan 1981 | A |
4389171 | Eber et al. | Jun 1983 | A |
4416594 | Ichikawa | Nov 1983 | A |
4497615 | Griffith | Feb 1985 | A |
4518276 | Mitchell | May 1985 | A |
4552518 | Utter | Nov 1985 | A |
4557677 | Hasegawa | Dec 1985 | A |
4685188 | Goy | Aug 1987 | A |
4767293 | Caillat et al. | Aug 1988 | A |
4792288 | Gromoll et al. | Dec 1988 | A |
4818198 | Tamura et al. | Apr 1989 | A |
4877382 | Caillat et al. | Oct 1989 | A |
4886435 | Sawai et al. | Dec 1989 | A |
4992033 | Caillat et al. | Feb 1991 | A |
5012896 | Da Costa | May 1991 | A |
5055010 | Logan | Oct 1991 | A |
5062779 | Da Costa | Nov 1991 | A |
5110268 | Sakurai et al. | May 1992 | A |
5114322 | Caillat et al. | May 1992 | A |
5137437 | Machida et al. | Aug 1992 | A |
5176506 | Siebel | Jan 1993 | A |
5211031 | Murayama et al. | May 1993 | A |
RE34297 | Elson | Jun 1993 | E |
5219281 | Caillat et al. | Jun 1993 | A |
5222885 | Cooksey | Jun 1993 | A |
5224845 | Mangyo et al. | Jul 1993 | A |
5240391 | Ramshankar et al. | Aug 1993 | A |
5247738 | Yoshii | Sep 1993 | A |
5312234 | Yoshii | May 1994 | A |
5345785 | Sekigami et al. | Sep 1994 | A |
5345970 | Leyderman et al. | Sep 1994 | A |
5346375 | Akiyama et al. | Sep 1994 | A |
5348455 | Herrick et al. | Sep 1994 | A |
5370156 | Peracchio et al. | Dec 1994 | A |
5391066 | Sawai et al. | Feb 1995 | A |
5427511 | Caillat et al. | Jun 1995 | A |
5474433 | Chang et al. | Dec 1995 | A |
5487648 | Alfano et al. | Jan 1996 | A |
5522715 | Watanabe et al. | Jun 1996 | A |
5531577 | Hayase et al. | Jul 1996 | A |
5533875 | Crum et al. | Jul 1996 | A |
5579651 | Sugiyama et al. | Dec 1996 | A |
5580233 | Wakana et al. | Dec 1996 | A |
5597293 | Bushnell et al. | Jan 1997 | A |
5597296 | Akazawa et al. | Jan 1997 | A |
5634781 | Yoshida et al. | Jun 1997 | A |
5645408 | Fujio et al. | Jul 1997 | A |
5660539 | Matsunaga et al. | Aug 1997 | A |
5683237 | Hagiwara et al. | Nov 1997 | A |
5695326 | Oka et al. | Dec 1997 | A |
5716202 | Koyama et al. | Feb 1998 | A |
5720601 | Tark et al. | Feb 1998 | A |
5745992 | Caillat et al. | May 1998 | A |
5752688 | Campbell et al. | May 1998 | A |
5769126 | Cho | Jun 1998 | A |
5772411 | Crum et al. | Jun 1998 | A |
5772416 | Caillat et al. | Jun 1998 | A |
5775894 | Kosco, Jr. | Jul 1998 | A |
5810572 | Yamamoto et al. | Sep 1998 | A |
5829959 | Tsubono et al. | Nov 1998 | A |
5863190 | Yamamoto et al. | Jan 1999 | A |
5913892 | Kwon | Jun 1999 | A |
5931649 | Caillat et al. | Aug 1999 | A |
5931650 | Yasu et al. | Aug 1999 | A |
5947709 | Koyama et al. | Sep 1999 | A |
5964581 | Iizuka et al. | Oct 1999 | A |
6000917 | Smerud et al. | Dec 1999 | A |
6011336 | Mathis et al. | Jan 2000 | A |
6027321 | Shim et al. | Feb 2000 | A |
6039551 | Takeuchi et al. | Mar 2000 | A |
6050794 | Noboru et al. | Apr 2000 | A |
6056523 | Won et al. | May 2000 | A |
6106254 | Hirooka et al. | Aug 2000 | A |
6132191 | Hugenroth et al. | Oct 2000 | A |
6139291 | Perevozchikov | Oct 2000 | A |
6156106 | Kamata | Dec 2000 | A |
6162035 | Hayano et al. | Dec 2000 | A |
6167719 | Yakumaru et al. | Jan 2001 | B1 |
6171076 | Gannaway | Jan 2001 | B1 |
6179589 | Bass et al. | Jan 2001 | B1 |
6186753 | Hugenroth et al. | Feb 2001 | B1 |
6224356 | Dewar et al. | May 2001 | B1 |
6227830 | Fields et al. | May 2001 | B1 |
6247910 | Yokoyama | Jun 2001 | B1 |
6261073 | Kumazawa | Jul 2001 | B1 |
6264446 | Rajendran et al. | Jul 2001 | B1 |
6280154 | Clendenin et al. | Aug 2001 | B1 |
6299423 | Perevozchikov | Oct 2001 | B1 |
6305912 | Svendsen et al. | Oct 2001 | B1 |
6402485 | Hong et al. | Jun 2002 | B2 |
20010006603 | Hong et al. | Jul 2001 | A1 |
20010055536 | Bernardi et al. | Dec 2001 | A1 |
Number | Date | Country |
---|---|---|
61087994 | May 1986 | JP |
61112795 | May 1986 | JP |
402061382 | Mar 1990 | JP |
03054391 | Mar 1991 | JP |
407259764 | Oct 1995 | JP |
410148191 | Jun 1998 | JP |
2001020881 | Jan 2001 | JP |
2002021729 | Jan 2002 | JP |
2002098056 | Apr 2002 | JP |
2002122083 | Apr 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20040057848 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
60412768 | Sep 2002 | US |