Compressor assembly having electronics cooling system and method

Information

  • Patent Grant
  • 8950206
  • Patent Number
    8,950,206
  • Date Filed
    Thursday, October 2, 2008
    16 years ago
  • Date Issued
    Tuesday, February 10, 2015
    9 years ago
Abstract
A system, compressor, and method that cools an electronics module with a low-pressure refrigerant. The system, compressor, and method utilize a temperature sensor that detects a temperature of the low pressure refrigerant and communicates with the electronics module. Based on the temperature detected by the temperature sensor, the electronics module controls a liquid dry out point of the refrigerant that is used to cool the electronics module.
Description
FIELD

The present disclosure relates to a compressor system that utilizes refrigerant to cool system electronics.


BACKGROUND

The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.


A compressor may use electronics to control the compressor motor. The electronics may be externally mounted to the outer shell of the compressor, and used to modulate compressor capacity, such as by varying the speed of the motor. During operation, however, the electronics may generate heat. If too much heat is generated, the electronics may overheat.


SUMMARY

The present disclosure provides a system including a compressor having a suction side for receiving low-pressure refrigerant and a discharge side for dispensing high-pressure refrigerant. A pair of heat exchangers are in communication with the compressor, and an expansion valve is disposed between the heat exchangers. A temperature sensor detects a temperature of the low-pressure refrigerant passing through the system, and a cooling apparatus receives the low-pressure refrigerant. An electronics module is adjacent the cooling apparatus, in communication with the temperature sensor, and controls the expansion valve based on the temperature of the low-pressure refrigerant to control an amount of the low-pressure refrigerant passing through the cooling apparatus.


In the system described above, the electronics module controls a liquid dry out point (LDOP) of the low-pressure refrigerant.


Also, the electronics module controls superheating of the low-pressure refrigerant.


In the system described above, if the sensor detects a decrease in temperature of the low-pressure refrigerant, the electronics module causes the expansion valve to decrease an amount of refrigerant allowed to reach one of the heat exchangers.


If the sensor detects an increase in temperature of the low-pressure refrigerant, the electronics module causes the expansion valve to increase an amount of refrigerant allowed to reach one of the heat exchangers.


The temperature sensor may be disposed adjacent the cooling apparatus.


Alternatively, the temperature sensor may be disposed at an inlet of the cooling apparatus.


In yet another alternative, the temperature sensor is disposed downstream of an inlet of the cooling apparatus.


The cooling apparatus may include a cold plate having a plurality of passageways for carrying the low-pressure refrigerant.


Moreover, the compressor may be a variable speed compressor.


Further, the electronics module may include an inverter.


The present disclosure also provides a compressor for an air conditioning system or a heat pump system carrying a refrigerant. The compressor includes a shell including a suction line for receiving low-pressure refrigerant and a discharge line for dispensing high-pressure refrigerant. An electronics module is proximate the shell, and a cooling apparatus is proximate the electronics module that utilizes the low-pressure refrigerant to cool the electronics module. A temperature sensor is adjacent the cooling apparatus and in communication with the electronics module, and detects a temperature of the low-pressure refrigerant.


In the compressor described above, the cooling apparatus may include a cold plate having a plurality of passageways for carrying the low-pressure refrigerant.


In addition, the sensor may be located at an inlet to the cooling apparatus.


Alternatively, the temperature sensor may be disposed downstream of an inlet of the cooling apparatus.


In the compressor described above, the electronics module controls an amount of the refrigerant passing through the cooling apparatus.


If the sensor detects a decrease in temperature of the low-pressure refrigerant, the electronics module decreases an amount of low-pressure refrigerant passing through the cooling apparatus.


If the sensor detects an increase in temperature of the low-pressure refrigerant, the electronics module increases an amount of low-pressure refrigerant passing through the cooling apparatus.


The electronics module also controls a liquid dry out point (LDOP) of the refrigerant.


In addition, the electronics module controls superheating of the low-pressure refrigerant.


Moreover, the electronics module may vary a speed of the compressor.


Further, the electronics module may include an inverter.


The present disclosure also provides a method that includes monitoring a temperature of a low-pressure refrigerant with a temperature sensor in communication with an electronics module. The electronics module controls a flow of the low-pressure refrigerant based on the temperature, and the electronics module is cooled with the low-pressure refrigerant.


In the method, controlling the flow controls a liquid dry out point (LDOP) of the low-pressure refrigerant.


Moreover, controlling the LDOP controls superheating of the low-pressure refrigerant.


If the sensor detects a decrease in temperature of the low-pressure refrigerant, the electronics module decreases the flow of low-pressure refrigerant.


If the sensor detects an increase in temperature of the low-pressure refrigerant, the electronics module increases the flow of low-pressure refrigerant.


In addition, the electronics module may include an inverter.


The method may also include compressing the refrigerant with a variable speed compressor.


The present disclosure also provides a system including a compressor that discharges a high-pressure refrigerant. A pair of heat exchangers are in communication with the compressor. An expansion valve is disposed between the heat exchangers that converts the high-pressure refrigerant to a low-pressure refrigerant, and an electronics module controls the expansion valve. A temperature sensor is in communication with the module for detecting a temperature of the low-pressure refrigerant. A cooling apparatus is adjacent the temperature sensor for cooling the module with the low-pressure refrigerant, wherein if the sensor detects a decrease in temperature of the low-pressure refrigerant, the electronics module causes the expansion valve to decrease an amount of low-pressure refrigerant allowed to pass therethrough and, if the sensor detects an increase in temperature of the low-pressure refrigerant, the electronics module causes the expansion valve to increase an amount of low-pressure refrigerant allowed to pass therethrough.


In the above system, increasing and decreasing the refrigerant with the expansion valve controls a liquid dry out point (LDOP) of the refrigerant.


In addition, controlling the LDOP controls superheating of the low-pressure refrigerant.


In the system, the sensor may be disposed at an inlet of the cooling apparatus.


Alternatively, the sensor may be disposed downstream of an inlet of the cooling apparatus.


In the system, the compressor may be a variable speed compressor.


In addition, the electronics module may include an inverter.


Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.





DRAWINGS

The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.



FIG. 1 is a schematic representation of an air conditioning or heat pump system;



FIG. 2 is a perspective view of a compressor and its corresponding electronics module having a cooling apparatus; and



FIG. 3 is a cross-sectional view of a conduit in the air conditioning or heat pump system, illustrating the transition of the refrigerant from a liquid phase to a gaseous phase.





DETAILED DESCRIPTION

The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.



FIG. 1 is a schematic representation of an air conditioning or heat pump system 10. Air conditioning or heat pump system 10 may generally include a compressor 12, a condenser 14, and an evaporator 16. Disposed between condenser 14 and evaporator 16 may be an expansion valve 18. Air conditioning or heat pump system 10 may also be provided with a reversing valve 20 where suction and discharge lines 22 and 24, respectively, pass through. Reversing valve 20 allows system 10 to operate as either a refrigeration system or a heat pump. Regardless whether system 10 operates as a refrigeration system or as a heat pump, compressor 12 receives low-pressure refrigerant at a suction side and dispenses high-pressure refrigerant at a discharge side.


When operating as a refrigeration system, system 10 uses the cooling effect of evaporation of the refrigerant to lower the temperature of the surroundings near one heat exchanger (i.e., evaporator 16) and uses the heating effect of high pressure, high temperature gas to raise the temperature of the surroundings near another heat exchanger (i.e., condenser 14). This is usually accomplished by releasing a refrigerant under pressure (usually in a liquid phase) into a low pressure region to cause the refrigerant to expand into a low temperature mixture of liquid and vapor. Commonly, this low pressure region comprises a coil (not shown) that acts as an evaporator, that may be formed in evaporator 16. Once in the evaporator coil, the refrigerant mixture may exchange heat with the tubing of the coil, which in turn exchanges heat with high temperature ambient air of the region desired to be cooled. Evaporation of refrigerant from liquid to gas absorbs heat from the ambient air and thereby cools it.


Release of refrigerant into the low pressure evaporator coil is usually metered by expansion valve 18. There are a wide variety of different types of expansion valves in use today, ranging from simple non-adjustable capillary tubes or orifices to electrically adjustable valves, such as pulse width modulated valves and stepper motor valves.


The refrigerant at the output of evaporator 16 is compressed back into a high pressure state by compressor 12 and is condensed into a liquid phase by condenser 14 so that it may be used again. In some systems, compressor 12 may be variable speed or variable capacity, so that the compressor 12 also controls the rate at which refrigerant flows through the restricted orifice. To operate compressor 12 at variable speed or variable capacity, compressor 12 may include an electronics module 26, including an electronic inverter.


Electronic inverter, which may also be referred to as a variable frequency drive (VFD), receives electrical power from a power supply and delivers electrical power to compressor 12. By modulating the frequency of electrical power delivered to the electric motor of compressor 12, inverter may thereby modulate and control the speed, and consequently the capacity, of compressor 12. To modulate the frequency of electric power, inverter may include solid state electronics to modulate the frequency of electrical power. Generally, inverter more specifically comprises a converter that converts the inputted electrical power from AC to DC, and then inverter converts the electrical power from DC back to AC at a desired frequency.



FIG. 2 illustrates an exemplary compressor 12 having electronics module 26 mounted thereto. Electronics module 26 includes an electrical enclosure or housing 28 that houses various electronic components such as a control module 30. Control module 30, such as Assignee's U.S. Pat. No. 6,302,654, which is hereby incorporated by reference in its entirety, may control compressor capacity or monitor operating conditions of the compressor.


Control module 30 may generally include a control block, microprocessor, memory analog-to-digital converters, a communication interface, the inverter described above, and a plurality of terminals connected to various sensors that monitor parameters of the compressor. The control block, which includes processing circuitry, may control compressor capacity. The analog-to-digital converter may be used to convert analog signals sent by the various sensors to a digital signal before input into control module 30. The communication interface may provide communication with the control block from an outside source or server via, for example, an internet or intranet connection.


Electronics module 26 may also house a compressor protection or diagnostic system that may include controller 30, such as that described above, and a power interruption system (not shown). Diagnostic system may include a plurality of sensors, and diagnoses operating conditions by receiving and analyzing motor, compressor, and system parameters. In addition, the diagnostic data may be used to control compressor modulation based on system conditions detected by the sensors. An exemplary compressor protection and control diagnostic systems is described in the assignee's commonly owned U.S. patent application Ser. No. 11/059,646 filed on Feb. 16, 2005, and U.S. Pat. No. 6,615,594 which are hereby incorporated by reference in their entirety.


As system 10 operates, the components of electronics module 26 may generate heat. As more heat is generated, however, the components (e.g., inverter components) of electronics module 26 may overheat and cause system 10 to either shutdown or reduce capacity until the components cool, or the components may not operate correctly and cause system 10 to malfunction or fail. To reduce the possibility that the components of electronics module 26 may fail due to overheating, steps may be taken to cool electronics module.


Again referring to FIG. 2, a cooling apparatus 50 may be mounted to electronics module 26 to cool electronics module 26. Cooling apparatus 50 may be a cold plate that may include a generally planar member 52 that includes a plurality of pathways 54. The pathways 54 are configured to support a tubular assembly 56 that carries the refrigerant therein. Refrigerant passing through tubular assembly 56 and planar member 52 absorbs heat generated by the electronics module 26 that is passed from the electronics assembly 26 to planar member 52. In this manner, heat generated by the electronics module 26 may be efficiently transferred to the refrigerant (i.e., a suction gas) flowing through the cooling apparatus 50 to cool electronics module 26.


At an inlet 58 of cooling apparatus 50 within a suction line 60 from system 10 may be disposed a temperature sensor 62. Although temperature sensor 62 is illustrated as being disposed upstream at inlet 58 in FIG. 2, the present disclosure should not be limited thereto. Temperature sensor 62, rather, may be disposed upstream of inlet 58, adjacent inlet 58, or downstream of inlet 58 within cooling apparatus 50. Regardless, temperature sensor 62 senses a temperature of the suction line 60 refrigerant, indicating conditions prior to or after the refrigerant enters cooling apparatus 50, and communicates temperatures of the refrigerant in suction line 60 to electronics module 26. Fluctuations in temperature of the refrigerant detected by temperature sensor 62 and communicated to electronics module 26 may by used to control expansion valve 18 to either increase or decrease the amount of refrigerant entering evaporator 16. That is, electronics module 26 is also in communication with expansion valve 18 to control an amount of refrigerant entering evaporator 16 through expansion valve 18. By controlling expansion valve 18 based on a temperature of the refrigerant detected by temperature sensor 62, the amount of refrigerant entering evaporator 16 may be controlled to enhance the cooling effect of cooling apparatus 50 on electronics module 26.


Furthermore, by controlling expansion valve 18, a liquid dry out point (LDOP) of the refrigerant in system 10 may be controlled. LDOP is described in assignee's U.S. Pat. No. 5,502,970, which is hereby incorporated by reference in its entirety. LDOP operates on a principle that a refrigerant flow pattern develops as the refrigerant acquires heat in the coils 64 of evaporator 16 and ultimately makes a transition from liquid to vapor. Referring to FIG. 3, a section of the evaporator coil 64 of evaporator 16 is illustrated. Specifically, a portion adjacent to an exit end of coil 64 has been illustrated, in magnified form, to show how the refrigerant changes state as heat is absorbed.


In Region a, the refrigerant is principally in the liquid phase with some suspended bubbles of refrigerant in the vapor phase. The bubbles tend to flow along the top of the coil, as illustrated. As heat is absorbed, the refrigerant gradually exhibits the flow illustrated in Region b. In Region b, bullet-shaped bubbles form and tend to move along the top of the coil as illustrated.


As the flow proceeds to Region c, the refrigerant enters a stratified flow regime, characterized by liquid refrigerant flowing along the bottom of the coil and vapor refrigerant flowing along the top. As further heat energy is absorbed by the refrigerant, the liquid refrigerant develops waves that are depicted in Region d. These waves are formed on the liquid/vapor interface through the increased velocity of the vaporous refrigerant.


Next, the slug flow regime develops as illustrated in Region e. The waves and the liquid refrigerant grow large enough to touch the upper surface of the coil, with large frothy slugs of liquid interspersed with regions of stratified liquid flow. Finally, in Region f virtually all of the refrigerant is in the vapor phase and the flow become annular. The liquid refrigerant adheres to the sidewall of the coil with a greater quantity present at a bottom of a coil due to gravitational effect.


The LDOP or “burn out” point occurs when the liquid phase adhering to the sidewalls substantially disappears. The LDOP is illustrated generally at Region g in FIG. 3. The precise location of the LDOP, however, will shift randomly or erratically back and forth (i.e., left to right in FIG. 3) as system 10 operates.


Utilizing the LDOP concept, sensor 62 is disposed at a location adjacent inlet 58 of cooling apparatus 50 so that if a minimum amount of liquid refrigerant advances to the location of sensor 62 (i.e., the LDOP moves downstream of sensor 62 towards cooling apparatus 50), a sudden change of temperature may be detected by sensor 62 (because liquid refrigerant generally has a temperature less than gaseous refrigerant). If such a change in temperature is detected by sensor 62 and communicated to electronics module 26, electronics module 26 may then communicate with expansion valve 18 to reduce the amount of refrigerant flowing to evaporator 16. Reducing the amount of refrigerant flowing to evaporator 16 may move the LDOP upstream of sensor 62.


In contrast, when the temperature of the refrigerant detected by sensor 62 increases, indicating that the LDOP is upstream of sensor 62, expansion valve 18 may be controlled by electronics module 26 to increases the flow of the refrigerant to evaporator 16 to move the LDOP back downstream towards sensor 62. In this manner, the refrigerant flow may be controlled through evaporator 16 to control the LDOP by controlling expansion valve 18. By controlling the LDOP such that the LDOP is essentially at the location of sensor 62, a minimum amount of liquid refrigerant may enter cooling apparatus 50.


Controlling expansion valve 18 based on fluctuation of the LDOP also allows for minimum superheating of the refrigerant, which improves performance of the heat exchange surface of evaporator 16. This, in turn, enables the size of evaporator 16 to be minimized. Furthermore, due to the minimum superheating of the refrigerant, lower temperature cooling of the electronic module 26 may be achieved. This lower temperature cooling of electronics module 36, compared to using condensed liquid as used in conventional refrigerant systems, may result in lower cost electronics. Moreover, controlling expansion valve 18 so that the LDOP stays upstream of cooling apparatus 50 minimizes temperature fluctuations experienced by electronics module 26.


Additionally, condensation that may form on electronics module 26 and cooling apparatus 50 may be kept minimal since electronics module 26 may be cooled in accordance with operation of compressor 12. That is, as capacity of compressor 12 increases, operation of expansion valve 18 may be controlled to maximize the amount of refrigerant entering evaporator 16 and cooling apparatus 50 to cool electronics module 26.


Using LDOP also enables cooling apparatus 50 to be sized such that minimization of electronics module 26 is possible by ensuring lower solid-state electronic component (not shown) junction temperature. Electronics module 26 used by system 10 may have electronic components with a maximum current rating limited by its junction temperature, TJ. In general, TJ should not exceed 160 degrees C. and, generally, TJ is about 150 degrees C. at a given solid-state packaging case temperature, TC. Case temperature affects the maximum current rating of the solid-state switch. For example, the solid-state switches may be rated at 60 amperes at a TC of 25 degrees C. and rated at 30 amperes at a TC of 100 degrees C. This difference in current rating results from thermal resistance at the junction of the solid-state switch and its packaging.


A TC of 25 degrees Celsius may not be obtained at full current rating using only forced convection of air on a typical heat sink in contact with the packaging case, let alone by using natural convection. TC of 100 degrees C., however, is more readily observed using these methods and, therefore, current ratings of about 30 amperes are generally achieved using forced convection and natural convection of air on a heat sink with contact with the packaging case. By using refrigerant cooling and controlling the LDOP by controlling the expansion valve 18, however, the amount of cooling that cooling apparatus 50 may exhibit on electronics module 26 and housing 28 may extend the current rating to about 39 amperes (i.e., a 30 percent increase). That is, cooling apparatus 50 having gaseous refrigerant passing therethrough based on controlling the LDOP results in a lower electronic component junction temperature that allows solid-state switch, and therefore electronics module 26, to operate at a higher current rating. Because the current rating may be raised in this manner, the cost of running system 10 may be reduced, and the cost of the electronics used for electronics module 26 may be reduced


The above description is merely exemplary in nature and, thus, variations that do not depart from the gist of the disclosure are intended to be within the scope of the present teachings. Such variations are not to be regarded as a departure from the spirit and scope of the present teachings.

Claims
  • 1. A system comprising: a compressor having a suction side for receiving low-pressure refrigerant and a discharge side for dispensing high-pressure refrigerant;a pair of heat exchangers in communication with said compressor;an expansion valve disposed between said heat exchangers;a control module for controlling said expansion valve;an electronics module externally mounted to the compressor;a cooling apparatus mounted to the electronics module that receives said low-pressure refrigerant to cool said electronic module;a temperature sensor located at an inlet of said cooling apparatus, said temperature sensor for detecting a temperature of said low-pressure refrigerant entering said cooling apparatus,wherein said control module is in communication with said temperature sensor, and controls said expansion valve based on said temperature of said low-pressure refrigerant to minimize an amount of said low-pressure refrigerant in a liquid phase passing through said cooling apparatus.
  • 2. The system of claim 1, wherein said control module controls a liquid dry out point (LDOP) of said low-pressure refrigerant.
  • 3. The system of claim 1, wherein said control module controls superheating of said low-pressure refrigerant.
  • 4. The system of claim 1, wherein if said sensor detects a decrease in temperature of said low-pressure refrigerant, said control module causes said expansion valve to decrease an amount of refrigerant allowed to reach one of said heat exchangers.
  • 5. The system of claim 1, wherein if said sensor detects an increase in temperature of said refrigerant, said control module causes said expansion valve to increase an amount of refrigerant allowed to reach one of said heat exchangers.
  • 6. A compressor for an air conditioning system or a heat pump system carrying a refrigerant, comprising: a shell including a suction line for receiving low-pressure refrigerant and a discharge line for dispensing high-pressure refrigerant;an electronics module externally mounted to said shell;a cooling apparatus mounted to said electronics module that utilizes said low-pressure refrigerant to cool said electronics module;a control module; anda temperature sensor at an inlet of said cooling apparatus for detecting a temperature of said low-pressure refrigerant entering said cooling apparatus, said temperature sensor being in communication with said control module, and said control module minimizing an amount of said low-pressure refrigerant in a liquid phase passing through said cooling apparatus to cool said electronics module based on said temperature.
  • 7. The compressor of claim 6, wherein if said sensor detects a decrease in temperature of said low-pressure refrigerant, said control module decreases an amount of low-pressure refrigerant passing through said cooling apparatus.
  • 8. The compressor of claim 6, wherein if said sensor detects an increase in temperature of said low-pressure refrigerant, said control module increases an amount of low-pressure refrigerant passing through said cooling apparatus.
  • 9. The compressor of claim 6, wherein said control module controls a liquid dry out point (LDOP) of the refrigerant.
  • 10. The compressor of claim 6, wherein said control module controls superheating of said low-pressure refrigerant.
  • 11. A method comprising cooling an electronics module that is externally mounted to a compressor using a cooling apparatus mounted to said electronics module with a low-pressure refrigerant that passes through said cooling apparatus, said step of cooling including monitoring a temperature of said low-pressure refrigerant with a temperature sensor located at an inlet of said cooling apparatus, said temperature sensor being in communication with a control module that minimizes a flow of said low-pressure refrigerant in a liquid phase entering said cooling apparatus based on said temperature.
  • 12. The method of claim 11, wherein controlling said flow controls a LDOP of said low-pressure refrigerant.
  • 13. The method of claim 12, wherein controlling said LDOP controls superheating of said low-pressure refrigerant.
  • 14. The method of claim 11, wherein if said sensor detects a decrease in temperature of said low-pressure refrigerant, said control module decreases said flow of low-pressure refrigerant.
  • 15. The method of claim 11, wherein if said sensor detects an increase in temperature of said low-pressure refrigerant, said control module increases said flow of low-pressure refrigerant.
  • 16. A system comprising: a compressor that discharges a high-pressure refrigerant;a pair of heat exchangers in communication with said compressor;an expansion valve disposed between said heat exchangers that converts said high-pressure refrigerant to a low-pressure refrigerant;a control module for controlling said expansion valve;an electronics module externally mounted to said compressor;a cooling apparatus mounted to said electronics module for cooling said electronics module with said low-pressure refrigerant; anda temperature sensor located directly adjacent an inlet of said cooling apparatus for detecting a temperature of said low-pressure refrigerant entering said cooling apparatus to cool said electronics module,wherein if said sensor detects a decrease in temperature of said low-pressure refrigerant entering said cooling apparatus, said control module causes said expansion valve to decrease an amount of low-pressure refrigerant allowed to pass therethrough;wherein if said sensor detects an increase in temperature of said low-pressure refrigerant entering said cooling apparatus, said control module causes said expansion valve to increase an amount of low-pressure refrigerant allowed to pass therethrough; andsaid control module minimizes said low-pressure refrigerant in a liquid phase passing through said cooling apparatus.
  • 17. The system of claim 16, wherein increasing and decreasing said refrigerant with said expansion valve controls a LDOP of said refrigerant.
  • 18. The system of claim 17, wherein controlling said LDOP controls superheating of said low-pressure refrigerant.
  • 19. The system of claim 16, wherein said compressor is a variable speed compressor.
  • 20. The system of claim 16, wherein said electronics module includes an inverter.
US Referenced Citations (239)
Number Name Date Kind
2883255 Anderson Apr 1959 A
2981076 Gaugler Apr 1961 A
3242321 Chope Mar 1966 A
3600657 Pfaff et al. Aug 1971 A
4130997 Hara et al. Dec 1978 A
4280910 Baumann Jul 1981 A
4370564 Matsushita Jan 1983 A
4460861 Rosa Jul 1984 A
4461153 Lindner et al. Jul 1984 A
4527399 Lord Jul 1985 A
4653280 Hansen et al. Mar 1987 A
4750338 Hingst Jun 1988 A
4940929 Williams Jul 1990 A
5056712 Enck Oct 1991 A
5182918 Manz et al. Feb 1993 A
5258901 Fraidlin Nov 1993 A
5269146 Kerner Dec 1993 A
5291115 Ehsani Mar 1994 A
5315214 Lesea May 1994 A
5347467 Staroselsky et al. Sep 1994 A
5359276 Mammano Oct 1994 A
5359281 Barrow et al. Oct 1994 A
5410221 Mattas et al. Apr 1995 A
5410235 Ehsani Apr 1995 A
5440218 Oldenkamp Aug 1995 A
5502970 Rajendran Apr 1996 A
5519300 Leon et al. May 1996 A
5603222 Dube Feb 1997 A
5603227 Holden et al. Feb 1997 A
5646499 Doyama et al. Jul 1997 A
5663627 Ogawa Sep 1997 A
5712551 Lee Jan 1998 A
5712802 Kumar et al. Jan 1998 A
5742103 Ashok Apr 1998 A
5786992 Vinciarelli et al. Jul 1998 A
5903138 Hwang et al. May 1999 A
5960207 Brown Sep 1999 A
5963442 Yoshida et al. Oct 1999 A
6005365 Kaneko et al. Dec 1999 A
6028406 Birk Feb 2000 A
6035653 Itoh et al. Mar 2000 A
6041609 Hornsleth et al. Mar 2000 A
6065298 Fujimoto May 2000 A
6073457 Kampf et al. Jun 2000 A
6091215 Lovett et al. Jul 2000 A
6091233 Hwang et al. Jul 2000 A
6102665 Centers et al. Aug 2000 A
6116040 Stark Sep 2000 A
6123146 Dias Sep 2000 A
6222746 Kim Apr 2001 B1
6226998 Reason et al. May 2001 B1
6236183 Schroeder May 2001 B1
6236193 Paul May 2001 B1
6259614 Ribarich et al. Jul 2001 B1
6281656 Masaki et al. Aug 2001 B1
6281658 Han et al. Aug 2001 B1
6316918 Underwood et al. Nov 2001 B1
6326750 Marcinkiewicz Dec 2001 B1
6344725 Kaitani et al. Feb 2002 B2
6370888 Grabon Apr 2002 B1
6373200 Nerone et al. Apr 2002 B1
6396229 Sakamoto et al. May 2002 B1
6404154 Marcinkiewicz et al. Jun 2002 B2
6406265 Hahn et al. Jun 2002 B1
6414462 Chong Jul 2002 B2
6446618 Hill Sep 2002 B1
6462492 Sakamoto et al. Oct 2002 B1
6471486 Centers et al. Oct 2002 B1
6523361 Higashiyama Feb 2003 B2
6539734 Weyna Apr 2003 B1
6583593 Iijima et al. Jun 2003 B2
6636011 Sadasivam et al. Oct 2003 B2
6670784 Odachi et al. Dec 2003 B2
6688124 Stark et al. Feb 2004 B1
6698217 Tanimoto et al. Mar 2004 B2
6708507 Sem et al. Mar 2004 B1
6714425 Yamada et al. Mar 2004 B2
6735284 Cheong et al. May 2004 B2
6749404 Gennami et al. Jun 2004 B2
6753670 Kadah Jun 2004 B2
6756753 Marcinkiewicz Jun 2004 B1
6756757 Marcinkiewicz et al. Jun 2004 B2
6758050 Jayanth et al. Jul 2004 B2
6767851 Rokman et al. Jul 2004 B1
6788024 Kaneko et al. Sep 2004 B2
6815925 Chen et al. Nov 2004 B2
6825637 Kinpara et al. Nov 2004 B2
6828751 Sadasivam et al. Dec 2004 B2
6831439 Won et al. Dec 2004 B2
6876171 Lee Apr 2005 B2
6915646 Kadle et al. Jul 2005 B2
6955039 Nomura et al. Oct 2005 B2
6966759 Hahn et al. Nov 2005 B2
6967851 Yang et al. Nov 2005 B2
6982533 Seibel et al. Jan 2006 B2
6984948 Nakata et al. Jan 2006 B2
7005829 Schnetzka Feb 2006 B2
7049774 Chin et al. May 2006 B2
7095208 Kawaji et al. Aug 2006 B2
7096681 Wills et al. Aug 2006 B2
7138777 Won et al. Nov 2006 B2
7154237 Welchko et al. Dec 2006 B2
7176644 Ueda et al. Feb 2007 B2
7184902 El-Ibiary Feb 2007 B2
7208895 Marcinkiewicz et al. Apr 2007 B2
7234305 Nomura et al. Jun 2007 B2
7272018 Yamada et al. Sep 2007 B2
7307401 Gataric et al. Dec 2007 B2
7342379 Marcinkiewicz et al. Mar 2008 B2
7375485 Shahi et al. May 2008 B2
7458223 Pham Dec 2008 B2
7554271 Thiery et al. Jun 2009 B2
7580272 Taguchi et al. Aug 2009 B2
7595613 Thompson et al. Sep 2009 B2
7605570 Liu et al. Oct 2009 B2
7613018 Lim et al. Nov 2009 B2
7660139 Garabandic Feb 2010 B2
7667986 Artusi et al. Feb 2010 B2
7675759 Artusi et al. Mar 2010 B2
7683568 Pande et al. Mar 2010 B2
7688608 Oettinger et al. Mar 2010 B2
7723964 Taguchi May 2010 B2
7733678 Notohamiprodjo et al. Jun 2010 B1
7738228 Taylor Jun 2010 B2
7782033 Turchi et al. Aug 2010 B2
7821237 Melanson Oct 2010 B2
7895003 Caillat Feb 2011 B2
20010022939 Morita et al. Sep 2001 A1
20020047635 Ribarich et al. Apr 2002 A1
20020062656 Suitou et al. May 2002 A1
20020108384 Higashiyama Aug 2002 A1
20020117989 Kawabata et al. Aug 2002 A1
20020157408 Egawa et al. Oct 2002 A1
20020162339 Harrison et al. Nov 2002 A1
20030019221 Rossi et al. Jan 2003 A1
20030077179 Collins et al. Apr 2003 A1
20030085621 Potega May 2003 A1
20030094004 Pham et al. May 2003 A1
20030146290 Wang et al. Aug 2003 A1
20030182956 Kurita et al. Oct 2003 A1
20040011020 Nomura et al. Jan 2004 A1
20040061472 Won et al. Apr 2004 A1
20040070364 Cheong et al. Apr 2004 A1
20040085785 Taimela May 2004 A1
20040100221 Fu May 2004 A1
20040119434 Dadd Jun 2004 A1
20040183491 Sidey Sep 2004 A1
20040221594 Suzuki et al. Nov 2004 A1
20050047179 Lesea Mar 2005 A1
20050115257 Goth et al. Jun 2005 A1
20050204760 Kurita et al. Sep 2005 A1
20050235660 Pham Oct 2005 A1
20050235661 Pham Oct 2005 A1
20050235662 Pham Oct 2005 A1
20050235663 Pham Oct 2005 A1
20050247073 Hikawa et al. Nov 2005 A1
20050262849 Nomura et al. Dec 2005 A1
20050270814 Oh Dec 2005 A1
20060041335 Rossi et al. Feb 2006 A9
20060042276 Doll et al. Mar 2006 A1
20060048530 Jun et al. Mar 2006 A1
20060056210 Yamada et al. Mar 2006 A1
20060090490 Grimm et al. May 2006 A1
20060117773 Street et al. Jun 2006 A1
20060123809 Ha et al. Jun 2006 A1
20060130501 Singh et al. Jun 2006 A1
20060150651 Goto et al. Jul 2006 A1
20060158912 Wu et al. Jul 2006 A1
20060185373 Butler et al. Aug 2006 A1
20060187693 Tang Aug 2006 A1
20060198172 Wood Sep 2006 A1
20060198744 Lifson et al. Sep 2006 A1
20060255772 Chen Nov 2006 A1
20060261830 Taylor Nov 2006 A1
20060290302 Marcinkiewicz et al. Dec 2006 A1
20070012052 Butler et al. Jan 2007 A1
20070029987 Li Feb 2007 A1
20070040524 Sarlioglu et al. Feb 2007 A1
20070040534 Ghosh et al. Feb 2007 A1
20070089424 Venkataramani et al. Apr 2007 A1
20070118307 El-Ibiary May 2007 A1
20070118308 El-Ibiary May 2007 A1
20070132437 Scollo et al. Jun 2007 A1
20070144354 Muller et al. Jun 2007 A1
20080089792 Bae et al. Apr 2008 A1
20080112823 Yoshida et al. May 2008 A1
20080143289 Marcinkiewicz et al. Jun 2008 A1
20080160840 Bax et al. Jul 2008 A1
20080209925 Pham Sep 2008 A1
20080216494 Pham et al. Sep 2008 A1
20080232065 Lang et al. Sep 2008 A1
20080252269 Feldtkeller et al. Oct 2008 A1
20080265847 Woo et al. Oct 2008 A1
20080272745 Melanson Nov 2008 A1
20080272747 Melanson Nov 2008 A1
20080273356 Melanson Nov 2008 A1
20080284399 Oettinger et al. Nov 2008 A1
20080285318 Tan et al. Nov 2008 A1
20090015214 Chen Jan 2009 A1
20090015225 Turchi et al. Jan 2009 A1
20090016087 Shimizu Jan 2009 A1
20090033296 Hammerstrom Feb 2009 A1
20090039852 Fishelov et al. Feb 2009 A1
20090059625 Viitanen et al. Mar 2009 A1
20090071175 Pham Mar 2009 A1
20090091961 Hsia et al. Apr 2009 A1
20090094997 McSweeney Apr 2009 A1
20090140680 Park Jun 2009 A1
20090237963 Prasad et al. Sep 2009 A1
20090243561 Tan et al. Oct 2009 A1
20090273330 Sisson Nov 2009 A1
20090290395 Osaka Nov 2009 A1
20090295347 Popescu et al. Dec 2009 A1
20090303765 Shimizu et al. Dec 2009 A1
20090316454 Colbeck et al. Dec 2009 A1
20100007317 Yang Jan 2010 A1
20100014326 Gu et al. Jan 2010 A1
20100014329 Zhang et al. Jan 2010 A1
20100052601 Pummer Mar 2010 A1
20100052641 Popescu et al. Mar 2010 A1
20100079125 Melanson et al. Apr 2010 A1
20100080026 Zhang Apr 2010 A1
20100109615 Hwang et al. May 2010 A1
20100109626 Chen May 2010 A1
20100118571 Saint-Pierre May 2010 A1
20100118576 Osaka May 2010 A1
20100128503 Liu et al. May 2010 A1
20100156377 Siegler Jun 2010 A1
20100165683 Sugawara Jul 2010 A1
20100181930 Hopwood et al. Jul 2010 A1
20100187914 Rada et al. Jul 2010 A1
20100202169 Gaboury et al. Aug 2010 A1
20100226149 Masumoto Sep 2010 A1
20100246220 Irving et al. Sep 2010 A1
20100246226 Ku et al. Sep 2010 A1
20100253307 Chen et al. Oct 2010 A1
20100259230 Boothroyd Oct 2010 A1
20100270984 Park et al. Oct 2010 A1
20120279251 Kido et al. Nov 2012 A1
Foreign Referenced Citations (51)
Number Date Country
1697954 Nov 2005 CN
1806478 Jul 2006 CN
1209362 May 2002 EP
1541869 Jun 2005 EP
55155134 Dec 1980 JP
61272483 Dec 1986 JP
01167556 Jul 1989 JP
2004163 Jan 1990 JP
03129255 Jun 1991 JP
04344073 Nov 1992 JP
H05322224 Dec 1993 JP
H06159738 Jun 1994 JP
07035393 Feb 1995 JP
H0926246 Jan 1997 JP
09196524 Jul 1997 JP
10009683 Jan 1998 JP
10153353 Jun 1998 JP
10160271 Jun 1998 JP
H1123075 Jan 1999 JP
11159895 Jun 1999 JP
11287497 Oct 1999 JP
2000205630 Jul 2000 JP
2001317470 Nov 2001 JP
2002013858 Jan 2002 JP
2002243246 Aug 2002 JP
2003156244 May 2003 JP
2004069295 Mar 2004 JP
2004135491 Apr 2004 JP
2005-003710 Jan 2005 JP
2005132167 May 2005 JP
2005282972 Oct 2005 JP
2006177214 Jul 2006 JP
2006188954 Jul 2006 JP
2006233820 Sep 2006 JP
2007198230 Aug 2007 JP
2007198705 Aug 2007 JP
2009264699 Nov 2009 JP
2010266132 Nov 2010 JP
2011033340 Feb 2011 JP
10-1996-0024115 Jul 1996 KR
2001-0044273 Jun 2001 KR
2003-0011415 Feb 2003 KR
20050085544 Aug 2005 KR
20070071407 Jul 2007 KR
WO-9913225 Mar 1999 WF
WO-9702729 Jan 1997 WO
WO-2004059822 Jul 2004 WO
WO-2004083744 Sep 2004 WO
WO-2005101939 Oct 2005 WO
WO-2009048566 May 2009 WO
WO-2011083756 Jul 2011 WO
Non-Patent Literature Citations (70)
Entry
International Search Report regarding International Application No. PCT/US2008/011464 dated Mar. 13, 2009.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2008/011464 dated Mar. 13, 2009.
International Search Report regarding International Application No. PCT/US2008/011576 dated Mar. 23, 2009.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2008/011576 dated Mar. 20, 2009.
International Preliminary Report on Patentability for International Application No. PCT/US2008/011442, dated Apr. 7, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2008/011596, dated Apr. 13, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2008/011441, dated Apr. 7, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2008/011570, dated Apr. 13, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2008/011464, dated Apr. 7, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2008/011593, dated Apr. 13, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2008/011597, dated Apr. 13, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2008/011590, dated Apr. 13, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2008/011589, dated Apr. 13, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2008/011576, dated Apr. 13, 2010.
International Search Report for International Application No. PCT/US2008/011442 dated Feb. 3, 2009.
International Search Report for International Applicatoin No. PCT/US2008/011596, dated Feb. 25, 2009.
International Search Report for International Application No. PCT/US2008/011441, dated Jan. 30, 2009.
International Search Report for International Application No. PCT/US2008/011570, dated May 26, 2009.
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011570, dated May 26, 2009.
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011593, dated Jun. 17, 2009.
International Search Report for International Application No. PCT/US2008/011593, dated Jun. 17, 2009.
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011597, dated Jun. 19, 2009.
International Search Report for International Application No. PCT/US2008/011597, dated Jun. 19, 2009.
International Search Report for International Application No. PCT/US2008/011590, dated Feb. 27, 2009.
International Search Report for International Application No. PCT/US2008/011589, dated Feb. 27, 2009.
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011442, dated Feb. 3, 2009.
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011596, dated Feb. 25, 2009.
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011441, dated 1/30/2009.
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011589, dated Feb. 27, 2009.
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011590, dated Feb. 27, 2009.
Non-Final Office Action regarding U.S. Appl. No. 12/246,825, dated Jan. 4, 2011.
Non-Final Office Action regarding U.S. Appl. No. 12/247,033, dated Jan. 21, 2011.
Non-Final Office Action regarding U.S. Appl. No. 12/247,001, dated Feb. 25, 2011.
Notification of the First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Application No. 200880110551.6, dated Feb. 11, 2011. Translation provided by Unitalen Attorneys At Law.
Non-Final Office Action regarding U.S. Appl. No. 12/246,893, dated Apr. 1, 2011.
Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110665.0, dated Apr. 8, 2011. Translation provided by Unitalen Attorneys At Law.
Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7006707, dated Oct. 23, 2012. Translation provided by Y.S. Chang & Associates.
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/247,020, dated Jan. 4, 2013.
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/246,927, dated Dec. 21, 2012.
Final Office Action regarding U.S. Appl. No. 12/246,959, dated Dec. 4, 2012.
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110785.0, dated Dec. 28, 2012. Translation provided by Unitalen Attorneys at Law.
Non-Final Office Action regarding U.S. Appl. No. 12/247,033, dated Jan. 29, 2013.
Notice of Allowance and Fee(s) Due regarding U.S. Appl. No. 12/246,959, dated Feb. 14, 2013.
Third Chinese Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880111091.9, dated Feb. 18, 2013. Translation provided by Unitalen Attorneys at Law.
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 2008801110726, dated Mar. 15, 2013. Translation provided by Unitalen Attorneys at Law.
Notification of Final Rejection from Korean Intellectual Property Office regarding Korean Patent Application No. 10-2010-7006707, dated Apr. 2, 2013. Translation provided by Y.S. Chang & Associates.
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110616.7, dated Apr. 1, 2013. Translation provided by Unitalen Attorneys at Law.
European Search Report regarding Application No. 13161753.2-1602, dated Jul. 12, 2013.
Third Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110616.7, dated Jul. 22, 2013. Translation provided by Unitalen Attorneys at Law.
Third Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 2008801110726, dated Sep. 12, 2013. Translation provided by Unitalen Attorneys at Law.
Fourth Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110785.0, dated Oct. 21, 2013. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/031,905, dated Dec. 13, 2013.
Decision of Rejection from the State Intellectual Property Office for People's Republic of China regarding Chinese Patent Application No. 200880110616.7, dated Nov. 27, 2013.
European Search Report regarding Application No. 08836902.0-1602/2198159 PCT/US2008011464, dated Apr. 4, 2014.
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 201110371859.X, dated Jun. 23, 2014. Translation provided by Unitalen Attorneys at Law.
Final Office Action regarding U.S. Appl. No. 12/246,825, dated Jun. 14, 2011.
Final Office Action regarding U.S. Appl. No. 12/246,959, dated Oct. 12, 2011.
Final Office Action regarding U.S. Appl. No. 12/247,033, dated Jul. 12, 2011.
Final Office Action regarding U.S. Appl. No. 14/031,905, dated Jul. 23, 2014.
Non-Final Office Action regarding U.S. Appl. No. 12/247,033, dated Jan. 19, 2012.
Notification of Final Rejection regarding Korean Patent Application No. 10-2010-7007375, dated Apr. 3, 2012. Translation provided by Y.S. Chang & Associates.
Office Action regarding U.S. Appl. No. 12/436,825, dated Oct. 12, 2011.
Office Action regarding U.S. Appl. No. 12/246,959, dated Jun. 21, 2011.
Office Action regarding U.S. Appl. No. 12/244,387, dated Mar. 1, 2012.
Supplementary European Search Report regarding Application No. 08837095.2-1605/2195539 PCT/US2008011576, dated Nov. 25, 2014.
Extended European Search Report regarding Application No. 08837249.5-1605/2195540 PCT/US2008011589, dated Dec. 4, 2014.
Extended European Search Report regarding Application No. 08837777.5-1605/2198160 PCT/US2008011590, dated Dec. 3, 2014.
Extended European Search Report regarding Application No. 08837504.3-1605/2198218 PCT/US2008011597, dated Dec. 3, 2014.
Extended European Search Report regarding Application No. 08838154.6-1605/2195588 PCT/US2008011593, dated Dec. 4, 2014.
Extended European Search Report regarding Application No. 08836944.2-1605/2198165 PCT/US2008011596, dated Dec. 4, 2014.
Related Publications (1)
Number Date Country
20090090113 A1 Apr 2009 US
Provisional Applications (1)
Number Date Country
60998047 Oct 2007 US