A variety of devices for handling fluid streams, such as separators, compressors, and pumps, are known. A separator basically functions to separate a fluid stream into different phases, such as into liquid and gaseous portions, and/or may be used to remove solid matter from a fluid stream. Compressors and pumps basically function to compress or pressurize gases and pressurize liquids, respectively, often for the purpose of transporting the fluid (e.g., within a pipeline). Typically, when a fluid stream is composed of both gaseous and liquid portions, the fluid stream must first be separated, and then the gaseous portions are directed into a compressor while the liquid portions are directed into a pump so as to be separately treated. Such liquid pumps generally include a rotary impeller powered by a separate driver or motor, and operate such that the fluid is accelerated by passing through the rotating impeller and then decelerated to increase the liquid pressure.
Typical compressor assemblies employ a separated conventional liquid pump (e.g., a centrifugal pump) to handle the separated liquid. Pumping the liquid with a centrifugal pump requires additional power input, thus reducing the overall efficiency of the compressor. What is needed is a single-motor compressor system designed to separate liquid from the process stream and compress the gas, wherein the liquid is pressurized and reintroduced to the pressurized gas stream at the same pressure.
Embodiments of the disclosure may provide a fluid processing device for processing a multiphase fluid stream having a mixture of at least a gas and a liquid. The fluid processing device may include at least one separator configured to separate the multiphase fluid stream into a substantially liquid portion and a substantially gaseous portion, a liquid reservoir having an inlet and an outlet, wherein the inlet is fluidly coupled to the at least one separator such that the substantially liquid portion flows into the liquid reservoir, a compressor having an inlet and an outlet, wherein the inlet of the compressor is fluidly coupled with an outlet of the at least one separator so as to receive and pressurize the substantially gaseous portion, thereby discharging a pressurized gas through the outlet of the compressor, an ejector pump fluidly coupled to both the compressor and the liquid reservoir, wherein the ejector pump receives a portion of the pressurized gas from the compressor to draw in a flow of the substantially liquid portion from the liquid reservoir and to discharge a combined stream of liquid and pressurized gas, and a fluid discharge line fluidly coupled to the compressor outlet and configured to receive both the pressurized gas from the compressor and the combined stream of liquid and pressurized gas from the ejector pump, thereby forming a pressurized multiphase fluid stream.
Embodiments of the disclosure may further provide a fluid processing device for processing a multiphase fluid stream having a mixture of at least a gas and a liquid. The fluid processing device may include a separator fluidly coupled to a multiphase fluid source and configured to separate the multiphase fluid stream into a substantially liquid portion and a substantially gaseous portion, a liquid reservoir having an inlet and an outlet, wherein the inlet is fluidly coupled to the first separator such that the substantially liquid portion flows into the liquid reservoir, a compressor having an inlet and an outlet, wherein the inlet of the compressor is fluidly coupled to the first separator to receive the substantially gaseous portion, the compressor being configured to pressurize the substantially gaseous portion and discharge a pressurized gas through the outlet of the compressor, a first ejector pump fluidly coupled to both the compressor and the liquid reservoir, wherein the first ejector pump is configured to receive a portion of the pressurized gas from the compressor to draw in a flow of the substantially liquid portion from the liquid reservoir and to discharge a first pressurized liquid, a second ejector pump fluidly coupled to both the compressor and the first ejector pump, wherein the second ejector pump is configured to receive a portion of the pressurized gas from the compressor to draw in the first pressurized liquid from the first ejector pump and to discharge a second pressurized liquid, and a fluid discharge line fluidly coupled to the outlet of the compressor and configured to receive both the pressurized gas from the compressor and the second pressurized liquid from the second ejector pump, wherein a pressurized multiphase fluid stream results.
Embodiments of the present disclosure may further provide a method of processing a multiphase fluid stream including a mixture of a gas and a liquid. The method may include the steps of separating the multiphase fluid stream into a substantially liquid portion and a substantially gaseous portion using a first separator, directing the substantially liquid portion to a liquid reservoir fluidly coupled to the first separator, pressurizing the substantially gaseous portion in a compressor having an inlet and an outlet, wherein the inlet of the compressor is fluidly coupled to the first separator, discharging a pressurized gas through the outlet of the compressor, directing a portion of the pressurized gas from the compressor to an ejector pump fluidly coupled to both the compressor and the liquid reservoir, drawing in a flow of the substantially liquid portion from the liquid reservoir into the ejector pump, discharging a pressurized liquid from the ejector pump, and receiving into a fluid discharge line both the pressurized gas from the compressor and the pressurized liquid from the ejector pump, wherein the fluid discharge line is fluidly coupled to both the compressor outlet and the ejector pump, thereby forming a pressurized multiphase fluid stream.
The present disclosure is best understood from the following detailed description when read with the accompanying Figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure describes several exemplary embodiments for implementing different features, structures, or functions of the invention. Exemplary embodiments of components, arrangements, and configurations are described below to simplify the present disclosure, however, these exemplary embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference numerals and/or letters in the various exemplary embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various exemplary embodiments and/or configurations discussed in the various Figures. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the exemplary embodiments presented below may be combined in any combination of ways, i.e., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
Additionally, certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Further, in the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to.” All numerical values in this disclosure may be exact or approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope.
Referring now to the drawings in detail, there is shown in
In an exemplary embodiment, the ejector pump 20 may be fluidly coupled to both the compressor 16 and the liquid reservoir 14. For example, at least one ejector pump 20 may be configured to receive a portion GS of the pressurized gas GP from the compressor 16 which serves to draw in liquid from the liquid L reservoir 14. The ejector pump may then be configured to discharge pressurized liquid LP into the fluid discharge line 18. As can be appreciated, therefore, the pressurized liquid LP may include a combination pressurized stream of a portion GS of the pressurized gas GP and liquid L. The pressurized liquid LP, then, may be configured to mix or combine with the pressurized gas GP exiting the compressor outlet 26 to form a pressurized multiphase fluid stream FP.
In an exemplary embodiment, the ejector pump 20 may be either a single stage ejector pump 19A, as detailed in
Referring now to
The ejector pump 20 may also include a diffuser 42 that is mounted to/within the housing 30. The diffuser may include an inlet 44 fluidly coupled with the mixing chamber 32 and an outlet 46. In exemplary operation, the diffuser 42 may be configured to pressurize the mixed fluid stream in the diffuser inlet 44 and thereby discharge a pressurized fluid stream LP through the diffuser outlet 46. In an exemplary embodiment, the diffuser outlet 46 may be fluidly coupled with either the discharge line 18 (see
Referring now to the exemplary embodiment of
In exemplary operation, the second nozzle 37 may accelerate a portion GS of the pressurized gas GP derived from the compressor 16, thus generating an accelerated gas GA that is directed into the second mixing chamber 33. By accelerating the gas GA through the second nozzle 37, a pressure differential is thus created having the effect of drawing in the pressurized fluid stream LP from the first mixing chamber 32 through the second suction inlet 35 and into the second mixing chamber 33. Once in the second mixing chamber 33, the pressurized fluid stream LP from the first mixing chamber 32 may mix with the accelerated gas GA from the second nozzle 37. The second diffuser 43 may then be configured to pressurize the mixture generated in the second mixing chamber 33 and to discharge a new pressurized fluid stream LPN through the diffuser outlet 46. Thereafter, the new pressurized fluid stream LPN may combine or mix with the primary portion of the pressurized gas GP flowing out of the compressor outlet 26 and into the fluid discharge line 18, to form a pressurized multiphase fluid stream FP as discussed above.
According to one aspect of the present disclosure, the nozzles 36, 37 of each ejector 19A, 19B may be configured to accelerate the portion GS of pressurized gas GP derived from the compressor 16 to a supersonic velocity, which more efficiently draws in and pressurizes (i.e., “pumps”) the fluid from the liquid reservoir 14. However, either nozzle 36, 37, or both in combination, may be configured to accelerate the portion GS of pressurized gas GP to only a subsonic velocity. As can be appreciated, using the disclosed embodiments herein may reduce or even eliminate the need for a separate motor or driver for the liquid reservoir 14.
Referring now to
The primary impellers 54 may be mounted on the shaft 52 and, as illustrated in
Further, the one or more boost impellers 56 (only one shown), also referred to as recycle impellers, may each be mounted on the shaft 52 adjacent the final stage primary impeller 54. In an exemplary embodiment, the boost impellers 56 may be radially smaller than the primary impellers 54, having an inlet 56a and an outlet 56b. The boost impeller inlet 56a may be fluidly coupled with the final stage impeller outlet 54b (i.e., through the diffuser 58 associated with the impeller 54) such that a portion gP of pressurized gas GP (see
In an exemplary embodiment, the compressor 16 may further include a divider wall 62 disposed between the final stage primary impeller 54 and the first (or possibly the sole) boost impeller 56. As best shown in
In exemplary operation, the boost impeller 56 may be configured to increase the pressure of the small portion gP of the pressurized gas GP, thereby discharging the boosted pressurized gas GS into the ejector pump 20. Specifically, the inlet 38 of the ejector pump 20, 19A (see
In at least one embodiment, the boosted pressurized gas GS exiting the boost impeller 56 may be a “super-pressurized” gas, or a gas that is pressurized to a point generally greater than the pressure of the pressurized gas GP passing through the compressor outlet 26. To accomplish this, the secondary impellers 56 may be configured to increase pressure of the portion gP of the pressurized gas GP (
Referring now to
The second separator 82 may be disposed within the compressor casing 50 having an inlet 82a fluidly coupled with the compressor inlet 24 and an outlet 82b fluidly coupled with the inlet 54a (see
Still referring to
In exemplary operation of the fluid processing device 10, a low pressure, multiphase fluid stream F may initially pass through the bulk separator 80 such that a majority of the liquid L is separated from the fluid stream F and channeled to the liquid reservoir 14. After separating the liquid L from the multiphase fluid stream F, the remaining substantially gaseous portion G may be channeled into the compressor 16 via the compressor inlet 24. Although having passed through the bulk separator 80, the substantially gaseous portion G may nonetheless contain traces of liquid L which may be removed by the second separator 82. Any liquid L retrieved through the second separator 82 may be channeled to the reservoir 14 via the liquid outlet 28.
The residual gas portion G may then flow through the one or more primary impellers 54 and associated diffusers 56 until the gas G attains a desired pressure of pressurized gas GP. The majority of the pressurized gas GP may then be channeled from the last stage primary impeller 54, through the compressor outlet 26, and to the fluid discharge line 18. Meanwhile, a portion gP of the pressurized gas GP may be channeled through the diverter passage 64 and into the at least one secondary or boost impeller 56. In an exemplary embodiment, the boost impeller 56 may serve to increase the pressure of the portion gP of the pressurized gas GP, thus generating a “super-pressurized” or boosted pressurized gas GS. The boosted pressurized gas GS may then be channeled out of the compressor 16 via the secondary gas outlet 27 and to a single stage ejector pump 20, 19A (see
As the boosted pressurized gas GS enters the nozzle 36 of the ejector 20, 19A, the gas GS may be accelerated to a point where liquid L is drawn into the ejector 20 from the liquid reservoir 14. Once entrained into the ejector 20, 19A, the liquid L is then mixed with the now accelerated gas GA to generate a pressurized stream LP, formed primarily of liquid L. The pressurized stream LP may then be channeled from the ejector pump 20, 19A to the fluid discharge line 18, where it may be combined with the pressurized gas GP exiting the compressor outlet 26, thereby forming the desired pressurized multiphase fluid stream FP.
In an alternative embodiment, the boosted pressurized gas GS may be channeled out of the compressor 16 via the secondary gas outlet 27 and to first and second nozzles 36, 37 of a multiphase ejector pump 20, 19B (see
The disclosed embodiments of the multiphase fluid processing device 10 may include a number of advantages over typical compressor assemblies, which in general use a conventional liquid pump (e.g., a centrifugal pump) to pressurize handle the separated liquid. As the secondary or boost impeller 56 is used to pressurize the small portion gP of the pressurized gas GP for the ejector pump 20, as opposed to a centrifugal pump for positively pumping liquid, the power necessary to drive the compressor 16 may be significantly reduced. Reducing the power requirement inherently results in a reduction in torque loading on the shaft 52. As such, the energy expenditure of the driver 70 is correspondingly reduced, increasing the efficiency of the compressor assembly 10. Further, wear on the shaft bearings 60 and other compressor components is reduced due to the lower torque requirements of the drive shaft 52.
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the detailed description that follows. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.
This application claims the benefit of the filing date of U.S. provisional patent application Ser. No. 61/068,385, filed Mar. 5, 2008, the disclosure of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/036142 | 3/5/2009 | WO | 00 | 9/13/2010 |
Number | Date | Country | |
---|---|---|---|
61068385 | Mar 2008 | US |