The present invention concerns a compressor device.
More particularly the present invention concerns a compressor device of the variable speed type that basically consists of a case with a compressor element therein that is powered by speed motor with a fixed set maximum number of revolutions for the compressor, an air cooling which sucks air from the environment via an inlet and, blows it via an exhaust through this case back to the environment and a separate cooling circuit with a cooling medium for the cooling of the gas which has been compressed by the compressor or a cooling of the compressed air.
Common compressor devices are generally designed in order to be able to function in certain conditions of maximum environmental temperature, these conditions are named as the nominal working conditions.
In the case that the limits of the nominal environmental conditions are exceeded, then, the good working of the compressor device can no longer be guaranteed and that will lead to unpredictable stoppages of the compressor device.
In such a case it is presently decided to use a compressor device which is over dimensionalised and therefore generates less heat than a smaller compressor device in the same conditions or for a compressor device which is working at its maximum capacity through that the fixed set maximum allowed number of revolutions of the compressor is limited, for example, through the application of a transmission with smaller transmission ratio than in the nominal conditions. Therefore an extra thermal reserve is created, that can used in order to counter act the higher environmental temperature.
This has the disadvantage that a bigger investment is necessary for the compressor device and that the compressor device is not optimally utilized under all nominal conditions with the result that there is a loss of performance in nominal conditions.
The present invention aims to provide a solution to one or more of the above mentioned and other disadvantages, as it provides an improved compressor device which is equipped with a self-regulating control which ensures that the compressor device also at maximum performance can be employed in all environmental temperatures with permanently optimal cooling operation. For this purpose the invention concerns an improved compressor device that mainly consists of a case with a compressor element inside that is powered by variable speed motor with a control box with a set maximum number of revolutions for the compressor, an air cooling which sucks air from the environment via an inlet and blows it back to the environment once this has passed through the case, via an exhaust and a cooling circuit for the cooling of the gas which has been compressed by the compressor, characterised in that the control box is equipped with an algorithm that reduces the abovementioned maximum allowed set number of revolutions with a defined value as soon as the measured environmental temperature rises above a maximum set level and the maximum allowed set number of revolutions rises again as soon as the environmental temperature falls under the above mentioned level.
The advantage of such a device according to the invention is that, when the environmental temperature rises above the nominal level for which the compressor device is designed, the maximum allowed number of revolutions will be automatically reduced, as a result of which the compressor device will develop less heat and the cooling capacity of the air cooling is sufficient for the compressor, even in this elevated environmental temperature, to keep cooling sufficient in order to avoid unwanted stoppages due to overheating and to guarantee good working of the device.
Preferably the abovementioned algorithm is such additionally, the maximum set number of revolutions is further reduced when the temperature of the abovementioned cooling of the compressed gas is insufficient or the temperature of the cooling medium rises above a set level.
Through the monitoring of the temperature of the environmental air and/or the cooling continuously or intermittently and the adjusting of the maximum set allowed number of revolutions as a function of the measurement results, the compressor device will be able to function even in higher environmental temperatures than is nominally provisioned, permanently at its maximum capacity without risk of stoppages or damage.
Generally the case includes an electronic compartment which is equipped with air cooling which sucks environmental air via an entrance and blows it back to the environment via an exit, whereby in order to avoid any damage being caused to the electronic components, a maximum level is imposed for the temperature of the cool air which is used for this purpose. The air cooling of this electronic compartment is normally calculated for nominal conditions and by exceeding the maximum temperature of the cool air, this will lead to unwanted stoppages of the compressor device.
According to an additional aspect of the invention, in this case, an additional cooling can be provisioned for the cooling of the air that functions as a cooling medium of the electronic compartment, whereby this cooling is only switched on when the environmental temperature is threatens to rise above a set level. This in order to keep the energy costs as low as possible.
This additional cooling can function independently or can be used in combination with the algorithm for the control of the maximum set number of revolutions of the compressor device, whereby this cooling is controlled preferably by the abovementioned control box of the compressor device.
With the intention to better show the characteristics of the invention, hereafter, as an example without any limited character, a preferred form of embodiment of the compressor device according to the invention, is described with reference to the attached drawings, wherein:
The compressor device 1 of
The compartment 4 is cooled by an air cooling 10 which sucks environmental air via an inlet 11 and blows it back to the environment through the compartment 4 of the case 2 and via an exhaust 12, as is shown with the arrows A. The compressor device 1 is further equipped with a cooling circuit 13, with or without a cooling medium like oil, water or similar for the cooling of the gas that is compressed by the compressor and via a discharge pipe 14160 and a connection 15 can be delivered to a discharge air net.
The electronic compartment 5 includes air cooling 16 which sucks environmental air via an entrance 17 and blows it back to the environment over the electronic compartment 5 via an exit 18 as is displayed by arrows B.
Although in
Additionally in accordance with the invention a cooling 19 is provisioned for the cooling of the air sucked through the air cooling 16.
Further the compressor device 1 includes means 20 in order to determine the temperature T20 of the environmental air; means 21 in order to determine the temperature T21 of the cooling 13 of the compressor, for example, at the exit of this cooling circuit 13, and means 22 for the determining of the temperature T22 of the cool air which flows through the electronic compartment 5 for the cooling of electronic component 9. These means 20, 21 and 22 are electronically connected with the above mentioned control box 8 via connections 23.
The compressor device is designed in order to be able to operate in nominal conditions by maximum environmental temperature Tmax which is set in the control box 8.
The control box 8 is according to the invention equipped with an algorithm 24 that is systematized in
Preferably the maximum set number of revolutions Nmax is adjusted in such a way by the algorithm that the cooling capacity of the air cooling 10 is at all times sufficient with the monitored environmental temperature in order to allow the compressor element 6 to operate at this adjusted maximum set number of revolutions Nmax without the danger of over heating.
In a following phase 27 of algorithm 24 the temperature T21 of the cooling medium of the cooling circuit 3 and/or of the temperature of the compressed air are compared with the maximum set level T21max and as in phase 26 the maximum set allowed number of revolutions Nmax is again reduced when the temperature T21 of the above mentioned cooling medium rises above the set level T21max.
It is clear that this algorithm can be carried out continuously or regularly intermittently and that the value with which the maximum set number of revolutions is reduced or adjusted can be a function of the measuring results and therefore of the difference between the measured temperatures and the corresponding maximum set levels.
The working of the compressor device 1 is simple and as follows.
When the environmental temperature T20 rises over the maximum set level Tmax, the set maximum number of revolutions Nmax will be reduced, with a defined value as a result of which the compressor element 6 will/can be powered by a lower number of revolutions, which results in a reduced heat generation which is the primary function of the number of revolutions of the compressor element 6 and of the compression pressure of the pressurized gas at the exit of the compressor element 6.
Moreover with this regulation there is a danger that the temperature T21 of cooling circuit 13 will be too high, the maximum set number of revolutions Nmax will be set at an even lower level so that there will not be any danger whatsoever of over heating of the compressor parts in compartment 4.
In this way it is ensured that the compressor device 1 can permanently be powered to a maximum number of revolutions and therefore with a maximum capacity pressurized gas, bearing in mind, the available cooling capacity of the air cooling 10 and of the cooling circuit 13. Therefore it is not necessary to provide any over measured cooling as is usually the case with previously known compressor devices.
This regulation does not normally occur between the normal control of the motor's number of revolutions but it works with dynamic limited number of revolutions.
The control box 8 can be optionally equipped with a second algorithm 28 which is schematically displayed in
Algorithm 28 compares the environmental temperature T20 in a first phase 29 with a maximum set level Tmax, which may or may not be the same as that which is used for algorithm 24, and compares in a second phase 30 the temperature T22 of the cool air in compartment 5 with the previous set maximum level T22max.
When the environmental temperature T20 rises higher than T20max, the cooling circuit 19 switches on and the cool air which is sent through the electronic compartment becomes additionally cooled.
When both the environmental temperature T20, and the temperature of the cool air T22 rise higher than their respectively set maximum levels Tmax and T22max, then in phase 31 the cooling capacity Q of cooling 19 is set higher so as to decrease the temperature of the cool air T22 just under the critical temperature of electronic components 9.
This second algorithm 28 offers the following advantages:
Also the second algorithm can be applied with a certain frequency continuously or intermittently.
It is clear that both algorithms 24 and 28 can be applied individually, separately or together in compressor device 1. It is also clear that both algorithms can be applied in the same control box 8 or in separate control boxes.
The present invention is in no way limited to the embodiment described by way of example and displayed in the figures but, an improved compressor device according to the invention be realised in all shapes and dimensions without departure from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2006/0062 | Jan 2006 | BE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/BE2007/000011 | 1/18/2007 | WO | 00 | 7/23/2008 |