This invention relates generally to compressors and to adjustably positionable slide valves used in such compressors to control their operation. In one aspect, the invention relates to an improved slide valve assembly having independently positionable slide valves for regulating both compressor capacity and compressor volume in a high pressure environment.
Compressors (e.g., rotary screw gas compressors) are used, for example, in compression systems (e.g., refrigeration systems) to compress refrigerant gas, such as “Freon”, ammonia, natural gas, or the like. One type of rotary gas compressor employs a housing in which a motor-driven single main rotor having spiral grooves thereon meshes with a pair of gate or star rotors on opposite sides of the rotor to define gas compression chambers. The housing is provided with two gas suction ports (one near each gate rotor) and with two gas discharge ports (one near each gate rotor). Two dual slide valve assemblies are provided on the housing (one assembly near each gate rotor) and each slide valve assembly comprises a suction (also referred to as a “capacity slide valve”) and a discharge slide valve (also referred to as a “volume slide valve”) for controlling an associated suction port and an associated discharge port, respectively.
During operation of the compressor, a small amount of oil is typically continuously supplied to the compression chambers to provide an oil seal at points where the main rotor meshes with the gate rotors and with the housing to thereby effectively seal the chambers against gas leakage during gas compression. The oil flows out through the discharge ports and is recovered and recirculated. When the compressor is shut down and coasting to rest, excess oil can collect or settle in the compression chambers. When the compressor is restarted, the residual oil in the compression chambers, plus fresh oil entering the compression chambers, must be expelled through the discharge ports. U.S. Pat. Nos. 4,610,612, 4,610,613 and 4,704,069, all of which are assigned to the same assignee as the present application, disclose a dual-slide valve rotary gas compressor of the kind described above. The teachings and disclosures of each of these patents are incorporated by reference in their entireties herein.
Additionally, U.S. application Ser. No. 11/677,868 which is also assigned to the same assignee as the present application is directed to a compressor having a dual slide valve assembly that includes: i) a volume slide valve mechanism that is slidably movable to control compressor volume ratio and power input to the compressor; and ii) a capacity and volume slide valve mechanism that is in operational association with the volume slide valve mechanism. The capacity and volume slide valve mechanism is slidably movable to control compressor capacity and to control volume ratio and power input to the compressor. The disclosure of this application is also incorporated by reference here in its entirety.
The electric motors or engines employed to drive rotors in rotary compressors are usually of a type which requires the compressor to be unloaded while being started and brought up to some predetermined normal constant speed. Loading and unloading is accomplished by positioning of slide valves which control admission and discharge of gas into and from the compression chambers.
Often a discharge-suction pressure differential exists within the compressor during operation. When the discharge-suction pressure differential reaches and/or exceeds a certain threshold differential, the slide valve mechanisms can have a tendency to seize up and, in some instances, be damaged. For example, it has been found that certain screw-type compressors (e.g., single screw compressors) currently have threshold discharge-suction pressure differentials of about 400 p.s.i. Accordingly, it would desirable to provide a compressor, and more particularly a slide valve assembly, that can function in a high pressure environment, for example, when threshold pressure differentials are at or exceed about 400 p.s.i.
Embodiments of the invention are disclosed with reference to the accompanying drawings and are for illustrative purposes only. The invention is not limited in its application to the details of construction or the arrangement of the components illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in other various ways. Like reference numerals are used to indicate like components. In the drawings:
Referring generally to
Referring to
The slide valve members 14 and 16 each take the form of a structural body having a flat smooth rear surface 32 and 34 (
Rear surfaces 32 and 34 confront and slide upon plate portion 18 carriage 12. Front surfaces 36 and 38 confront the cylindrical surface of main rotor (not shown). The inside edges 40 and 42 of the slide valve members 14 and 16 slidably engage each other. The outside edges 44 and 46 of the slide valve members confront and slidably engage a compressor structure, such as bore (not shown). The slide valve members 14 and 16 are slidably secured to carriage 12 by volume clamping member 60 and capacity clamping member 62, respectively, which are secured to the slide valve members by screws (not shown). The volume and capacity clamping members 60 and 62 have shank or spacer portions 64 and 66, respectively. These spacer portions extend, respectively, through the openings 20 and 23 in carriage 12 and abut the rear surfaces 32 and 34 of the slide valve members 14 and 16, respectively. Screws or other fastening means (not shown) extend through holes 68 and 70 in the clamping members 60 and 62 and screw or otherwise fasten into threaded holes 72 and 74 slide valve members 14 and 16. The clamping members 60 and 62 have heads or flanges 76 and 78, respectively, which engage the rear side 30 of carriage 12. Advantageously, it has been found that, in accordance with at least some embodiments, the clamping mechanisms 60, 62 can be made from 1018 4140 heat treated steel to accomplish use of the slide valve assembly in high pressure applications.
Referring to
Referring to
The grooves referenced above which are formed or otherwise positioned or created in the capacity and volume slide valve mechanisms provide for lubrication of and between contacting surfaces and are incorporated to counter or counteract pressure of an opposing surface(s). Accordingly, the grooves serve to provide for and ensure relative movement between the slide mechanisms (and thus, prevent seizing up of the slide mechanisms) in a high pressure environment.
While not shown, the assembly 10 can be moved via an actuator-gear-rod connection. More specifically, an actuator mechanism can be used to effect the slide valve movement via a gear that moves a slide rod. In at least some embodiments, the gear mechanism comprises a pinion gear and the rod mechanism comprises a slide rod. Further, in at least some embodiments, the actuator/motor mechanism comprises a piston-type (e.g., electrical or hydraulic) actuator mechanism.
When the compressor is operating (and again a compressor will typically include two of the above-described slide valve assemblies), the capacity slide valve members 14 typically move in unison with each other, and the volume slide valve members 16 typically move in unison with each other. Each capacity slide valve member 14 is slidably positionable (between full load and part load positions) relative to the port 20 to control where low pressure uncompressed gas is admitted to the compressor compression chambers or main rotor grooves and to thereby function as a suction by-pass to control compressor capacity. Each volume slide valve member 16 is slidably positionable (between minimum and adjusted volume ratio positions) relative to the discharge/volume port 22 to control where, along the compressor compression chambers or grooves, high pressure compressed gas is expelled from the compression chambers, through discharge/volume port 22 to an gas exhaust passage to thereby control the input power to the compressor. The slide valve members 14 and 16 are independently movable, for example, by separate piston-type actuators/motors. And known control means or system(s) operate to position the slide valves 14 and 16 for compressor start-up. The control means or system is also responsive, while the compressor is running, to compressor capacity and to power input, which is related to the location of the slide valves 14 and 16. Additionally, the control means or system operates the actuators to position the slide valve members 14 and 16 to cause the compressor to operate at a predetermined capacity and a predetermined power input.
Importantly, the slide valve members or mechanisms 14 are capable of adjusting the capacity between about 100% and 10%. The slide valve members or mechanisms 16 are capable of adjusting the volume ratio between about 1.2 to 7.0 so that power required by the compressor to maintain the desired capacity is at a minimum.
Advantageously, the slide valve mechanisms work or operate in a high pressure differential environment. For example, compressor discharge pressure is in a range of between about 500 to 600 psi, or even greater, and suction pressure is typically between about 200 to 300 psi, or even greater. Accordingly, the slide valve assembly of the present invention is contemplated to work or operate where there is a discharge-suction pressure differential of at least about 400 psi. Testing has confirmed proper functionality where the pressure differential is at or about 450 psi. It is contemplated that the proper functionality will be maintained at pressure differentials of up to about 800 psi, and perhaps even greater.
Various components can be provided to connect together the capacity and volume slide valve members of the two dual slide valve assemblies and so that volume slide valve members move in unison with each other when slide to appropriate and/or desired positions.
Components, assemblies and/or means are provided and/or described in accordance with the present invention to establish the start-up positions of the slide valves and, to relocate them in desired positions suitable for the load condition desired when the compressor is up to speed, and to determine the positions for the slide valves and which would provide the most efficient volume ratio for the selected load condition. These means, assemblies, etc., could, for example, take the form of or include a microprocessor circuit (not shown) in the controller which mathematically calculates these slide valve positions, or they could take the form of or include pressure sensing devices.
It should also be noted that in the preferred embodiment disclosed herein the two valve members (on opposite sides of the rotor) are typically moved in synchronism with each other and the two valve members (on opposite sides of the rotor) are moved in synchronism with each other so as to provide for “symmetric” unloading of the compressor. However, each slide valve member in a pair can be moved independently of the other so as to provide for “asymmetrical” unloading of the compressor, if appropriate linkages (not shown) are provided and if the control system is modified accordingly in a suitable manner.
Again, many other variations to the compressor dual slide valve assembly, its components, and the compressor in which it is utilized are possible and considered within the scope of the claims. For example, it is contemplated that the compressor gases themselves at various points in the system, could be used directly to effect positioning of the slide valves and, if suitable structures (not shown) are provided. Moreover, the holes, ports, channels, and the like can be sized and shaped depending on the compressor type and application at hand. Similarly, the size and shape of structural or mechanical components shown and/or described herein can be varied without departing from the scope of the present invention.
Accordingly, it is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein, but include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims.
This Nonprovisional patent application claims the benefit under 35 USC §119(e) of U.S. Provisional Application No. 60/908,770 filed Mar. 29, 2007, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
774551 | Beaumont | Nov 1904 | A |
3088659 | Nilsson et al. | May 1963 | A |
3108740 | Schibbye | Oct 1963 | A |
3151806 | Whitfield | Oct 1964 | A |
3314597 | Schibbye | Apr 1967 | A |
3756753 | Persson et al. | Sep 1973 | A |
3810715 | Week et al. | May 1974 | A |
RE29283 | Shaw | Jun 1977 | E |
4261691 | Zimmern et al. | Apr 1981 | A |
4455131 | Werner-Larsen | Jun 1984 | A |
4478054 | Shaw et al. | Oct 1984 | A |
4583373 | Shaw | Apr 1986 | A |
4597726 | Soderlulnd et al. | Jul 1986 | A |
4610612 | Kocher | Sep 1986 | A |
4610613 | Szymaszek | Sep 1986 | A |
4611976 | Schibbye et al. | Sep 1986 | A |
4704069 | Kocher et al. | Nov 1987 | A |
4842501 | Schibbye et al. | Jun 1989 | A |
5435704 | Sawyer | Jul 1995 | A |
7798793 | Shoulders | Sep 2010 | B2 |
7891955 | Picouet | Feb 2011 | B2 |
20060008375 | Hasegawa | Jan 2006 | A1 |
20080206075 | Picouet | Aug 2008 | A1 |
20100284848 | Fujiwara et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
55096392 | Jul 1980 | JP |
57195889 | Dec 1982 | JP |
04063986 | Feb 1992 | JP |
04063987 | Feb 1992 | JP |
2006085866 | Aug 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080240939 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
60908770 | Mar 2007 | US |