The present disclosure relates to a compressor having a capacity modulation assembly.
This section provides background information related to the present disclosure and is not necessarily prior art.
A climate-control system such as, for example, a heat-pump system, a refrigeration system, or an air conditioning system, may include a fluid circuit having an outdoor heat exchanger, an indoor heat exchanger, an expansion device disposed between the indoor and outdoor heat exchangers, and one or more compressors circulating a working fluid (e.g., refrigerant or carbon dioxide) between the indoor and outdoor heat exchangers. Efficient and reliable operation of the one or more compressors is desirable to ensure that the climate-control system in which the one or more compressors are installed is capable of effectively and efficiently providing a cooling and/or heating effect on demand.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
The present disclosure provides a compressor that may include a first scroll, a second scroll, an axial biasing chamber, a first valve, and a second valve. The first scroll may include a first end plate and a first spiral wrap extending from the first end plate. The second scroll may include a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other and form a plurality of compression pockets therebetween. The compression pockets include a suction-pressure compression pocket, a discharge-pressure compression pocket at a higher pressure than the suction-pressure pocket, and a plurality of intermediate-pressure compression pockets at respective pressures between the pressures of the suction and discharge compression pockets. The second end plate includes an outer port and an inner port. The outer port is disposed radially outward relative to the inner port. The outer port may be open to (i.e., in fluid communication with) a first one of the intermediate-pressure compression pockets. The inner port may be open to (i.e., in fluid communication with) a second one of the intermediate-pressure compression pockets. The axial biasing chamber may be disposed axially between the second end plate and a component. The component may partially define the axial biasing chamber. Working fluid disposed within the axial biasing chamber may axially bias the second scroll toward the first scroll. The first valve may be movable between a first position allowing fluid communication between the inner port and the axial biasing chamber and a second position preventing fluid communication between the inner port and the axial biasing chamber. The second valve may be movable between a first position allowing fluid communication between the outer port and the axial biasing chamber and a second position preventing fluid communication between the outer port and the axial biasing chamber.
In some configurations, the component could be a floating seal assembly, a component of a shell assembly (e.g., an end cap or a transversely extending partition separating a suction-pressure region from a discharge chamber), a bearing housing, etc.
In some configurations of the compressor of any one or more of the above paragraphs, the first scroll is an orbiting scroll, and the second scroll is a non-orbiting scroll.
In some configurations of the compressor of any one or more of the above paragraphs, the first valve is in the first position when the second valve is in the second position.
In some configurations of the compressor of any one or more of the above paragraphs, the first valve is in the second position when the second valve is in the first position.
In some configurations of the compressor of any one or more of the above paragraphs, the compressor includes a capacity modulation assembly configured to switch the compressor between a first capacity mode and a second capacity mode that is lower than the first capacity mode.
In some configurations of the compressor of any one or more of the above paragraphs, when the compressor is in the first capacity mode, the first valve is in the second position and the second valve is in the first position.
In some configurations of the compressor of any one or more of the above paragraphs, when the compressor is in the second capacity mode, the first valve is in the first position and the second valve is in the second position.
In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes one or more modulation ports in fluid communication with one or more of the intermediate-pressure compression pockets.
In some configurations of the compressor of any one or more of the above paragraphs, the capacity modulation assembly could include a vapor-injection system for injecting working fluid into one of more of the modulation ports.
In some configurations of the compressor of any one or more of the above paragraphs, the one or more modulation ports may be in fluid communication with a suction-pressure region of the compressor when the compressor is in the second capacity mode.
In some configurations of the compressor of any one or more of the above paragraphs, the capacity modulation assembly includes a valve ring disposed between the component and the second end plate and is movable relative to the component and the second end plate between a first position in which the valve ring blocks fluid communication between the one or more modulation ports and the suction-pressure region and a second position in which the valve ring is spaced apart from the second end plate to allow fluid communication between the one or more modulation ports and the suction-pressure region.
In some configurations of the compressor of any one or more of the above paragraphs, the capacity modulation assembly includes a lift ring at least partially disposed within an annular recess in the valve ring. The lift ring and the valve ring may cooperate to define a modulation control chamber that is in selective fluid communication with the suction-pressure region and in selective fluid communication with the axial biasing chamber.
In some configurations of the compressor of any one or more of the above paragraphs, the axial biasing chamber is disposed axially between the valve ring and the component.
In some configurations of the compressor of any one or more of the above paragraphs, the first and second valves are mounted to the valve ring. The first and second valves are movable with the valve ring and are movable relative to the valve ring.
In some configurations of the compressor of any one or more of the above paragraphs, the first and second valves are in contact with the component during at least a portion of a movement of the valve ring toward its second position. Further movement of the valve ring into its second position forces the first valve into its first position and forces the second valve into its second position.
In some configurations of the compressor of any one or more of the above paragraphs, movement of the valve ring toward its first position allows movement of the first valve toward its second position and movement of the second valve toward its first position. A spring may bias the first valve toward its second position.
In some configurations of the compressor of any one or more of the above paragraphs, a pressure differential between the outer port and the axial biasing chamber moves the second valve into its first position as the valve ring moves toward its first position.
In some configurations of the compressor of any one or more of the above paragraphs, the first valve is fluidly connected to the inner port by a first tube that extends partially around an outer periphery of the second end plate. The second valve may be fluidly connected to the outer port by a second tube that extends partially around the outer periphery of the second end plate.
The present disclosure also provides a compressor that may include a first scroll, a second scroll, and an axial biasing chamber. The first scroll may include a first end plate and a first spiral wrap extending from the first end plate. The second scroll may include a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other and form a plurality of compression pockets therebetween. The compression pockets include a suction-pressure compression pocket, a discharge-pressure compression pocket at a higher pressure than the suction-pressure pocket, and a plurality of intermediate-pressure compression pockets at respective pressures between the pressures of the suction and discharge compression pockets. The axial biasing chamber may be disposed axially between the second end plate and a component. The component may partially define the axial biasing chamber. Working fluid disposed within the axial biasing chamber may axially bias the second scroll toward the first scroll. The second end plate includes an outer port and an inner port. The outer port is disposed radially outward relative to the inner port. The outer port may be open to (i.e., in fluid communication with) a first one of the intermediate-pressure compression pockets and may be in selective fluid communication with the axial biasing chamber. The inner port may be open to (i.e., in fluid communication with) a second one of the intermediate-pressure compression pockets and may be in selective fluid communication with the axial biasing chamber.
In some configurations of the compressor of the above paragraph, the compressor includes a first valve movable between a first position allowing fluid communication between the inner port and the axial biasing chamber and a second position preventing fluid communication between the inner port and the axial biasing chamber.
In some configurations of the compressor of any one or more of the above paragraphs, the compressor includes a second valve movable between a first position allowing fluid communication between the outer port and the axial biasing chamber and a second position preventing fluid communication between the outer port and the axial biasing chamber.
In some configurations of the compressor of any one or more of the above paragraphs, the first valve is in the first position when the second valve is in the second position. The first valve is in the second position when the second valve is in the first position.
In some configurations of the compressor of any one or more of the above paragraphs, the first valve is fluidly connected to the inner port by a first tube that extends partially around an outer periphery of the second end plate. The second valve may be fluidly connected to the outer port by a second tube that extends partially around the outer periphery of the second end plate.
In some configurations of the compressor of any one or more of the above paragraphs, the compressor includes a capacity modulation assembly configured to switch the compressor between a first capacity mode and a second capacity mode that is lower than the first capacity mode.
In some configurations of the compressor of any one or more of the above paragraphs, when the compressor is in the first capacity mode, the inner port is fluidly isolated from the axial biasing chamber and the outer port is in fluid communication with the axial biasing chamber.
In some configurations of the compressor of any one or more of the above paragraphs, when the compressor is in the second capacity mode, the outer port is fluidly isolated from the axial biasing chamber and the inner port is in fluid communication with the axial biasing chamber.
In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes one or more modulation ports in fluid communication with one or more of the intermediate-pressure compression pockets.
In some configurations of the compressor of any one or more of the above paragraphs, the capacity modulation assembly could include a vapor-injection system for injecting working fluid into one of more of the modulation ports.
In some configurations of the compressor of any one or more of the above paragraphs, the one or more modulation ports may be in fluid communication with a suction-pressure region of the compressor when the compressor is in the second capacity mode.
In some configurations of the compressor of any one or more of the above paragraphs, the capacity modulation assembly includes a valve ring disposed between the component and the second end plate and is movable relative to the component and the second end plate between a first position in which the valve ring blocks fluid communication between the one or more modulation ports and the suction-pressure region and a second position in which the valve ring is spaced apart from the second end plate to allow fluid communication between the one or more modulation ports and the suction-pressure region.
In some configurations of the compressor of any one or more of the above paragraphs, the capacity modulation assembly includes a lift ring at least partially disposed within an annular recess in the valve ring. The lift ring and the valve ring may cooperate to define a modulation control chamber that is in selective fluid communication with the suction-pressure region and in selective fluid communication with the axial biasing chamber.
In some configurations of the compressor of any one or more of the above paragraphs, movement of the valve ring toward its first position provides clearance between the component and the first and second valves, and wherein a spring biases the first valve toward its second position.
In some configurations of the compressor of any one or more of the above paragraphs, a pressure differential between the outer port and the axial biasing chamber moves the second valve into its first position as the valve ring moves toward its first position.
In some configurations of the compressor of any one or more of the above paragraphs, the axial biasing chamber is disposed axially between the valve ring and the component.
In some configurations of the compressor of any one or more of the above paragraphs, the component could be a floating seal assembly, a component of a shell assembly (e.g., an end cap or a transversely extending partition separating a suction-pressure region from a discharge chamber), a bearing housing, etc.
In some configurations of the compressor of any one or more of the above paragraphs, the first scroll is an orbiting scroll, and the second scroll is a non-orbiting scroll.
In some configurations of the compressor of any one or more of the above paragraphs, the compressor may include a valve assembly in communication with the axial biasing chamber. The valve assembly may include a valve member movable between a first position providing fluid communication between the outer port and the axial biasing chamber and a second position providing fluid communication between the inner port and the axial biasing chamber.
In some configurations of the compressor of any one or more of the above paragraphs, the valve member includes a first aperture and a second aperture. When the valve member is in the first position, communication between the inner port and the first aperture is blocked and the second aperture is in communication with the outer port. When the valve member is in the second position, communication between the outer port and the second aperture is blocked and the first aperture is in communication with the inner port.
In some configurations of the compressor of any one or more of the above paragraphs, the compressor may include a capacity modulation assembly configured to switch the compressor between a first capacity mode and a second capacity mode that is lower than the first capacity mode. When the compressor is in the first capacity mode, the inner port is fluidly isolated from the axial biasing chamber and the outer port is in fluid communication with the axial biasing chamber. When the compressor is in the second capacity mode, the outer port is fluidly isolated from the axial biasing chamber and the inner port is in fluid communication with the axial biasing chamber.
In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes one or more modulation ports in fluid communication with one or more of the intermediate-pressure compression pockets. The one or more modulation ports are in fluid communication with a suction-pressure region of the compressor when the compressor is in the second capacity mode. The capacity modulation assembly includes a valve ring disposed between the component and the second end plate and is movable relative to the component and the second end plate between a first position in which the valve ring blocks fluid communication between the one or more modulation ports and the suction-pressure region and a second position in which the valve ring is spaced apart from the second end plate to allow fluid communication between the one or more modulation ports and the suction-pressure region. The capacity modulation assembly includes a lift ring at least partially disposed within an annular recess in the valve ring. The lift ring and the valve ring cooperate to define a modulation control chamber that is in selective fluid communication with the suction-pressure region and in selective fluid communication with the axial biasing chamber.
In some configurations of the compressor of any one or more of the above paragraphs, the valve member includes a third aperture and a fourth aperture, wherein the third aperture is in fluid communication with the first aperture. When the valve member is in the first position: the first aperture and the third aperture are blocked from fluid communication with the axial biasing chamber and the modulation control chamber, the second aperture provides fluid communication between the outer port and the axial biasing chamber, and the fourth aperture provides fluid communication between the suction-pressure region and the modulation control chamber.
In some configurations of the compressor of any one or more of the above paragraphs, when the valve member is in the second position: the first aperture and the third aperture are in fluid communication with the axial biasing chamber and the modulation control chamber, fluid communication is blocked between the second aperture and the outer port and between the second aperture and the axial biasing chamber, fluid communication is blocked between the fourth aperture and the suction-pressure region and between the fourth aperture and the modulation control chamber, and fluid communication between suction-pressure region and the modulation control chamber is blocked.
In some configurations of the compressor of any one or more of the above paragraphs, the valve assembly is a MEMS microvalve.
The present disclosure also provides a compressor that may include a first scroll, a second scroll, an axial biasing chamber, and a valve assembly. The first scroll includes a first end plate and a first spiral wrap extending from the first end plate. The second scroll includes a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other and form a plurality of compression pockets therebetween. The axial biasing chamber may be disposed axially between the second end plate and a floating seal assembly. The floating seal assembly at least partially defines the axial biasing chamber. The valve assembly is in communication with the axial biasing chamber and is movable between a first position providing fluid communication between a first pressure region and the axial biasing chamber and a second position providing fluid communication between a second pressure region and the axial biasing chamber. The second pressure region may be at a higher pressure than the first pressure region.
In some configurations, the first pressure region is a first intermediate-pressure compression pocket defined by the first and second spiral wraps, wherein the second pressure region is a second intermediate-pressure compression pocket defined by the first and second spiral wraps, and wherein the second intermediate-pressure compression pocket is disposed radially inward relative to the first intermediate-pressure compression pocket.
In some configurations, the first pressure region is a suction-pressure region.
In some configurations, the second pressure region is a discharge-pressure region. In some configurations, the discharge-pressure region is a discharge passage extending through the second end plate. In other configurations, the discharge-pressure region could be a discharge chamber (discharge muffler), or an innermost pocket defined by the first and second spiral wraps, for example.
In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes a first passage and a second passage, wherein the first passage is open to a discharge passage and is in fluid communication with the valve assembly, and wherein the second passage is open to the axial biasing chamber and is in fluid communication with the valve assembly.
In some configurations of the compressor of any one or more of the above paragraphs, the valve assembly provides fluid communication between the first passage and the second passage when the valve assembly is in the second position.
In some configurations of the compressor of any one or more of the above paragraphs, the valve assembly provides fluid communication between the second passage and the suction-pressure region when the valve assembly is in the first position.
In some configurations of the compressor of any one or more of the above paragraphs, the valve assembly includes a valve member movable between the first position and the second position. The valve member includes a first aperture and a second aperture. When the valve member is in the first position, communication between the first passage and the first aperture is blocked and the second aperture is in communication with the suction-pressure region. When the valve member is in the second position, communication between the suction-pressure region and the second aperture is blocked and the first aperture is in communication with the first passage.
In some configurations of the compressor of any one or more of the above paragraphs, the valve assembly is a MEMS microvalve.
In some configurations of the compressor of any one or more of the above paragraphs, the compressor may include a control module controlling operation of the valve assembly. The control module may pulse-width-modulate the valve assembly between the first and second positions to achieve a desired fluid pressure within the axial biasing chamber. The desired fluid pressure may be determined based on compressor operating conditions (e.g., suction and discharge pressures or temperatures) and/or operating conditions (e.g., condensing and evaporating temperatures or pressures) of a climate-control system in which the compressor is installed.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
With reference to
The shell assembly 12 forms a compressor housing and may include a cylindrical shell 29, an end cap 32 at the upper end thereof, a transversely extending partition 34, and a base 36 at a lower end thereof. The end cap 32 and partition 34 may generally define a discharge chamber 38. The discharge chamber 38 may generally form a discharge muffler for compressor 10. While the compressor 10 is illustrated as including the discharge chamber 38, the present disclosure applies equally to direct discharge configurations. A discharge fitting 39 may be attached to the shell assembly 12 at an opening in the end cap 32. A suction gas inlet fitting (not shown) may be attached to the shell assembly 12 at another opening. The partition 34 may include a discharge passage 44 therethrough providing communication between the compression mechanism 18 and the discharge chamber 38.
The first bearing housing assembly 14 may be affixed to the shell 29 and may include a main bearing housing 46 and a first bearing 48 disposed therein. The main bearing housing 46 may house the bearing 48 therein and may define an annular flat thrust bearing surface 54 on an axial end surface thereof. The second bearing housing assembly 15 may be affixed to the shell 29 and may include a lower bearing housing 47 and a second bearing 49 disposed therein.
The motor assembly 16 may generally include a motor stator 58, a rotor 60, and a driveshaft 62. The motor stator 58 may be press fit into the shell 29. The driveshaft 62 may be rotatably driven by the rotor 60 and may be rotatably supported within the bearing 48. The rotor 60 may be press fit on the driveshaft 62. The driveshaft 62 may include an eccentric crankpin 64.
The compression mechanism 18 may include a first scroll (e.g., an orbiting scroll 68) and a second scroll (e.g., a non-orbiting scroll 70). The orbiting scroll 68 may include an end plate 72 having a spiral wrap 74 on the upper surface thereof and an annular flat thrust surface 76 on the lower surface. The thrust surface 76 may interface with the annular flat thrust bearing surface 54 on the main bearing housing 46. A cylindrical hub 78 may project downwardly from the thrust surface 76 and may have a drive bushing 80 rotatably disposed therein. The drive bushing 80 may include an inner bore in which the crank pin 64 is drivingly disposed. A flat surface of the crankpin 64 may drivingly engage a flat surface in a portion of the inner bore of the drive bushing 80 to provide a radially compliant driving arrangement. An Oldham coupling 82 may be engaged with the orbiting and non-orbiting scrolls 68, 70 or the orbiting scroll 68 and the main bearing housing 46 to prevent relative rotation therebetween.
The non-orbiting scroll 70 may include an end plate 84 defining a discharge passage 92 and having a spiral wrap 86 extending from a first side thereof. The non-orbiting scroll 70 may be attached to the bearing housing 46 via fasteners and sleeve guides that allow for a limited amount of axial movement of the non-orbiting scroll 70 relative to the orbiting scroll 68 and the bearing housing 46. The spiral wraps 74, 86 may be meshingly engaged with one another and define pockets 94, 96, 97, 98, 99, 100, 102, 104. It is understood that the pockets 94, 96, 98, 100, 102, 104 change throughout compressor operation.
A first pocket (pocket 94 in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The seal plate 152 may include an annular ring 160 having a pair of flange portions 162 that extend axially downward and radially outward from the annular ring 160. As shown in
As will be described in more detail below, the seal plate 152 is movable with the valve ring 154 in an axial direction (i.e., a direction along or parallel to a rotational axis of the driveshaft 62) relative to the end plate 84 between a first position (
As shown in
As shown in
As shown in
As shown in
As shown in
During steady-state operation of the compressor 10, the floating seal assembly 20 may be a stationary component. The floating seal assembly 20 is partially received in the fourth annular recess 186 of the valve ring 154 and cooperates with the hub 138, the annular seal 184 and the valve ring 154 to define an axial biasing chamber 202 (
The axial biasing chamber 202 is in selective fluid communication with one of the outer and inner ICP ports 124, 126 (
As shown in
As shown in
In some configurations, the first ICP valve 206 could be a Schrader valve, for example. In some configurations, as shown in
When the first ICP valve 206 is in the closed position (
The second ICP valve 210 is a valve member including disk portion 236 and a cylindrical stem portion 238 extending axially downward from the disk portion 236 (i.e., axially away from the floating seal assembly 20). The disk portion 236 has a larger diameter than the stem portion 238. The stem portion 238 may be reciprocatingly received in the aperture 225 in the valve ring 154 to allow the second ICP valve 210 to move between an open position (
When the second ICP valve 210 is in the open position (
The modulation control valve 158 may include a solenoid-operated three-way valve and may be in fluid communication with the suction-pressure region 106 and the first and second control passages 200, 201 in the valve ring 154. During operation of the compressor 10, the modulation control valve 158 may be operable to switch the compressor 10 between a first mode (e.g., a full-capacity mode) and a second mode (e.g., a reduced-capacity mode).
When the compressor 10 is in the full-capacity mode (
When the compressor 10 is in the reduced-capacity mode (
As shown in
As shown in
Accordingly, the axial biasing chamber 202 receives working fluid from the outer ICP port 124 when the compressor 10 is operating in the full-capacity mode, and the axial biasing chamber 202 receives working fluid from the inner ICP port 126 when the compressor 10 is operating in the reduced-capacity mode. As shown in
By switching which one of the ICP ports 124, 126 supplies working fluid to the axial biasing chamber 202 when the compressor 10 is switched between the full-capacity and reduced-capacity modes, the capacity modulation assembly 28 of the present disclosure can supply working fluid of a more preferred pressure to the axial biasing chamber 202 in both the full-capacity and reduced-capacity modes. That is, while the pressure of the working fluid supplied by the outer ICP port 124 may be appropriate while the compressor is in the full-capacity mode, the pressure of the working fluid at the outer ICP port 124 is lower during the reduced-capacity mode (due to venting of working fluid to the suction-pressure region 106 through modulation ports 112, 114, 116, 118 during the reduced-capacity mode) than it is during the full-capacity mode. To compensate for that reduction in fluid pressure, the second ICP valve 210 closes and the first ICP valve 206 opens in the reduced-capacity mode so that working fluid from the inner ICP port 126 is supplied to the axial biasing chamber during the reduced-capacity mode. In this manner, working fluid of an appropriately high pressure can be supplied to the axial biasing chamber 202 during the reduced-capacity mode to adequately bias the non-orbiting scroll 70 axially toward the orbiting scroll 68 to ensure appropriate sealing between the tips of spiral wraps 74, 86 and end plates 84, 72, respectively.
Supplying working fluid to the axial biasing chamber 202 from the outer ICP port 124 (rather than from the inner ICP port 126) in the full-capacity mode ensures that the pressure of working fluid in the axial biasing chamber 202 is not too high in the full-capacity mode, which ensures that the scrolls 70, 68 are not over-clamped against each other. Over-clamping the scrolls 70, 68 against each other (i.e., biasing the non-orbiting scroll 70 axially toward the orbiting scroll 68 with too much force) would introduce an unduly high friction load between the scrolls 68, 70, which would result in increased wear, increased power consumption and efficiency losses. Therefore, the operation of the ICP valves 206, 210 described above minimizes wear and improves efficiency of the compressor 10 in the full-capacity and reduced-capacity modes.
While the capacity modulation assembly 28 is described above as an assembly that selectively allows venting of modulation ports in the end plate to the suction-pressure region, in some configurations, the capacity modulation assembly 28 could additionally or alternatively include a vapor-injection system that selectively injects working fluid into one or more intermediate-pressure compression pockets to boost the capacity of the compressor. One or more passages in one of both of the end plates 72, 84 may be provided through which the working fluid may be injected into the one or more intermediate-pressure compression pockets. One or more valves may be provided to control the flow of working fluid into the one or more intermediate-pressure compression pockets.
With reference to
With reference to
The non-orbiting scroll may include an end plate 384 defining a discharge passage 392 and having a spiral wrap 386 extending from a first side thereof. The non-orbiting scroll 370 may be attached to the bearing housing 46 via fasteners and sleeve guides that allow for a limited amount of axial movement of the non-orbiting scroll 370 relative to the orbiting scroll 68 and the bearing housing 46. The spiral wrap 386 may be meshingly engaged with the spiral wrap 74 of the orbiting scroll 68 and the spiral wraps 74, 386 define pockets (e.g., similar or identical to pockets 94, 96, 97, 98, 99, 100, 102, 104 described above).
An annular recess 393 may be formed in the end plate 384 of the non-orbiting scroll 370. An annular floating seal assembly 320 (similar or identical to the floating seal 20 described above) may be received within the annular recess 393. The floating seal assembly 20 may be sealingly engaged with the partition 34 and inner and outer diametrical surfaces 394, 395 that define the recess 393. In this manner, the floating seal assembly 320 fluidly separates the suction-pressure region 106 of the compressor 10 from the discharge chamber 38 of the compressor 10. An axial biasing chamber 402 is axially between and defined by the floating seal assembly 320 and an axially facing surface 396 of the end plate 384.
The end plate 384 may include a first passage 404 and a second passage 406. In some configurations, the first and second passages 404, 406 may extend radially through a portion of the end plate 384. One end of the first passage 404 may be open to and in fluid communication with the discharge passage 392. The other end of the first passage 404 may be fluidly coupled with the valve assembly 372. One end of the second passage 406 may be open to and in fluid communication with the axial biasing chamber 402. The other end of the second passage 406 may be fluidly coupled with the valve assembly 372.
The valve assembly 372 may include a valve body 408 and a valve member 410. The valve member 410 is movable relative to the valve body 408 between a first position (
The valve body 408 may include a first body member 412 and a second body member 414. The first body member 412 may be mounted to the end plate 384 and may include first, second and third apertures 416, 418, 420 and a recess 422. The first aperture 416 may be fluidly connected to the second passage 406 in the end plate 384. The second aperture 418 may be fluidly connected to the first passage 404 in the end plate 384. The third aperture 420 may be open to and in fluid communication with the suction-pressure region 106. The recess 422 in the first body member 412 may movably receive the valve member 410.
The second body member 414 may include a communication passage 424. The communication passage 424 may be: (a) in constant fluid communication with the first aperture 416 of the first body member 412, (b) in selective fluid communication with second aperture 418 of the first body member 412, and (c) in selective fluid communication with the third aperture 420 of the first body member 412.
The valve member 410 is disposed within the recess 422 in the first body member 412 and is movable within the recess 422 between the first and second positions. The valve member 410 may include a first aperture 426 and a second aperture 428.
When the valve member 410 is in the first position (
When the valve member 410 is in the second position (
In some configurations, the valve assembly 372 may be a MEMS (micro-electro-mechanical systems) valve assembly. For example, the valve member 410 may include silicon ribs (or other resistive elements). A flow of electrical current through the silicon ribs causes the silicon ribs to expand (due to thermal expansion), which results in linear displacement of the valve member 410.
The valve assembly 372 may include a control module 430 having processing circuitry for controlling movement of the valve member 410 between the first and second positions. The valve assembly 372 may be in communication with pressure sensors (or the valve assembly 372 may have built-in pressure sensing capability) to detect pressures of working fluid within the suction-pressure region 106, the axial biasing chamber 402, and the discharge passage 392. The control module 430 may control movement of the valve member 410 based on the values of such pressures (and/or based on additional or alternative operating parameters) to maintain optimum pressures within the axial biasing chamber 402 to provide optimum the force biasing non-orbiting scroll 370 toward the orbiting scroll 68 at various operating conditions in the operating envelope of the compressor 10. The valve assembly 372 may also function as a high-pressure cutout device or pressure-relief valve to vent the axial biasing chamber 402 to the suction-pressure region 106 if pressure within the axial biasing chamber 402 raises above a predetermined threshold.
At initial startup of the compressor 10, the control module 430 may position the valve member 410 at the second position (
During operation of the compressor 10, the control module 430 may receive signals from sensors measuring suction and discharge pressures (or pressures within the suction-pressure region 106 and discharge passage 392) and reference a lookup table stored in the memory of the control module 430 to determine a desired or ideal pressure value for the axial biasing chamber 402 for a given set of suction and discharge pressures. The control module 430 could pulse the valve member 410 between the first and second positions to achieve the ideal pressure value. After achieving the desired pressure in the axial biasing chamber 402, the control module 430 may move the valve member 410 to a third position (e.g., downward relative to the second position shown in
In some configurations, during shutdown of the compressor 10, the control module 430 may position the valve member 410 in the first position (
While the valve body 408 is described above as having the first and second body members 412, 414, in some configurations, the valve body 408 could be a one-piece valve body. Furthermore, while the valve assembly 372 is described above as a MEMS valve assembly, in some configurations, the valve assembly 372 could be any other type of valve assembly, such as a solenoid, piezoelectric, or stepper valve, for example (i.e., the valve member 410 could be actuated by a solenoid, piezoelectric, or stepper actuator).
With reference to
The structure and function of the non-orbiting scroll 570 and valve assembly 572 may be similar or identical to that of the non-orbiting scroll 370 and valve assembly 372, apart from exceptions noted below. Therefore, at least some similar features will not be described again in detail.
Like the non-orbiting scroll 370, the non-orbiting scroll 570 may include an end plate 584, a spiral wrap 586, and a recess 593 in the end plate 584 in which a floating seal assembly 520 is received to define an axial biasing chamber 602. The floating seal assembly 520 may be similar or identical to the floating seal assembly 20, 320. The end plate 584 may include a passage 606 (like the passage 406) that is open to and in fluid communication with the axial basing chamber 604 at one end and fluidly connected to the valve assembly 572 at the other end.
Instead of the first passage 404, the end plate 584 may include may include an outer ICP passage or port 605 and an inner ICP passage or port 607. One end of the outer port 605 may be open to and in fluid communication with a first intermediate-pressure compression pocket 598 (e.g. like pocket 98 described above) and the other end of the outer port 605 may be fluidly connected to the valve assembly 572. One end of the inner port 607 may be open to and in fluid communication with a second intermediate-pressure compression pocket 600 (e.g. like pocket 100 described above) that is disposed radially inward relative to the first intermediate-pressure pocket 598 and is at an intermediate pressure that is higher than the pressure of pocket 598. The other end of the inner port 607 may be fluidly connected to the valve assembly 572.
The valve assembly 572 may include a valve body 508 and a valve member 510. The valve member 510 is movable relative to the valve body 508 between a first position (
The valve body 508 may include a first body member 512 and a second body member 514. The first body member 512 may be mounted to the end plate 584 and may include first, second and third apertures 516, 518, 520 and a recess 522. The first aperture 516 may be fluidly connected to the passage 606 in the end plate 584. The second aperture 518 may be fluidly connected to the inner port 607 in the end plate 584. The third aperture 520 may be open to and in fluid communication with the outer port 605 in the end plate 584. The recess 522 in the first body member 512 may movably receive the valve member 510.
The second body member 514 may include a communication passage 524. The communication passage 524 may be: (a) in constant fluid communication with the first aperture 516 of the first body member 512, (b) in selective fluid communication with second aperture 518 of the first body member 512, and (c) in selective fluid communication with the third aperture 520 of the first body member 512.
The valve member 510 is disposed within the recess 522 in the first body member 512 and is movable within the recess 522 between the first and second positions. The valve member 510 may include a first aperture 526 and a second aperture 528.
When the valve member 510 is in the first position (
When the valve member 510 is in the second position (
In some configurations, the valve assembly 572 may be a MEMS (micro-electro-mechanical systems) valve assembly and may include a control module 530 having processing circuitry for controlling movement of the valve member 510 between the first and second positions. The control module 530 may control the valve member 510 in the same or a similar manner as described above with respect to the control module 430 and valve member 410. In some configurations, the valve assembly 572 could be any other type of valve assembly, such as a solenoid, piezoelectric, or stepper valve, for example (i.e., the valve member 510 could be actuated by a solenoid, piezoelectric, or stepper actuator).
With reference to
The structure and function of the non-orbiting scroll 770 and capacity modulation system 728 may be similar to that of the non-orbiting scroll 70 and capacity modulation system 28. Therefore, at least some similar features will not be described again in detail.
The non-orbiting scroll 770 may include an end plate 784 and a spiral wrap 786. The spiral wrap 786 may be meshingly engaged with the spiral wrap 74 of the orbiting scroll 68 and the spiral wraps 74, 786 define pockets (e.g., similar or identical to pockets 94, 96, 97, 98, 99, 100, 102, 104 described above).
The end plate 784 may include one or more modulation passages or ports 812, 814. The modulation ports 812, 814 may be open to and in fluid communication with respective intermediate-pressure pockets 96-102. The end plate 784 may also include an outer ICP passage or port 824, and an inner ICP passage or port 826 (shown schematically in
One end of the outer port 824 may be open to and in fluid communication with a first intermediate-pressure compression pocket 798 (e.g. like pocket 98) and the other end of the outer port 824 may be fluidly connected to the valve assembly 772. One end of the inner port 826 may be open to and in fluid communication with a second intermediate-pressure compression pocket 800 (e.g. like pocket 100 described above) that is disposed radially inward relative to the first intermediate-pressure pocket 798 and is at an intermediate pressure that is higher than the pressure of pocket 798. The other end of the inner port 826 may be fluidly connected to the valve assembly 772.
The capacity modulation assembly 728 may include a valve ring 854 (e.g., similar to the valve ring 154) and a lift ring 856 (e.g., similar or identical to the lift ring 156). The valve ring 854 may encircle and sealingly engage a central annular hub 788 of the end plate 784. The lift ring 856 may be received within an annular recess 876 formed in the valve ring 854 and may include a plurality of posts or protrusions (not shown; e.g., like protrusions 192) that contact the end plate 384.
The lift ring 856 may cooperate with the valve ring 854 to define a modulation control chamber 898 (e.g., like modulation control chamber 198). That is, the modulation control chamber 898 is defined by and disposed axially between opposing axially facing surfaces of the lift ring 856 and the valve ring 854. A first control passage 900 (shown schematically in
An annular floating seal 820 (similar or identical to the floating seal 120, 320) may be disposed radially between the hub 788 of the end plate 784 and an annular rim 855 of the valve ring 854. The floating seal 820 may sealingly engage the hub 788 and the rim 855. The floating seal 820, the end plate 784, and the valve ring 854 cooperate to form an axial biasing chamber 902.
A second control passage 904 (shown schematically in
The valve ring 854 may be movable relative to the end plate 784 between a first position (
As shown in
As shown in
The first opening 916 in the valve body 910 may be fluidly connected (either directly or via a conduit or connector) to the inner port 826 in the end plate 784. The second opening 918 in the valve body 910 may be fluidly connected (either directly or via a conduit or connector) to the outer port 824 in the end plate 784. The third opening 920 in the valve body 910 may be open to in fluid communication with the suction-pressure region 106 of the compressor 10. The fourth opening 922 in the valve body 910 may be fluidly connected (e.g., via a conduit or connector) to the axial biasing chamber 902. The fifth opening 924 in the valve body 910 may be fluidly connected (e.g., via a conduit or connector) to the modulation control chamber 898.
As shown in
As shown in
As shown in
In some configurations, the valve assembly 772 may be a MEMS (micro-electro-mechanical systems) valve assembly and may include a control module having processing circuitry for controlling movement of the valve member 912 between the first and second positions. In some configurations, the valve assembly 772 could be any other type of valve assembly, such as a solenoid, piezoelectric, or stepper valve, for example (i.e., the valve member 912 could be actuated by a solenoid, piezoelectric, or stepper actuator).
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application claims the benefit of U.S. Provisional Application No. 62/672,700, filed on May 17, 2018. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4058988 | Shaw | Nov 1977 | A |
4216661 | Tojo et al. | Aug 1980 | A |
4382370 | Suefuji et al. | May 1983 | A |
4383805 | Teegarden et al. | May 1983 | A |
4389171 | Eber et al. | Jun 1983 | A |
4466784 | Hiraga | Aug 1984 | A |
4475360 | Suefuji et al. | Oct 1984 | A |
4475875 | Sugimoto et al. | Oct 1984 | A |
4496296 | Arai et al. | Jan 1985 | A |
4497615 | Griffith | Feb 1985 | A |
4545742 | Schaefer | Oct 1985 | A |
4547138 | Mabe et al. | Oct 1985 | A |
4552518 | Utter | Nov 1985 | A |
4564339 | Nakamura et al. | Jan 1986 | A |
4580949 | Maruyama et al. | Apr 1986 | A |
4609329 | Pillis et al. | Sep 1986 | A |
4650405 | Iwanami et al. | Mar 1987 | A |
4696630 | Sakata et al. | Sep 1987 | A |
4727725 | Nagata et al. | Mar 1988 | A |
4772188 | Kimura et al. | Sep 1988 | A |
4774816 | Uchikawa et al. | Oct 1988 | A |
4818195 | Murayama et al. | Apr 1989 | A |
4824344 | Kimura et al. | Apr 1989 | A |
4838773 | Noboru | Jun 1989 | A |
4842499 | Nishida et al. | Jun 1989 | A |
4846633 | Suzuki et al. | Jul 1989 | A |
4877382 | Caillat et al. | Oct 1989 | A |
4886425 | Itahana et al. | Dec 1989 | A |
4886433 | Maier | Dec 1989 | A |
4898520 | Nieter et al. | Feb 1990 | A |
4927339 | Riffe et al. | May 1990 | A |
4940395 | Yamamoto et al. | Jul 1990 | A |
4954057 | Caillat et al. | Sep 1990 | A |
4990071 | Sugimoto | Feb 1991 | A |
4997349 | Richardson, Jr. | Mar 1991 | A |
5024589 | Jetzer et al. | Jun 1991 | A |
5040952 | Inoue et al. | Aug 1991 | A |
5040958 | Arata et al. | Aug 1991 | A |
5055010 | Logan | Oct 1991 | A |
5059098 | Suzuki et al. | Oct 1991 | A |
5071323 | Sakashita et al. | Dec 1991 | A |
5074760 | Hirooka et al. | Dec 1991 | A |
5080056 | Kramer et al. | Jan 1992 | A |
5085565 | Barito | Feb 1992 | A |
5098265 | Machida et al. | Mar 1992 | A |
5145346 | Iio et al. | Sep 1992 | A |
5152682 | Morozumi et al. | Oct 1992 | A |
RE34148 | Terauchi et al. | Dec 1992 | E |
5169294 | Barito | Dec 1992 | A |
5171141 | Morozumi et al. | Dec 1992 | A |
5192195 | Iio et al. | Mar 1993 | A |
5193987 | Iio et al. | Mar 1993 | A |
5199862 | Kondo et al. | Apr 1993 | A |
5213489 | Kawahara et al. | May 1993 | A |
5240389 | Oikawa et al. | Aug 1993 | A |
5253489 | Yoshii | Oct 1993 | A |
5304047 | Shibamoto | Apr 1994 | A |
5318424 | Bush et al. | Jun 1994 | A |
5330463 | Hirano | Jul 1994 | A |
5336068 | Sekiya et al. | Aug 1994 | A |
5340287 | Kawahara et al. | Aug 1994 | A |
5356271 | Miura et al. | Oct 1994 | A |
5395224 | Caillat et al. | Mar 1995 | A |
5411384 | Bass et al. | May 1995 | A |
5425626 | Tojo et al. | Jun 1995 | A |
5427512 | Kohsokabe et al. | Jun 1995 | A |
5451146 | Inagaki et al. | Sep 1995 | A |
5458471 | Ni | Oct 1995 | A |
5458472 | Kobayashi et al. | Oct 1995 | A |
5482637 | Rao et al. | Jan 1996 | A |
5511959 | Tojo et al. | Apr 1996 | A |
5547354 | Shimizu et al. | Aug 1996 | A |
5551846 | Taylor et al. | Sep 1996 | A |
5557897 | Kranz et al. | Sep 1996 | A |
5562426 | Watanabe et al. | Oct 1996 | A |
5577897 | Inagaki et al. | Nov 1996 | A |
5591014 | Wallis et al. | Jan 1997 | A |
5607288 | Wallis et al. | Mar 1997 | A |
5611674 | Bass et al. | Mar 1997 | A |
5613841 | Bass et al. | Mar 1997 | A |
5624247 | Nakamura | Apr 1997 | A |
5639225 | Matsuda et al. | Jun 1997 | A |
5640854 | Fogt et al. | Jun 1997 | A |
5649817 | Yamazaki | Jul 1997 | A |
5660539 | Matsunaga et al. | Aug 1997 | A |
5674058 | Matsuda et al. | Oct 1997 | A |
5678985 | Brooke et al. | Oct 1997 | A |
5707210 | Ramsey et al. | Jan 1998 | A |
5722257 | Ishii et al. | Mar 1998 | A |
5741120 | Bass et al. | Apr 1998 | A |
5775893 | Takao et al. | Jul 1998 | A |
5842843 | Haga | Dec 1998 | A |
5855475 | Fujio et al. | Jan 1999 | A |
5885063 | Makino et al. | Mar 1999 | A |
5888057 | Kitano et al. | Mar 1999 | A |
5938417 | Takao et al. | Aug 1999 | A |
5993171 | Higashiyama | Nov 1999 | A |
5993177 | Terauchi et al. | Nov 1999 | A |
6030192 | Hill et al. | Feb 2000 | A |
6047557 | Pham et al. | Apr 2000 | A |
6068459 | Clarke et al. | May 2000 | A |
6086335 | Bass et al. | Jul 2000 | A |
6093005 | Nakamura | Jul 2000 | A |
6095765 | Khalifa | Aug 2000 | A |
6102671 | Yamamoto et al. | Aug 2000 | A |
6123517 | Brooke et al. | Sep 2000 | A |
6123528 | Sun et al. | Sep 2000 | A |
6132179 | Higashiyama | Oct 2000 | A |
6139287 | Kuroiwa et al. | Oct 2000 | A |
6139291 | Perevozchikov | Oct 2000 | A |
6149401 | Iwanami et al. | Nov 2000 | A |
6152714 | Mitsuya et al. | Nov 2000 | A |
6164940 | Terauchi et al. | Dec 2000 | A |
6174149 | Bush | Jan 2001 | B1 |
6176686 | Wallis et al. | Jan 2001 | B1 |
6179589 | Bass et al. | Jan 2001 | B1 |
6202438 | Barito | Mar 2001 | B1 |
6210120 | Hugenroth et al. | Apr 2001 | B1 |
6213731 | Doepker et al. | Apr 2001 | B1 |
6231316 | Wakisaka et al. | May 2001 | B1 |
6257840 | Ignatiev et al. | Jul 2001 | B1 |
6264444 | Nakane et al. | Jul 2001 | B1 |
6267565 | Seibel et al. | Jul 2001 | B1 |
6273691 | Morimoto et al. | Aug 2001 | B1 |
6280154 | Clendenin et al. | Aug 2001 | B1 |
6290477 | Gigon | Sep 2001 | B1 |
6293767 | Bass | Sep 2001 | B1 |
6293776 | Hahn et al. | Sep 2001 | B1 |
6309194 | Fraser et al. | Oct 2001 | B1 |
6322340 | Itoh et al. | Nov 2001 | B1 |
6338912 | Ban et al. | Jan 2002 | B1 |
6350111 | Perevozchikov et al. | Feb 2002 | B1 |
6361890 | Ban et al. | Mar 2002 | B1 |
6379123 | Makino et al. | Apr 2002 | B1 |
6389837 | Morozumi | May 2002 | B1 |
6412293 | Pham et al. | Jul 2002 | B1 |
6413058 | Williams et al. | Jul 2002 | B1 |
6419457 | Seibel et al. | Jul 2002 | B1 |
6428286 | Shimizu et al. | Aug 2002 | B1 |
6454551 | Kuroki et al. | Sep 2002 | B2 |
6457948 | Pham | Oct 2002 | B1 |
6464481 | Tsubai et al. | Oct 2002 | B2 |
6478550 | Matsuba et al. | Nov 2002 | B2 |
6506036 | Tsubai et al. | Jan 2003 | B2 |
6514060 | Ishiguro et al. | Feb 2003 | B1 |
6537043 | Chen | Mar 2003 | B1 |
6544016 | Gennami et al. | Apr 2003 | B2 |
6558143 | Nakajima et al. | May 2003 | B2 |
6589035 | Tsubono et al. | Jul 2003 | B1 |
6619062 | Shibamoto et al. | Sep 2003 | B1 |
6679683 | Seibel et al. | Jan 2004 | B2 |
6705848 | Scancarello | Mar 2004 | B2 |
6715999 | Ancel et al. | Apr 2004 | B2 |
6746223 | Manole | Jun 2004 | B2 |
6769881 | Lee | Aug 2004 | B2 |
6769888 | Tsubono et al. | Aug 2004 | B2 |
6773242 | Perevozchikov | Aug 2004 | B1 |
6817847 | Agner | Nov 2004 | B2 |
6821092 | Gehret et al. | Nov 2004 | B1 |
6863510 | Cho | Mar 2005 | B2 |
6881046 | Shibamoto et al. | Apr 2005 | B2 |
6884042 | Zili et al. | Apr 2005 | B2 |
6887051 | Sakuda et al. | May 2005 | B2 |
6893229 | Choi et al. | May 2005 | B2 |
6896493 | Chang et al. | May 2005 | B2 |
6896498 | Patel | May 2005 | B1 |
6913448 | Liang et al. | Jul 2005 | B2 |
6984114 | Zili et al. | Jan 2006 | B2 |
7018180 | Koo | Mar 2006 | B2 |
7029251 | Chang et al. | Apr 2006 | B2 |
7118358 | Tsubono et al. | Oct 2006 | B2 |
7137796 | Tsubono et al. | Nov 2006 | B2 |
7160088 | Peyton | Jan 2007 | B2 |
7172395 | Shibamoto et al. | Feb 2007 | B2 |
7197890 | Taras et al. | Apr 2007 | B2 |
7207787 | Liang et al. | Apr 2007 | B2 |
7228710 | Lifson | Jun 2007 | B2 |
7229261 | Morimoto et al. | Jun 2007 | B2 |
7255542 | Lifson et al. | Aug 2007 | B2 |
7261527 | Alexander et al. | Aug 2007 | B2 |
7311740 | Williams et al. | Dec 2007 | B2 |
7344365 | Takeuchi et al. | Mar 2008 | B2 |
RE40257 | Doepker et al. | Apr 2008 | E |
7354259 | Tsubono et al. | Apr 2008 | B2 |
7364416 | Liang et al. | Apr 2008 | B2 |
7371057 | Shin et al. | May 2008 | B2 |
7371059 | Ignatiev et al. | May 2008 | B2 |
RE40399 | Hugenroth et al. | Jun 2008 | E |
RE40400 | Bass et al. | Jun 2008 | E |
7393190 | Lee et al. | Jul 2008 | B2 |
7404706 | Ishikawa et al. | Jul 2008 | B2 |
RE40554 | Bass et al. | Oct 2008 | E |
7510382 | Jeong | Mar 2009 | B2 |
7547202 | Knapke | Jun 2009 | B2 |
7674098 | Lifson | Mar 2010 | B2 |
7695257 | Joo et al. | Apr 2010 | B2 |
7717687 | Reinhart | May 2010 | B2 |
7771178 | Perevozchikov et al. | Aug 2010 | B2 |
7802972 | Shimizu et al. | Sep 2010 | B2 |
7815423 | Guo et al. | Oct 2010 | B2 |
7891961 | Shimizu et al. | Feb 2011 | B2 |
7896629 | Ignatiev et al. | Mar 2011 | B2 |
RE42371 | Peyton | May 2011 | E |
7956501 | Jun et al. | Jun 2011 | B2 |
7967582 | Akei et al. | Jun 2011 | B2 |
7967583 | Stover et al. | Jun 2011 | B2 |
7972125 | Stover et al. | Jul 2011 | B2 |
7976289 | Masao | Jul 2011 | B2 |
7976295 | Stover et al. | Jul 2011 | B2 |
7988433 | Akei et al. | Aug 2011 | B2 |
7988434 | Stover et al. | Aug 2011 | B2 |
8025492 | Seibel et al. | Sep 2011 | B2 |
8303278 | Roof et al. | Nov 2012 | B2 |
8303279 | Hahn | Nov 2012 | B2 |
8308448 | Fields et al. | Nov 2012 | B2 |
8328531 | Milliff et al. | Dec 2012 | B2 |
8393882 | Ignatiev et al. | Mar 2013 | B2 |
8506271 | Seibel et al. | Aug 2013 | B2 |
8517703 | Doepker | Aug 2013 | B2 |
8585382 | Akei et al. | Nov 2013 | B2 |
8616014 | Stover et al. | Dec 2013 | B2 |
8790098 | Stover et al. | Jul 2014 | B2 |
8840384 | Patel et al. | Sep 2014 | B2 |
8857200 | Stover et al. | Oct 2014 | B2 |
8932036 | Monnier et al. | Jan 2015 | B2 |
9127677 | Doepker | Sep 2015 | B2 |
9145891 | Kim et al. | Sep 2015 | B2 |
9249802 | Doepker et al. | Feb 2016 | B2 |
9297383 | Jin et al. | Mar 2016 | B2 |
9303642 | Akei et al. | Apr 2016 | B2 |
9435340 | Doepker et al. | Sep 2016 | B2 |
9494157 | Doepker | Nov 2016 | B2 |
9605677 | Heidecker et al. | Mar 2017 | B2 |
9624928 | Yamazaki et al. | Apr 2017 | B2 |
9651043 | Stover et al. | May 2017 | B2 |
9777730 | Doepker et al. | Oct 2017 | B2 |
9790940 | Doepker et al. | Oct 2017 | B2 |
9879674 | Akei et al. | Jan 2018 | B2 |
9989057 | Lochner et al. | Jun 2018 | B2 |
10066622 | Pax et al. | Sep 2018 | B2 |
10087936 | Pax et al. | Oct 2018 | B2 |
10094380 | Doepker et al. | Oct 2018 | B2 |
20010010800 | Kohsokabe et al. | Aug 2001 | A1 |
20020039540 | Kuroki et al. | Apr 2002 | A1 |
20020057975 | Nakajima et al. | May 2002 | A1 |
20030044296 | Chen | Mar 2003 | A1 |
20030044297 | Gennami et al. | Mar 2003 | A1 |
20030186060 | Rao | Oct 2003 | A1 |
20030228235 | Sowa et al. | Dec 2003 | A1 |
20040126259 | Choi et al. | Jul 2004 | A1 |
20040136854 | Kimura et al. | Jul 2004 | A1 |
20040146419 | Kawaguchi et al. | Jul 2004 | A1 |
20040170509 | Wehrenberg et al. | Sep 2004 | A1 |
20040184932 | Lifson | Sep 2004 | A1 |
20040197204 | Yamanouchi et al. | Oct 2004 | A1 |
20050019177 | Shin et al. | Jan 2005 | A1 |
20050019178 | Shin et al. | Jan 2005 | A1 |
20050053507 | Takeuchi et al. | Mar 2005 | A1 |
20050069444 | Peyton | Mar 2005 | A1 |
20050140232 | Lee et al. | Jun 2005 | A1 |
20050201883 | Clendenin et al. | Sep 2005 | A1 |
20050214148 | Ogawa et al. | Sep 2005 | A1 |
20060099098 | Lee et al. | May 2006 | A1 |
20060138879 | Kusase et al. | Jun 2006 | A1 |
20060198748 | Grassbaugh et al. | Sep 2006 | A1 |
20060228243 | Sun et al. | Oct 2006 | A1 |
20060233657 | Bonear et al. | Oct 2006 | A1 |
20070036661 | Stover | Feb 2007 | A1 |
20070110604 | Peyton | May 2007 | A1 |
20070130973 | Lifson et al. | Jun 2007 | A1 |
20080115357 | Li et al. | May 2008 | A1 |
20080138227 | Knapke | Jun 2008 | A1 |
20080159892 | Huang et al. | Jul 2008 | A1 |
20080159893 | Caillat | Jul 2008 | A1 |
20080196445 | Lifson et al. | Aug 2008 | A1 |
20080223057 | Lifson et al. | Sep 2008 | A1 |
20080226483 | Iwanami et al. | Sep 2008 | A1 |
20080286118 | Gu et al. | Nov 2008 | A1 |
20080305270 | Uhlianuk et al. | Dec 2008 | A1 |
20090013701 | Lifson et al. | Jan 2009 | A1 |
20090035167 | Sun | Feb 2009 | A1 |
20090068048 | Stover et al. | Mar 2009 | A1 |
20090071183 | Stover et al. | Mar 2009 | A1 |
20090185935 | Seibel et al. | Jul 2009 | A1 |
20090191080 | Ignatiev et al. | Jul 2009 | A1 |
20090297377 | Stover et al. | Dec 2009 | A1 |
20090297378 | Stover et al. | Dec 2009 | A1 |
20090297379 | Stover et al. | Dec 2009 | A1 |
20090297380 | Stover et al. | Dec 2009 | A1 |
20100111741 | Chikano et al. | May 2010 | A1 |
20100135836 | Stover et al. | Jun 2010 | A1 |
20100158731 | Akei et al. | Jun 2010 | A1 |
20100209278 | Tarao et al. | Aug 2010 | A1 |
20100212311 | McQuary et al. | Aug 2010 | A1 |
20100212352 | Kim et al. | Aug 2010 | A1 |
20100254841 | Akei et al. | Oct 2010 | A1 |
20100300659 | Stover et al. | Dec 2010 | A1 |
20100303659 | Stover et al. | Dec 2010 | A1 |
20110052437 | Iitsuka et al. | Mar 2011 | A1 |
20110135509 | Fields et al. | Jun 2011 | A1 |
20110206548 | Doepker | Aug 2011 | A1 |
20110243777 | Ito et al. | Oct 2011 | A1 |
20110250085 | Stover et al. | Oct 2011 | A1 |
20110293456 | Seibel et al. | Dec 2011 | A1 |
20120009076 | Kim et al. | Jan 2012 | A1 |
20120107163 | Monnier et al. | May 2012 | A1 |
20120183422 | Bahmata | Jul 2012 | A1 |
20120195781 | Stover et al. | Aug 2012 | A1 |
20130078128 | Akei | Mar 2013 | A1 |
20130089448 | Ginies et al. | Apr 2013 | A1 |
20130094987 | Yamashita et al. | Apr 2013 | A1 |
20130121857 | Liang et al. | May 2013 | A1 |
20130302198 | Ginies et al. | Nov 2013 | A1 |
20130309118 | Ginies et al. | Nov 2013 | A1 |
20130315768 | Le Coat et al. | Nov 2013 | A1 |
20140023540 | Heidecker et al. | Jan 2014 | A1 |
20140024563 | Heidecker et al. | Jan 2014 | A1 |
20140037486 | Stover et al. | Feb 2014 | A1 |
20140134030 | Stover et al. | May 2014 | A1 |
20140134031 | Doepker et al. | May 2014 | A1 |
20140147294 | Fargo et al. | May 2014 | A1 |
20140154121 | Doepker | Jun 2014 | A1 |
20140154124 | Doepker et al. | Jun 2014 | A1 |
20140219846 | Ignatiev et al. | Aug 2014 | A1 |
20150037184 | Rood et al. | Feb 2015 | A1 |
20150086404 | Kiem et al. | Mar 2015 | A1 |
20150192121 | Sung et al. | Jul 2015 | A1 |
20150330386 | Doepker | Nov 2015 | A1 |
20150345493 | Lochner et al. | Dec 2015 | A1 |
20150354719 | van Beek et al. | Dec 2015 | A1 |
20160025093 | Doepker | Jan 2016 | A1 |
20160025094 | Ignatiev et al. | Jan 2016 | A1 |
20160032924 | Stover | Feb 2016 | A1 |
20160047380 | Kim et al. | Feb 2016 | A1 |
20160053759 | Choi et al. | Feb 2016 | A1 |
20160076543 | Akei et al. | Mar 2016 | A1 |
20160115954 | Doepker et al. | Apr 2016 | A1 |
20160138879 | Matsukado et al. | May 2016 | A1 |
20160201673 | Perevozchikov et al. | Jul 2016 | A1 |
20160208803 | Uekawa et al. | Jul 2016 | A1 |
20170002817 | Stover | Jan 2017 | A1 |
20170002818 | Stover | Jan 2017 | A1 |
20170030354 | Stover | Feb 2017 | A1 |
20170241417 | Jin et al. | Aug 2017 | A1 |
20170268510 | Stover et al. | Sep 2017 | A1 |
20170306960 | Pax et al. | Oct 2017 | A1 |
20170314558 | Pax et al. | Nov 2017 | A1 |
20170342978 | Doepker | Nov 2017 | A1 |
20170342983 | Jin et al. | Nov 2017 | A1 |
20170342984 | Jin | Nov 2017 | A1 |
20180023570 | Huang et al. | Jan 2018 | A1 |
20180038369 | Doepker et al. | Feb 2018 | A1 |
20180038370 | Doepker et al. | Feb 2018 | A1 |
20180066656 | Perevozchikov et al. | Mar 2018 | A1 |
20180066657 | Perevozchikov et al. | Mar 2018 | A1 |
20180149155 | Akei et al. | May 2018 | A1 |
20180216618 | Jeong | Aug 2018 | A1 |
20180223823 | Ignatiev et al. | Aug 2018 | A1 |
20190040861 | Doepker et al. | Feb 2019 | A1 |
20190101120 | Perevozchikov et al. | Apr 2019 | A1 |
20190186491 | Perevozchikov et al. | Jun 2019 | A1 |
20190203709 | Her et al. | Jul 2019 | A1 |
20200291943 | McBean et al. | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
1137614 | Dec 1996 | CN |
1158944 | Sep 1997 | CN |
1158945 | Sep 1997 | CN |
1177681 | Apr 1998 | CN |
1177683 | Apr 1998 | CN |
1259625 | Jul 2000 | CN |
1286358 | Mar 2001 | CN |
1289011 | Mar 2001 | CN |
1339087 | Mar 2002 | CN |
1349053 | May 2002 | CN |
1382912 | Dec 2002 | CN |
1407233 | Apr 2003 | CN |
1407234 | Apr 2003 | CN |
1517553 | Aug 2004 | CN |
1601106 | Mar 2005 | CN |
1680720 | Oct 2005 | CN |
1702328 | Nov 2005 | CN |
2747381 | Dec 2005 | CN |
1757925 | Apr 2006 | CN |
1828022 | Sep 2006 | CN |
1854525 | Nov 2006 | CN |
1963214 | May 2007 | CN |
1995756 | Jul 2007 | CN |
101358592 | Feb 2009 | CN |
101684785 | Mar 2010 | CN |
101761479 | Jun 2010 | CN |
101806302 | Aug 2010 | CN |
101910637 | Dec 2010 | CN |
102076963 | May 2011 | CN |
102089525 | Jun 2011 | CN |
102272454 | Dec 2011 | CN |
102400915 | Apr 2012 | CN |
102422024 | Apr 2012 | CN |
102449314 | May 2012 | CN |
102705234 | Oct 2012 | CN |
102762866 | Oct 2012 | CN |
202926640 | May 2013 | CN |
103502644 | Jan 2014 | CN |
103671125 | Mar 2014 | CN |
203962320 | Nov 2014 | CN |
204041454 | Dec 2014 | CN |
104838143 | Aug 2015 | CN |
105317678 | Feb 2016 | CN |
205533207 | Aug 2016 | CN |
205823629 | Dec 2016 | CN |
205876712 | Jan 2017 | CN |
205876713 | Jan 2017 | CN |
205895597 | Jan 2017 | CN |
207513832 | Jun 2018 | CN |
209621603 | Nov 2019 | CN |
209654225 | Nov 2019 | CN |
209781195 | Dec 2019 | CN |
3917656 | Nov 1995 | DE |
102011001394 | Sep 2012 | DE |
0747598 | Dec 1996 | EP |
0822335 | Feb 1998 | EP |
1067289 | Jan 2001 | EP |
1087142 | Mar 2001 | EP |
1182353 | Feb 2002 | EP |
1241417 | Sep 2002 | EP |
1371851 | Dec 2003 | EP |
1382854 | Jan 2004 | EP |
2151577 | Feb 2010 | EP |
1927755 | Nov 2013 | EP |
2764347 | Dec 1998 | FR |
2107829 | May 1983 | GB |
S58214689 | Dec 1983 | JP |
S60259794 | Dec 1985 | JP |
S62220789 | Sep 1987 | JP |
S6385277 | Apr 1988 | JP |
S63205482 | Aug 1988 | JP |
H01178789 | Jul 1989 | JP |
H0281982 | Mar 1990 | JP |
H02153282 | Jun 1990 | JP |
H03081588 | Apr 1991 | JP |
H03233101 | Oct 1991 | JP |
H04121478 | Apr 1992 | JP |
H04272490 | Sep 1992 | JP |
H0610601 | Jan 1994 | JP |
H0726618 | Mar 1995 | JP |
H07293456 | Nov 1995 | JP |
H08247053 | Sep 1996 | JP |
H8320079 | Dec 1996 | JP |
H08334094 | Dec 1996 | JP |
H09177689 | Jul 1997 | JP |
H11107950 | Apr 1999 | JP |
H11166490 | Jun 1999 | JP |
2951752 | Sep 1999 | JP |
H11324950 | Nov 1999 | JP |
2000104684 | Apr 2000 | JP |
2000161263 | Jun 2000 | JP |
2000329078 | Nov 2000 | JP |
3141949 | Mar 2001 | JP |
2002202074 | Jul 2002 | JP |
2003074481 | Mar 2003 | JP |
2003074482 | Mar 2003 | JP |
2003106258 | Apr 2003 | JP |
2003214365 | Jul 2003 | JP |
2003227479 | Aug 2003 | JP |
2004239070 | Aug 2004 | JP |
2005264827 | Sep 2005 | JP |
2006083754 | Mar 2006 | JP |
2006183474 | Jul 2006 | JP |
2007154761 | Jun 2007 | JP |
2007228683 | Sep 2007 | JP |
2008248775 | Oct 2008 | JP |
2008267707 | Nov 2008 | JP |
2013104305 | May 2013 | JP |
2013167215 | Aug 2013 | JP |
1019870000015 | May 1985 | KR |
870000015 | Jan 1987 | KR |
20050027402 | Mar 2005 | KR |
20050095246 | Sep 2005 | KR |
100547323 | Jan 2006 | KR |
20100017008 | Feb 2010 | KR |
20120008045 | Jan 2012 | KR |
101192642 | Oct 2012 | KR |
20120115581 | Oct 2012 | KR |
20130094646 | Aug 2013 | KR |
WO-9515025 | Jun 1995 | WO |
WO-0073659 | Dec 2000 | WO |
WO-2007046810 | Apr 2007 | WO |
WO-2008060525 | May 2008 | WO |
WO-2009017741 | Feb 2009 | WO |
WO-2009155099 | Dec 2009 | WO |
WO-2010118140 | Oct 2010 | WO |
WO-2011106422 | Sep 2011 | WO |
WO-2012114455 | Aug 2012 | WO |
WO-2017071641 | May 2017 | WO |
Entry |
---|
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Oct. 28, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 11747996.4, dated Nov. 5, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Nov. 14, 2019. |
Office Action regarding Indian Patent Application No. 2043/MUMNP/2011, dated Nov. 27, 2019. |
Office Action regarding Chinese Patent Application No. 201811480347.5, dated Jan. 10, 2020. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201811541653.5, dated Jan. 10, 2020. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 11747996.4, dated Jan. 14, 2020. |
Office Action regarding U.S. Appl. No. 15/881,016, dated Jan. 23, 2020. |
Office Action regarding U.S. Appl. No. 15/682,599, dated Jan. 24, 2020. |
Office Action regarding U.S. Appl. No. 15/831,423, dated Jan. 31, 2020. |
Office Action regarding Chinese Patent Application No. 201180010366.1, dated Jun. 4, 2014. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201610516097.0, dated Jun. 27, 2017. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 15/186,092, dated Dec. 20, 2018. |
Office Action regarding Indian Patent Application No. 1306/MUMNP/2015, dated Dec. 31, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/187,225, dated Jan. 3, 2019. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Feb. 1, 2019. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 15/784,458, dated Feb. 7, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/784,540, dated Feb. 7, 2019. |
Search Report regarding European Patent Application No. 18198310.7, dated Feb. 27, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Mar. 19, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/186,092, dated Apr. 19, 2019. |
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Apr. 29, 2019. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 15/187,225, dated May 2, 2019. |
Office Action regarding U.S. Appl. No. 15/587,735, dated May 17, 2019. |
Office Action regarding Chinese Patent Application No. 201811011292.3, dated Jun. 21, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 11747996.4, dated Jun. 26, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Jul. 25, 2019. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Aug. 1, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201811168307.7, dated Aug. 12, 2019. Translation provided by Unitalen Attorneys at Law. |
Restriction Requirement regarding U.S. Appl. No. 15/682,599, dated Aug. 14, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/587,735, dated Aug. 23, 2019. |
International Search Report regarding International Application No. PCT/US2019/032718, dated Aug. 23, 2019. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2019/032718, dated Aug. 23, 2019. |
Office Action regarding Chinese Patent Application No. 201780055443.2, dated Sep. 2, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/692,844, dated Sep. 20, 2019. |
U.S. Appl. No. 16/814,487, filed Mar. 10, 2020, James W. McBean et al. |
Notice of Allowance regarding U.S. Appl. No. 15/692,844, dated Feb. 20, 2020. |
Office Action regarding European Patent Application No. 13859308.2, dated Mar. 4, 2020. |
Office Action regarding Chinese Patent Application No. 201811168307.7, dated Mar. 27, 2020. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Korean Patent Application No. 10-2018-0159231, dated Apr. 7, 2020. Translation provided by KS KORYO International IP Law Firm. |
Office Action regarding Chinese Patent Application No. 201780055443.2, dated Apr. 14, 2020. Translation provided by Unitalen Attorneys At Law. |
Notice of Allowance regarding U.S. Appl. No. 15/682,599, dated Apr. 22, 2020. |
Notice of Allowance regarding U.S. Appl. No. 15/831,423, dated May 20, 2020. |
Notice of Allowance regarding U.S. Appl. No. 15/692,844, dated Jun. 4, 2020. |
Restriction Requirement regarding U.S. Appl. No. 16/147,920, dated Jun. 25, 2020. |
Office Action regarding U.S. Appl. No. 16/154,406, dated Jun. 29, 2020. |
International Search Report regarding International Application No. PCT/US2020/022030, dated Jul. 2, 2020. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2020/022030, dated Jul. 2, 2020. |
Office Action regarding Chinese Patent Application No. 201811480347.5, dated Jul. 21, 2020. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/881,016, dated Jul. 21, 2020. |
Office Action regarding U.S. Appl. No. 16/177,902, dated Jul. 23, 2020. |
U.S. Appl. No. 16/147,920, filed Oct. 1, 2018, Michael M. Perevozchikov et al. |
U.S. Appl. No. 16/154,406, filed Oct. 8, 2018, Roy J. Doepker et al. |
U.S. Appl. No. 16/177,902, filed Nov. 1, 2018, Michael M. Perevozchikov et al. |
Luckevich, Mark, “MEMS microvalves: the new valve world.” Valve World, May 2007, pp. 79-83. |
Non-Final Office Action for U.S. Appl. No. 11/522,250, dated Aug. 1, 2007. |
Extended European Search Report regarding Application No. EP07254962, dated Mar. 12, 2008. |
Notification of the First Office Action received from the Chinese Patent Office, dated Mar. 6, 2009 regarding Application No. 200710153687.2, translated by CCPIT Patent and Trademark Law Office. |
Non-Final Office Action for U.S. Appl. No. 12/103,265, dated May 27, 2009. |
U.S. Office Action regarding U.S. Appl. No. 11/645,288, dated Nov. 30, 2009. |
Non-Final Office Action for U.S. Appl. No. 12/103,265, dated Dec. 17, 2009. |
Notice of Grounds for Rejection regarding Korean Patent Application No. 10-2007-0093478, dated Feb. 25, 2010. Translation provided by Y.S. Chang & Associates. |
Final Office Action for U.S. Appl. No. 12/103,265, dated Jun. 15, 2010. |
First China Office Action regarding Application No. 200710160038.5, dated Jul. 8, 2010. Translation provided by Unitalen Attorneys At Law. |
Final Preliminary Notice of Grounds for Rejection regarding Korean Patent Application No. 10-2007-0093478, dated Aug. 31, 2010. Translation provided by Y.S. Chang & Associates. |
Advisory Action for U.S. Appl. No. 12/103,265, dated Sep. 17, 2010. |
International Search Report regarding Application No. PCT/US2010/030248, dated Nov. 26, 2010. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2010/030248, dated Nov. 26, 2010. |
International Search Report regarding Application No. PCT/US2011/025921, dated Oct. 7, 2011. |
Written Opinion of the International Search Authority regarding Application No. PCT/US2011/025921, dated Oct. 7, 2011. |
China Office Action regarding Application No. 200710160038.5, dated Jan. 31, 2012. Translation provided by Unitalen Attorneys At Law. |
First Office Action regarding Chinese Patent Application No. 201010224582.3, dated Apr. 17, 2012. English translation provided by Unitalen Attorneys at Law. |
First Examination Report regarding Indian Patent Application No. 1071/KOL/2007, dated Apr. 27, 2012. |
Non-Final Office Action for U.S. Appl. No. 13/0365,529, dated Aug. 22, 2012. |
U.S. Office Action regarding U.S. Appl. No. 13/181,065, dated Nov. 9, 2012. |
International Search Report regarding Application No. PCT/US2013/051678, dated Oct. 21, 2013. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/051678, dated Oct. 21, 2013. |
China Office Action regarding Application No. 201080020243.1, dated Nov. 5, 2013. Translation provided by Unitalen Attorneys At Law. |
International Search Report regarding Application No. PCT/US2013/069456, dated Feb. 18, 2014. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/069456, dated Feb. 18, 2014. |
International Search Report regarding Application No. PCT/US2013/069462, dated Feb. 21, 2014. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/069462, dated Feb. 21, 2014. |
International Search Report regarding Application No. PCT/US2013/070992, dated Feb. 25, 2014. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/070992, dated Feb. 25, 2014. |
International Search Report regarding Application No. PCT/US2013/070981, dated Mar. 4, 2014. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/070981, dated Mar. 4, 2014. |
Second Office Action regarding China Application No. 201180010366.1, dated Dec. 31, 2014. Translation provided by Unitalen Attorneys At Law. |
Office Action regarding U.S. Appl. No. 14/081,390, dated Mar. 27, 2015. |
Search Report regarding European Patent Application No. 10762374.6-1608 / 2417356 PCT/US2010030248, dated Jun. 16, 2015. |
Office Action regarding U.S. Appl. No. 14/060,240, dated Aug. 12, 2015. |
International Search Report regarding International Application No. PCT/US2015/033960, dated Sep. 1, 2015. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2015/033960, dated Sep. 1, 2015. |
Office Action regarding U.S. Appl. No. 14/073,293, dated Sep. 25, 2015. |
Restriction Requirement regarding U.S. Appl. No. 14/060,102, dated Oct. 7, 2015. |
International Search Report regarding International Application No. PCT/US2015/042479, dated Oct. 23, 2015. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2015/042479, dated Oct. 23, 2015. |
Office Action regarding Chinese Patent Application No. 201410461048.2, dated Nov. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
Interview Summary regarding U.S. Appl. No. 14/060,240, dated Dec. 1, 2015. |
Office Action regarding U.S. Appl. No. 14/073,293, dated Jan. 29, 2016. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Feb. 25, 2016. Translation provided by Unitalen Attorneys at Law. |
Restriction Requirement regarding U.S. Appl. No. 14/060,102, dated Mar. 16, 2016. |
First Office Action regarding Chinese Application No. 201380059666.8, dated Apr. 5, 2016. Translation provided by Unitalen Attorneys At Law. |
First Office Action regarding Chinese Application No. 201380062614.6, dated Apr. 5, 2016. Translation provided by Unitalen Attorneys At Law. |
Advisory Action regarding U.S. Appl. No. 14/073,293, dated Apr. 18, 2016. |
Office Action regarding Chinese Patent Application No. 201380062657.4, dated May 4, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201380059963.2, dated May 10, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/060,102, dated Jun. 14, 2016. |
Office Action regarding U.S. Appl. No. 14/846,877, dated Jul. 15, 2016. |
Office Action regarding Chinese Patent Application No. 201410461048.2, dated Jul. 26, 2016. Translation provided by Unitalen Attorneys at Law. |
Search Report regarding European Patent Application No. 13858194.7, dated Aug. 3, 2016. |
Search Report regarding European Patent Application No. 13859308.2, dated Aug. 3, 2016. |
Office Action regarding U.S. Appl. No. 14/294,458, dated Aug. 19, 2016. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Oct. 21, 2016. Translation provided by Unitalen Attorneys At Law. |
Search Report regarding European Patent Application No. 11747996.4, dated Nov. 7, 2016. |
Office Action regarding Chinese Patent Application No. 201380059666.8, dated Nov. 23, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/060,102, dated Dec. 28, 2016. |
International Search Report regarding International Application No. PCT/CN2016/103763, dated Jan. 25, 2017. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/CN2016/103763, dated Jan. 25, 2017. |
Office Action regarding U.S. Appl. No. 15/156,400, dated Feb. 23, 2017. |
Office Action regarding U.S. Appl. No. 14/294,458, dated Feb. 28, 2017. |
Advisory Action regarding U.S. Appl. No. 14/060,102, dated Mar. 3, 2017. |
Office Action regarding U.S. Appl. No. 14/663,073, dated Apr. 11, 2017. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Apr. 24, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/946,824, dated May 10, 2017. |
Advisory Action regarding U.S. Appl. No. 14/294,458, dated Jun. 9, 2017. |
Office Action regarding Chinese Patent Application No. 201610703191.7, dated Jun. 13, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Indian Patent Application No. 2043/MUMNP/2011, dated Jul. 28, 2017. |
Restriction Requirement regarding U.S. Appl. No. 14/809,786, dated Aug. 16, 2017. |
Office Action regarding U.S. Appl. No. 14/294,458, dated Sep. 21, 2017. |
Office Action regarding U.S. Appl. No. 14/757,407, dated Oct. 13, 2017. |
Office Action regarding Chinese Patent Application No. 201610158216.X, dated Oct. 30, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Nov. 1, 2017. Translation provided by Unitalen Attorneys At Law. |
Office Action regarding Chinese Patent Application No. 201610512702.7, dated Dec. 20, 2017. Partial translation provided by Unitalen Attorneys at Law. |
International Search Report regarding International Application No. PCT/US2017/050525, dated Dec. 28, 2017. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2017/050525, dated Dec. 28, 2017. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Jan. 9, 2018. Translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action for U.S. Appl. No. 14/809,786, dated Jan. 11, 2018. |
Office Action regarding Chinese Patent Application No. 201580029636.1, dated Jan. 17, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201580041209.5, dated Jan. 17, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/646,654, dated Feb. 9, 2018. |
Office Action regarding U.S. Appl. No. 15/651,471 dated Feb. 23, 2018. |
Office Action regarding Indian Patent Application No. 1907/MUMNP/2012, dated Feb. 26, 2018. |
Election Requirement regarding U.S. Appl. No. 15/186,092, dated Apr. 3, 2018. |
Election Requirement regarding U.S. Appl. No. 15/784,458, dated Apr. 5, 2018. |
Office Action regarding Korean Patent Application No. 10-2016-7034539, dated Apr. 11, 2018. Translation provided by Y.S. Chang & Associates. |
Office Action regarding U.S. Appl. No. 15/186,151, dated May 3, 2018. |
Office Action regarding Chinese Patent Application No. 201610930347.5, dated May 14, 2018. Translation provided by Unitalen Attorneys at Law. |
Election/Restriction Requirement regarding U.S. Appl. No. 15/187,225, dated May 15, 2018. |
Notice of Allowance regarding U.S. Appl. No. 14/757,407, dated May 24, 2018. |
Office Action regarding Chinese Patent Application No. 201610158216.X, dated Jun. 13, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 13859308.2, dated Jun. 22, 2018. |
Office Action regarding U.S. Appl. No. 15/186,092, dated Jun. 29, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/646,654, dated Jul. 11, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/651,471, dated Jul. 11, 2018. |
Office Action regarding U.S. Appl. No. 15/784,540, dated Jul. 17, 2018. |
Office Action regarding U.S. Appl. No. 15/784,458, dated Jul. 19, 2018. |
Election/Restriction Requirement regarding U.S. Appl. No. 15/587,735, dated Jul. 23, 2018. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Aug. 1, 2018. Translation provided by Unitalen Attorneys at Law. |
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 15/186,092, dated Aug. 14, 2018. |
Office Action regarding U.S. Appl. No. 15/187,225, dated Aug. 27, 2018. |
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Sep. 5, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Korean Patent Application No. 10-2016-7034539, dated Sep. 6, 2018. Translation provided by Y.S. Chang & Associates. |
Office Action regarding Indian Patent Application No. 1307/MUMNP/2015, dated Sep. 12, 2018. |
Office Action regarding Chinese Patent Application No. 201580029636.1, dated Oct. 8, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/587,735, dated Oct. 9, 2018. |
Office Action regarding U.S. Appl. No. 15/186,151, dated Nov. 1, 2018. |
Office Action regarding Korean Patent Application No. 10-2017-7033995, dated Nov. 29, 2018. Translation provided by KS KORYO International IP Law Firm. |
Office Action regarding U.S. Appl. No. 16/147,920, dated Sep. 25, 2020. |
Notice of Allowance regarding U.S. Appl. No. 16/154,406, dated Oct. 2, 2020. |
Notice of Allowance regarding U.S. Appl. No. 15/881,016, dated Nov. 17, 2020. |
Notice of Allowance regarding U.S. Appl. No. 16/177,902, dated Nov. 27, 2020. |
Number | Date | Country | |
---|---|---|---|
20190353164 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62672700 | May 2018 | US |