This U.S. National stage application claims priority under 33 U.S.C. § 119(a) to Japanese Patent Application No. 2017-246140, filed in Japan on Dec. 22, 2017, the entire contents of which are hereby incorporated herein by reference.
The present disclosure relates to a compressor included in an air conditioner.
JP 2008-106738 A discloses a compressor. The compressor includes a casing having an outer surface provided with a discharge temperature sensor configured to detect temperature of a discharged refrigerant.
JP 2008-106738 A does not refer to a temperature sensor configured to sense temperature of a compression mechanism. Sensing the temperature of the compression mechanism leads to sensing a phenomenon such as abnormal heating at the compression mechanism.
A compressor according to a first aspect includes a compression mechanism, a casing, and a temperature detector. The compression mechanism has a rotation axis. The casing accommodates the compression mechanism. The casing includes a compression mechanism contact portion. The compression mechanism is in contact with an inner surface of the compression mechanism contact portion. The temperature detector is attached to an outer surface of the compression mechanism contact portion and is configured to sense temperature of the compression mechanism contact portion.
This configuration enables sensing a phenomenon of the compression mechanism such as abnormal heating.
A compressor according to a second aspect includes a compression mechanism, a casing, and a temperature detector. The compression mechanism has a rotation axis. The casing accommodates the compression mechanism. The casing includes a compression mechanism contact portion. The compression mechanism is in contact with an inner surface of the compression mechanism contact portion. The temperature detector is attached to an outer surface of the compression mechanism contact portion. In a side view, at least 50% of a length of the compression mechanism contact portion along the rotation axis is overlapped with the temperature detector, or, in a side view, at least 50% of a length of the temperature detector along the rotation axis is overlapped with the compression mechanism contact portion.
This configuration enables sensing a phenomenon of the compression mechanism such as abnormal heating.
A compressor according to a third aspect is the compressor according to the second aspect, in which, in a side view, at least 70% of the length of the compression mechanism contact portion along the rotation axis is overlapped with the temperature detector, or, in a side view, at least 70% of the length of the temperature detector along the rotation axis is overlapped with the compression mechanism contact portion.
This configuration achieves increase of an overlapped portion between the compression mechanism contact portion and the temperature detector. In this configuration, heat emitted from the compression mechanism is more likely to be transmitted to the temperature detector that can thus further sense abnormal heating at the compression mechanism.
A compressor according to a fourth aspect is the compressor according to the third aspect, in which, in a side view, at least 90% of the length of the compression mechanism contact portion along the rotation axis is overlapped with the temperature detector, or, in a side view, at least 90% of the length of the temperature detector along the rotation axis is overlapped with the compression mechanism contact portion.
This configuration achieves increase of an overlapped portion between the compression mechanism contact portion and the temperature detector. In this configuration, heat emitted from the compression mechanism is more likely to be transmitted to the temperature detector that can thus further sense abnormal heating at the compression mechanism.
A compressor according to a fifth aspect is the compressor according to any one of the first to fourth aspects, in which the compression mechanism includes a compression mechanism extension section. The compression mechanism extension section radially extends from a center to a peripheral edge of the compression mechanism. The casing includes a compression mechanism extension section contact portion. The compression mechanism extension section contact portion is a portion of the casing in contact with the compression mechanism extension section. The temperature detector is attached to the casing so as to cover the compression mechanism extension section contact portion in a side view.
In this configuration, the temperature detector covers the compression mechanism extension section contact portion in a side view. Heat generated at the compression mechanism is thus likely to be transmitted directly to the temperature detector through the compression mechanism extension section.
A compressor according to a sixth aspect is the compressor according to any one of the first to fifth aspects, in which the compression mechanism includes a cylinder, a piston, and a head. The piston revolves around the rotation axis. The head, the cylinder, and the piston define a compression chamber. The compression mechanism contact portion of the casing is in contact with a contact member of the compression mechanism. The contact member is the cylinder or the head.
This configuration enables accurate detection of temperature of a compression mechanism included in a rotary compressor.
A compressor according to a seventh aspect is the compressor according to the sixth aspect, in which the contact member includes a continuous portion radially occupying from an outer edge of the compression chamber to the compression mechanism contact portion. The continuous portion has no opening.
In this configuration, the compression mechanism contact portion and the outer edge of the compression chamber are connected via the continuous portion of the contact member. The continuous portion has no opening. Heat of the compression chamber is thus likely to be transmitted to the compression mechanism contact portion, enabling more accurate sensing of abnormal heating at the compression mechanism.
A compressor according to an eighth aspect is the compressor according to any one of the first to seventh aspects, in which the compression mechanism has a suction hole. A first imaginary half line starts from the rotation axis and passes a center of the suction hole in a planar view. A second imaginary half line starts from the rotation axis and passes the temperature detector in a planar view. The first imaginary half line and the second imaginary half line form an angle not less than 30 degrees and not more than 330 degrees.
This configuration secures distance between a suction pipe or a refrigerant circuit component connected to the suction pipe and the temperature detector. This inhibits defects such as decrease in detection temperature of the temperature detector by the refrigerant circuit component having low temperature.
A compressor according to a ninth aspect is the compressor according to any one of the first to eighth aspects, in which the temperature detector is configured as a thermistor.
The temperature detector in this configuration is a thermistor configured to measure temperature. The compressor can thus be controlled in accordance with measured temperature.
A compressor according to a tenth aspect is the compressor according to any one of the first to eighth aspects, in which the temperature detector is configured as a thermostat.
The temperature detector in this configuration is a thermostat configured to sense abnormal temperature. This configuration thus causes a control circuit included in the compressor to be shut down upon sensing of abnormal temperature.
Description is made to a compressor according to an embodiment of the present disclosure. The embodiment to be described hereinafter specifically exemplifies the present disclosure without limiting the technical scope thereof, and can be appropriately modified within the range not departing from the purpose of the present disclosure.
The compressor 101 is configured as a two-cylinder rotary compressor. The compressor 101 includes a casing 10, a compression mechanism 15, a motor 16, a crankshaft 17, two suction pipes 19, a discharge pipe 20, and a temperature detector 50.
The casing 10 includes a trunk 11, an upper portion 12, and a lower portion 13. The trunk 11 has a cylindrical shape. The upper portion 12 airtightly closes an upper opening of the trunk 11. The lower portion 13 airtightly closes a lower opening of the trunk 11.
The casing 10 accommodates the compression mechanism 15, the motor 16, and the crankshaft 17. The suction pipes 19 and the discharge pipe 20 penetrate the casing 10 and are airtightly fixed to the casing 10.
The casing 10 has an internal space including a lower portion serving as an oil reservoir 10b for refrigerating machine oil.
The motor 16 is configured as a brushless DC motor. The motor 16 includes a stator 51 and a rotor 52. The stator 51 has a cylindrical shape and is fixed to an inner peripheral surface of the trunk 11 of the casing 10. The rotor 52 has a columnar shape and is disposed adjacent to an inner periphery of the stator 51. The stator 51 and the rotor 52 have a slight gap therebetween. The rotor 52 rotates around a rotation axis RA.
The stator 51 is provided with a coil (not depicted). The rotor 52 is provided with a plurality of magnets (not depicted). The magnets interact with a magnetic field induced by the coil to generate rotary force of the rotor 52.
The crankshaft 17 rotates around the rotation axis RA. The crankshaft 17 transmits the rotary force of the rotor 52 to the compression mechanism 15. The crankshaft 17 extends vertically. The crankshaft 17 has an upper end vertically penetrating the rotor 52 and fixed to the rotor 52. The crankshaft 17 has a lower portion provided with a front eccentric part 17a and a rear eccentric part 17b. The front eccentric part 17a and the rear eccentric part 17b are positioned point-symmetrically with respect to the rotation axis RA of the crankshaft 17.
The compression mechanism 15 includes a front cylinder 24, a front piston 25, a front head 23, a front muffler 26, a middle plate 31, a rear cylinder 44, a rear piston 45, a rear head 43, and a rear muffler 46.
The front cylinder 24 is disposed between the front head 23 and the middle plate 31. The front cylinder 24 has an upper surface in contact with a lower surface of the front head 23. The front cylinder 24 has a lower surface in contact with an upper surface of the middle plate 31.
The front piston 25 is also disposed between the front head 23 and the middle plate 31. The front piston 25 has an upper surface in contact with the lower surface of the front head 23. The front piston 25 has a lower surface in contact with the upper surface of the middle plate 31.
The rear cylinder 44 is disposed between the middle plate 31 and the rear head 43. The rear cylinder 44 has an upper surface in contact with a lower surface of the middle plate 31. The rear cylinder 44 has a lower surface in contact with an upper surface of the rear head 43.
The rear piston 45 is also disposed between the middle plate 31 and the rear head 43. The rear piston 45 has an upper surface in contact with the lower surface of the middle plate 31. The rear piston 45 has a lower surface in contact with the upper surface of the rear head 43.
The compression mechanism 15 includes a front compression chamber 40. The front compression chamber 40 is a space surrounded with the front cylinder 24, the front piston 25, the front head 23, and the middle plate 31.
The compression mechanism 15 further includes a rear compression chamber 41. The rear compression chamber 41 is a space surrounded with the rear cylinder 44, the rear piston 45, the rear head 43, and the middle plate 31.
The compression mechanism 15, the motor 16, and the crankshaft 17 share the rotation axis RA.
The front cylinder hole 24a has a columnar shape and vertically penetrates the front cylinder 24. The front suction hole 24b radially penetrates the front cylinder 24. The front discharge path 24c is constituted by a cutout at an upper end of an inner circumferential surface of the front cylinder 24.
The front bush accommodation hole 24d, the front blade accommodation hole 24e, and the front cylinder communication hole 24h each vertically penetrate the front cylinder 24. The front bush accommodation hole 24d is positioned between the front suction hole 24b and the front discharge path 24c in a planar view. The front bush accommodation hole 24d communicates with the front cylinder hole 24a. The front blade accommodation hole 24e communicates with the front bush accommodation hole 24d. The front cylinder communication hole 24h constitutes part of a muffler space communication path 34a to be described later.
The front piston 25 includes a front roller 25a and a front blade 25b. The front roller 25a has a cylindrical shape. The front blade 25b has a plate shape. The front blade 25b protrudes in a radial direction of the front roller 25a from an outer circumferential surface of the front roller 25a.
The front roller 25a is accommodated in the front cylinder hole 24a. The front roller 25a has a hole into which the front eccentric part 17a of the crankshaft 17 is fitted. The front blade 25b is accommodated in the front cylinder hole 24a, the front bush accommodation hole 24d, and the front blade accommodation hole 24e. The front bush accommodation hole 24d further accommodates a front bush 22. The front bush 22 includes a pair of semicolumnar members. The front roller 25a revolves around the rotation axis RA.
The front piston 25 divides the front compression chamber 40 into a front suction chamber 40a and a front discharge chamber 40b. The front suction chamber 40a communicates with the front suction hole 24b. The front discharge chamber 40b communicates with the front discharge path 24c. The front suction chamber 40a and the front discharge chamber 40b each have a volume varying in accordance with a position of the front piston 25.
With reference again to
The front head 23 includes a front bearing 23a supporting the crankshaft 17. The front head 23 further includes a front discharge port 23b. The front discharge port 23b communicates with the front discharge path 24c. The front discharge port 23b is a passage allowing a refrigerant compressed in the front compression chamber 40 to be sent to a front muffler space 32. The front head 23 has an upper surface to which a front discharge valve (not depicted) configured to close or open the front discharge port 23b is attached. The front discharge valve inhibits a backflow of a refrigerant from the front muffler space 32 to the front compression chamber 40.
The front muffler 26 is fixed to the upper surface of the front head 23. The front muffler 26 and the front head 23 shape the front muffler space 32.
The front muffler 26 has a front bearing through hole 26c. The front bearing 23a of the front head 23 penetrates the front bearing through hole 26c. The front muffler 26 has two front muffler discharge holes 26d. The front muffler discharge holes 26d communicate with the front bearing through hole 26c.
The middle plate 31 depicted in
The rear cylinder hole 44a has a columnar shape and vertically penetrates the rear cylinder 44. The rear suction hole 44b radially penetrates the rear cylinder 44. The rear discharge path 44c is constituted by a cutout at a lower end of an inner circumferential surface of the rear cylinder 44.
The rear bush accommodation hole 44d, the rear blade accommodation hole 44e, and the rear cylinder communication hole 44h each vertically penetrate the rear cylinder 44. The rear bush accommodation hole 44d is positioned between the rear suction hole 44b and the rear discharge path 44c in a planar view. The rear bush accommodation hole 44d communicates with the rear cylinder hole 44a. The rear blade accommodation hole 44e communicates with the rear bush accommodation hole 44d. The rear cylinder communication hole 44h constitutes part of the muffler space communication path 34a to be described later.
The rear piston 45 includes a rear roller 45a and a rear blade 45b. The rear roller 45a has a cylindrical shape. The rear blade 45b has a plate shape. The rear blade 45b protrudes in a radial direction of the rear roller 45a from an outer circumferential surface of the rear roller 45a.
The rear roller 45a is accommodated in the rear cylinder hole 44a. The rear roller 45a has a hole into which the rear eccentric part 17b of the crankshaft 17 is fitted. The rear blade 45b is accommodated in the rear cylinder hole 44a, the rear bush accommodation hole 44d, and the rear blade accommodation hole 44e. The rear bush accommodation hole 44d further accommodates a rear bush 42. The rear bush 42 includes a pair of semicolumnar members. The rear roller 45a revolves around the rotation axis RA.
The rear piston 45 divides the rear compression chamber 41 into a rear suction chamber 41a and a rear discharge chamber 41b. The rear suction chamber 41a communicates with the rear suction hole 44b. The rear discharge chamber 41b communicates with the rear discharge path 44c. The rear suction chamber 41a and the rear discharge chamber 41b each have a volume varying in accordance with a position of the rear piston 45.
With reference again to
The rear head 43 has a lower surface to which a rear discharge valve (not depicted) configured to close or open the rear discharge port 43b is attached. The rear discharge valve inhibits a backflow of a refrigerant from the rear muffler space 33 to the rear compression chamber 41.
The rear head 43 has a muffler bottom surface 43f and a rear head communication hole 43h. The muffler bottom surface 43f constitutes the lower surface of the rear head 43 positioned between the side wall 43d and the rear bearing 43a. The rear head communication hole 43h opens in the muffler bottom surface 43f. The rear head communication hole 43h constitutes part of the muffler space communication path 34a to be described later. The muffler bottom surface 43f is provided with a rear discharge valve 43c.
With reference again to
The rear muffler 46 has a rear bearing through hole penetrated by the rear bearing 43a of the rear head 43. The rear muffler 46 covers the lower surface of the rear head 43 such that the rear muffler 46 and the rear head 43 form the rear muffler space 33. The rear muffler space 33 has a substantially annular shape.
The compression mechanism 15 includes the muffler space communication path 34a. The muffler space communication path 34a allows the front muffler space 32 and the rear muffler space 33 to communicate with each other. As depicted in
The suction pipes 19 allow a refrigerant to be supplied from a refrigerant circuit to the compression mechanism 15. The two suction pipes 19 are respectively connected to the front suction hole 24b and the rear suction hole 44b. The two suction pipes 19 are connected to the accumulator 102.
The discharge pipe 20 allows a refrigerant compressed by the compression mechanism 15 to be supplied to the refrigerant circuit. The discharge pipe 20 has a first end positioned above the motor 16 in the internal space of the casing 10. The discharge pipe 20 has a second end connected to the refrigerant circuit in a space outside the casing 10.
The temperature detector 50 is configured to sense temperature of an object in contact. The temperature detector 50 may be exemplified by a thermistor. The compressor 101 may be stopped by a control device when the thermistor outputs temperature exceeding a predetermined threshold.
The temperature detector 50 may alternatively be configured as a thermostat. Specifically, when the thermostat senses temperature exceeding a predetermined threshold, power supply to the compressor may be interrupted. Examples of the thermostat may include a bimetal thermostat. The examples of the thermostat may further include an overload relay and a thermal relay.
The temperature detector 50 is attached to an outer surface of the trunk 11 of the casing 10 in order to acquire temperature of the compression mechanism 15.
As depicted in
It is preferred that, as depicted in
The motor 16 being energized rotates the crankshaft 17 along with the rotor 52. The front eccentric part 17a and the rear eccentric part 17b eccentrically rotate around the rotation axis RA of the crankshaft 17. This causes revolution of the front piston 25 and the rear piston 45.
While the front piston 25 revolves, the outer circumferential surface of the front roller 25a is in contact with the inner circumferential surface of the front cylinder 24. The front blade 25b reciprocates while being supported by the front bush 22 at the opposite sides. The front bush 22 swings in the front bush accommodation hole 24d while being sliding with respect to the front cylinder 24 and the front blade 25b.
Revolution of the font roller 25a gradually increases the volume of the front suction chamber 40a. This causes a refrigerant having low pressure to be sucked from the suction pipe 19 into the front suction chamber 40a. Further revolution of the front roller 25a causes the front suction chamber 40a to become the front discharge chamber 40b. The volume of the front discharge chamber 40b gradually decreases, so that the refrigerant having low pressure in the front discharge chamber 40b is compressed to become a refrigerant having high pressure. The refrigerant having high pressure is discharged into the front muffler space 32 via the front discharge path 24c and the front discharge port 23b. The front muffler space 32 periodically receives the refrigerant having high pressure from the front discharge port 23b.
While the rear piston 45 revolves, the outer circumferential surface of the rear roller 45a is in contact with the inner circumferential surface of the rear cylinder 44. The rear blade 45b reciprocates while being supported by the rear bush 42 at the opposite sides. The rear bush 42 swings in the rear bush accommodation hole 44d while being sliding with respect to the rear cylinder 44 and the rear blade 45b.
Revolution of the rear roller 45a gradually increases the volume of the rear suction chamber 41a. This causes a refrigerant having low pressure to be sucked from the suction pipe 19 into the rear suction chamber 41a. Further revolution of the rear roller 45a causes the rear suction chamber 41a to become the rear discharge chamber 41b. The volume of the rear discharge chamber 41b gradually decreases, so that the refrigerant having low pressure in the rear discharge chamber 41b is compressed to become a refrigerant having high pressure. The refrigerant having high pressure is discharged into the rear muffler space 33 via the rear discharge path 44c and the rear discharge port 43b. The rear muffler space 33 periodically receives the refrigerant having high pressure from the rear discharge port 43b.
The refrigerant discharged into the rear muffler space 33 flows in the rear muffler space 33 and enters the muffler space communication path 34a. The refrigerant then flows into the front muffler space 32. The refrigerant in the front muffler space 32 passes the front muffler discharge holes 26d of the front muffler 26 and is supplied into the high-pressure space S1 in the casing 10. The refrigerant supplied into the high-pressure space S1 flows upward to be supplied to the discharge pipe 20.
The temperature detector 50 is configured to measure temperature of the compression mechanism contact portion 10a of the casing 10. The compression mechanism contact portion 10a is in contact with the compression mechanism 15. The temperature detector 50 can thus sense abnormal heating at the compression mechanism 15.
This configuration secures an overlapped portion of the compression mechanism contact portion 10a and the temperature detector 50. The overlapped portion has a length that may be at least 50%, at least 70%, or at least 90% of the length of the compression mechanism contact portion 10a or the temperature detector 50. In this configuration, heat emitted from the compression mechanism 15 is likely to be transmitted to the temperature detector 50 that can thus sense abnormal heating at the compression mechanism 15.
The temperature detector 50 can be configured to cover the compression mechanism extension section contact portion 10c in a side view. Heat generated at the compression mechanism 15 is thus likely to be transmitted directly to the temperature detector 50 through the compression mechanism extension section 15a.
Temperature of the compression mechanism 15 is detected accurately in the rotary compressor.
The compression mechanism contact portion 10a and the outer edge 40z of the front compression chamber 40 are connected via the continuous portion 23r of the front head 23. The continuous portion 23r has no oil return hole 23c. Heat of the compression mechanism 15 is thus likely to be transmitted to the compression mechanism contact portion 10a, enabling more accurate sensing of abnormal heating at the compression mechanism 15.
This configuration secures distance between the suction pipe 19 or the accumulator 102 connected to the suction pipe 19 and the temperature detector 50. This inhibits defects such as decrease in detection temperature of the temperature detector 50 by the accumulator 102 having low temperature.
In the case where the temperature detector 50 is configured as a thermistor, the compressor 101 can be controlled in accordance with measured temperature. In the case where the temperature detector 50 is configured as a thermostat, a control circuit of the compressor 101 can be shut down upon sensing of abnormal temperature.
The compressor 101 according to the embodiment described above is configured as a two-cylinder rotary compressor. The compressor 101 may alternatively be of a different type. The compressor 101 may be configured as a single-cylinder rotary compressor, a multistage rotary compressor other than a two-stage type, a scroll compressor, or the like.
The compression mechanism 15 according to the above embodiment includes a contact member that is in contact with the casing 10 and corresponds to the front head 23. The contact member may alternatively be a component other than the front head 23. For example, the contact member may constitute at least part of the front cylinder 24, the rear cylinder 44, or the rear head 43.
The compression mechanism extension section 15a may also be the front cylinder 24, the rear cylinder 44, the rear head 43, or the like, instead of the front head 23.
The embodiment of the present disclosure has been described above. Various modifications to modes and details should be available without departing from the purpose and the scope of the present disclosure recited in the claims.
[Patent Literature 1] JP 2008-106738 A
Number | Date | Country | Kind |
---|---|---|---|
JP2017-246140 | Dec 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/040178 | 10/29/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/123841 | 6/27/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5040379 | Fukunaga | Aug 1991 | A |
7322806 | Sun et al. | Jan 2008 | B2 |
20070154337 | Sun et al. | Jul 2007 | A1 |
20080078191 | Morishita et al. | Apr 2008 | A1 |
20100215525 | Ogasawara | Aug 2010 | A1 |
20160319816 | Brostrom | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
101153600 | Apr 2008 | CN |
1 908 958 | Apr 2008 | EP |
2008-106738 | May 2008 | JP |
2012-97755 | May 2012 | JP |
Entry |
---|
International Search Report of corresponding PCT Application No. PCT/JP2018/040178 dated Jan. 15, 2019. |
International Preliminary Report of corresponding PCT Application No. PCT/JP2018/040178 dated Jun. 23, 2020. |
European Search Report of corresponding EP Application No. 18 89 1681.1 dated Oct. 20, 2020. |
Number | Date | Country | |
---|---|---|---|
20200392959 A1 | Dec 2020 | US |