The present disclosure relates to compressors, and more specifically to compressors having output adjustment assemblies.
This section provides background information related to the present disclosure which is not necessarily prior art.
Scroll compressors include a variety of output adjustment assemblies to vary operating capacity of a compressor. The output adjustment assemblies may include fluid passages extending through a scroll member to selectively provide fluid communication between compression pockets and another pressure region of the compressor.
A compressor may include a housing, a first scroll member, a second scroll member and a valve assembly. The first scroll member may be positioned within the housing and may include a first end plate portion and a second end plate portion coupled to the first end plate portion and having a first spiral wrap extending therefrom. The first end plate portion and the second end plate portion may define a discharge passage. The second scroll member may be positioned within the housing and may include a second spiral wrap meshingly engaged with the first spiral wrap. The valve assembly may be supported by at least one of the first end plate portion and the second end plate portion at a location radially outward from the discharge passage.
The compressor may additionally include a drive shaft engaged with the second scroll member to drive orbital displacement of the second scroll member relative to the first scroll member.
The compressor may additionally include a first seal engaged with the housing and the first end plate portion and located within a recess defined in the first end plate portion. The first and second end plate portions may define a biasing passage extending therethrough and providing communication between a pocket formed by the first and second spiral wraps and the recess. The compressor may additionally include a second seal located axially between and engaged with the first and second end plate portions. The second seal may surround the biasing passage.
The valve assembly may be in communication with the discharge passage and may form a variable volume ratio valve assembly. The second end plate portion may define a first variable volume ratio passage in communication with a first pocket formed by the first and second spiral wraps. The variable volume ratio valve assembly may include a first variable volume ratio valve overlying the first variable volume ratio passage and displaceable between open and closed positions. The first variable volume ratio passage may provide communication between the first pocket and the discharge passage when the first variable volume ratio valve is in the open position and the first variable volume ratio passage may be isolated from the discharge passage when the first variable volume ratio valve is in the closed position.
The second end plate portion may define a second variable volume ratio passage in communication with a second pocket formed by the first and second spiral wraps. The variable volume ratio valve assembly may include a second variable volume ratio valve overlying the second variable volume ratio passage and displaceable between open and closed positions independently from the first variable volume ratio valve. The second variable volume ratio passage may provide communication between the second pocket and the discharge passage when the second variable volume ratio valve is in the open position and the second variable volume ratio passage may be isolated from the discharge passage when the second variable volume ratio valve is in the closed position. The second end plate portion may define multiple variable volume ratio passages including the first variable volume ratio passage in communication with the first variable volume ratio valve and may define multiple variable volume ratio passages including the second variable volume ratio passage in communication with the second variable volume ratio valve.
The compressor may additionally include a capacity modulation valve assembly supported by at least one of the first end plate portion and the second end plate portion at a location radially outward from the variable volume ratio valve assembly.
The valve assembly may be in communication with a suction pressure region of the compressor and may form a capacity modulation valve assembly. The second end plate portion may define a first capacity modulation passage in communication with a first pocket and the capacity modulation valve assembly may include a first capacity modulation valve overlying the first capacity modulation passage and displaceable between open and closed positions. The first capacity modulation passage may provide communication between the first pocket and the suction pressure region when the first capacity modulation valve is in the open position and the first capacity modulation passage may be isolated from the suction pressure region when the first capacity modulation valve is in the closed position. The second end plate portion may define a second capacity modulation passage in communication with a second pocket and the capacity modulation valve assembly may include a second capacity modulation valve overlying the second capacity modulation passage and displaceable between open and closed positions independently from the first capacity modulation valve. The second capacity modulation passage may provide communication between the second pocket and the suction pressure region when the second capacity modulation valve is in the open position and the second capacity modulation passage may be isolated from the suction pressure region when the second capacity modulation valve is in the closed position.
In another arrangement, a compressor may include a housing, a first scroll member, a second scroll member and a valve assembly. The first scroll member may be positioned within the housing and may include a first end plate portion coupled to a second end plate portion having a first spiral wrap extending therefrom and defining an intermediate passage. The first end plate portion and the second end plate portion may define a discharge passage. The second scroll member may be supported within the housing and may include a second spiral wrap meshingly engaged with the first spiral wrap and defining a discharge pocket in communication with the discharge passage and an intermediate pocket in communication with the intermediate passage. The valve assembly may be in communication with the intermediate passage.
In another arrangement, a compressor may include a housing, a first scroll member, a second scroll member, a variable volume ratio valve assembly and a capacity modulation valve assembly. The first scroll member may be supported within the housing and may include a first end plate defining a discharge passage in communication with a discharge pressure region of the compressor, a first variable volume ratio passage and a first capacity modulation passage and a first spiral wrap extending from the first end plate. The second scroll member may be supported within the housing and may be meshingly engaged with the first scroll member to form a series of pockets including a first pocket in communication with the first variable volume ratio passage and a second pocket in communication with the first capacity modulation passage. The variable volume ratio valve assembly may be in communication with the first variable volume ratio passage and the discharge pressure region to selectively provide communication between the first pocket and the discharge pressure region. The capacity modulation valve assembly may be in communication with the first capacity modulation passage and a suction pressure region of the compressor to selectively provide communication between the second pocket and the suction pressure region.
The compressor may additionally include a seal engaged with the first scroll member and the housing and defining a biasing chamber. The first end plate may define a biasing passage in communication with the biasing chamber and a third pocket formed by the first and second scroll members. The biasing passage may be located radially outward relative to the first variable volume ratio passage and radially inward relative to the first capacity modulation passage.
The first end plate may define a second variable volume ratio passage in communication with a third pocket formed by the first and second scroll members and may define a second capacity modulation passage in communication with a fourth pocket formed by the first and second scroll members. The variable volume ratio valve assembly may include a first variable volume ratio valve controlling communication between the first pocket and the discharge pressure region and a second variable volume ratio valve controlling communication between the third pocket and the discharge pressure region independently from the first variable volume ratio valve. The capacity modulation valve assembly may include a first capacity modulation valve controlling communication between the second pocket and the suction pressure region and a second capacity modulation valve controlling communication between the fourth pocket and the suction pressure region independently from the first capacity modulation valve.
The compressor may additionally include a drive shaft engaged with the second scroll member to drive orbital displacement of the second scroll member relative to the first scroll member.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
The present teachings are suitable for incorporation in many different types of scroll and rotary compressors, including hermetic machines, open drive machines and non-hermetic machines. For exemplary purposes, a compressor 10 is shown as a hermetic scroll refrigerant-compressor of the low-side type, i.e., where the motor and compressor are cooled by suction gas in the hermetic shell, as illustrated in the vertical section shown in
With reference to
Shell assembly 12 may generally form a compressor housing and may include a cylindrical shell 28, an end cap 30 at the upper end thereof, a transversely extending partition 32, and a base 34 at a lower end thereof. End cap 30 and partition 32 may generally define a discharge chamber 36. Discharge chamber 36 may generally form a discharge muffler for compressor 10. Refrigerant discharge fitting 22 may be attached to shell assembly 12 at opening 38 in end cap 30. Discharge valve assembly 24 may be located within discharge fitting 22 and may generally prevent a reverse flow condition. Suction gas inlet fitting 26 may be attached to shell assembly 12 at opening 40. Partition 32 may include a discharge passage 46 therethrough providing communication between compression mechanism 18 and discharge chamber 36.
Main bearing housing assembly 14 may be affixed to shell 28 at a plurality of points in any desirable manner, such as staking. Main bearing housing assembly 14 may include a main bearing housing 52, a first bearing 54 disposed therein, bushings 55, and fasteners 57. Main bearing housing 52 may include a central body portion 56 having a series of arms 58 extending radially outwardly therefrom. Central body portion 56 may include first and second portions 60, 62 having an opening 64 extending therethrough. Second portion 62 may house first bearing 54 therein. First portion 60 may define an annular flat thrust bearing surface 66 on an axial end surface thereof. Arm 58 may include apertures 70 extending therethrough and receiving fasteners 57.
Motor assembly 16 may generally include a motor stator 76, a rotor 78, and a drive shaft 80. Windings 82 may pass through stator 76. Motor stator 76 may be press fit into shell 28. Drive shaft 80 may be rotatably driven by rotor 78. Rotor 78 may be press fit on drive shaft 80. Drive shaft 80 may include an eccentric crank pin 84 having a flat 86 thereon.
Compression mechanism 18 may generally include an orbiting scroll 104 and a non-orbiting scroll 106. Orbiting scroll 104 may include an end plate 108 having a spiral vane or wrap 110 on the upper surface thereof and an annular flat thrust surface 112 on the lower surface. Thrust surface 112 may interface with annular flat thrust bearing surface 66 on main bearing housing 52. A cylindrical hub 114 may project downwardly from thrust surface 112 and may have a drive bushing 116 rotatively disposed therein. Drive bushing 116 may include an inner bore in which crank pin 84 is drivingly disposed. Crank pin flat 86 may drivingly engage a flat surface in a portion of the inner bore of drive bushing 116 to provide a radially compliant driving arrangement. An Oldham coupling 117 may be engaged with the orbiting and non-orbiting scrolls 104, 106 to prevent relative rotation therebetween.
With additional reference to
End plate 118 may include an annular recess 134 in the upper surface thereof defined by parallel coaxial inner and outer side walls 136, 138. Inner side wall 136 may form a discharge passage 139. End plate 118 may further include first and second discrete recesses 140, 142. First and second recesses 140, 142 may be located within annular recess 134. Plugs 144, 146 may be secured to end plate 118 at a top of first and second recesses 140, 142 to form first and second chambers 145, 147 isolated from annular recess 134. An aperture 148 (seen in
A first passage 150 may extend radially through end plate 118 from a first portion 152 (seen in
A first set of ports 168, 170 may extend through end plate 118 and may be in communication with pockets operating at an intermediate pressure. Port 168 may extend into first portion 152 of first chamber 145 and port 170 may extend into first portion 160 of second chamber 147. An additional set of ports 172, 174 may extend through end plate 118 and may be in communication with additional pockets operating at an intermediate pressure. Port 172 may extend into first chamber 145 and port 174 may extend into second chamber 147. During compressor operation port 168 may be located in one of the pockets located at least one hundred and eighty degrees radially inward from a starting point (A) of wrap 120 and port 170 may be located in one of the pockets located at least three hundred and sixty degrees radially inward from starting point (A) of wrap 120. Port 168 may be located radially inward relative to port 172 and port 170 may be located radially inward relative to port 174. Ports 168, 170 may generally define the modulated capacity for compression mechanism 18. Ports 172, 174 may form auxiliary ports for preventing compression in pockets radially outward from ports 168, 170 when ports 168, 170, 172, 174 are exposed to a suction pressure region of compressor 10.
Seal assembly 20 may include a floating seal located within annular recess 134. Seal assembly 20 may be axially displaceable relative to shell assembly 12 and non-orbiting scroll 106 to provide for axial displacement of non-orbiting scroll 106 while maintaining a sealed engagement with partition 32 to isolate discharge and suction pressure regions of compressor 10 from one another. Pressure within annular recess 134 provided by aperture 148 may urge seal assembly 20 into engagement with partition 32 during normal compressor operation.
Modulation assembly 27 may include a valve assembly 176, and first and second piston assemblies 178, 180. Valve assembly 176 may include a solenoid valve having a housing 182 having a valve member 184 disposed therein. Housing 182 may include first, second, and third passages 186, 188, 190. First passage 186 may be in communication with a suction pressure region of compressor 10, second passage 188 may be in communication with second and fourth passages 154, 162 in end plate 118 and third passage 190 may be in communication with fifth passage 166 in end plate 118.
Valve member 184 may be displaceable between first and second positions. In the first position (
First piston assembly 178 may be located in first chamber 145 and may include a piston 192, a seal 194 and a biasing member 196. Second piston assembly 180 may be located in second chamber 147 and may include a piston 198, a seal 200 and a biasing member 202. First and second pistons 192, 198 may be displaceable between first and second positions. More specifically, biasing members 196, 202 may urge first and second pistons 192, 198 into the first position (
As seen in
In an alternate arrangement, seen in
Vapor injection system 700 may be in communication with first and third passages 850, 858 and with a vapor source from, for example, a heat exchanger or a flash tank in communication with the compressor. When pistons 892, 898 are in the first position, seen in
With reference to
Second member 309 may include a second end plate portion 318 having a spiral wrap 320 on a lower surface thereof, a discharge passage 319 extending through second end plate portion 318, and a series of radially outwardly extending flanged portions 321. Spiral wrap 320 may form a meshing engagement with a wrap of an orbiting scroll similar to orbiting scroll 104 to create a series of pockets.
Second end plate portion 318 may further include first and second discrete recesses 341, 343 (
A first passage 350 (seen in
Second end plate portion 318 may further include first, second, third, fourth, fifth, and sixth modulation ports 368, 370, 371, 372, 373, 374, as well as first and second variable volume ratio (VVR) porting 406, 408. First, third, and fifth modulation ports 368, 371, 373 may be in communication with first chamber 341 and second, fourth, and sixth modulation ports 370, 372, 374 may be in communication with second chamber 343. First and second ports 368, 370 may generally define a modulated compressor capacity.
Ports 368, 370 may each be located in one of the pockets located at least seven hundred and twenty degrees radially inward from a starting point (A′) of wrap 320. Port 368 may be located radially inward relative to ports 371, 373 and port 370 may be located radially inward relative to ports 372, 374. Due to the greater inward location of ports 368, 370 along wrap 320, ports 371, 372, 373, 374 may each form an auxiliary port for preventing compression in pockets radially outward from ports 368, 370 when ports 368, 370, 371, 372, 373, 374 are exposed to a suction pressure region.
First and second VVR porting 406, 408 may be located radially inward relative to ports 368, 370, 371, 372, 373, 374 and relative to aperture 351. First and second VVR porting 406, 408 may be in communication with one of the pockets formed by wraps 310, 320 (
Modulation assembly 227 may include a valve assembly 376 and first and second piston assemblies 378, 380. Valve assembly 376 may include a solenoid valve having a housing 382 having a valve member (not shown) disposed therein.
First piston assembly 378 may be located in first chamber 345 and may include a piston 392, a seal 394 and a biasing member 396. Second piston assembly 380 may be located in second chamber 347 and may include a piston 398, a seal 400 and a biasing member 402. First and second pistons 392, 398 may be displaceable between first and second positions. More specifically, biasing members 396, 402 may urge first and second pistons 392, 398 into the first position (
As seen in
As seen in
As seen in
Spiral wrap 310 of orbiting scroll 304 may abut an outer radial surface of spiral wrap 320 at a first location and may abut the inner radial surface of spiral wrap 320 at a second location generally opposite the first location when orbiting scroll 304 is in the first position. Port 368 may extend at least twenty degrees along spiral wrap 310 in a rotational direction (R) of the drive shaft starting at a first angular position corresponding to the first location when orbiting scroll 304 is in the first position. Port 368 may be sealed by spiral wrap 310 when orbiting scroll 304 is in the first position. A portion of port 370 may be in communication with the first modulated capacity pocket 602 when orbiting scroll 304 is in the first position.
In
Spiral wrap 310 of orbiting scroll 304 may abut an outer radial surface of spiral wrap 320 at a third location and may abut the an inner radial surface of spiral wrap 320 at a fourth location generally opposite the third location when orbiting scroll 304 is in the second position. Port 370 may extend at least twenty degrees along spiral wrap 310 generally opposite a rotational direction (R) of the drive shaft starting at a second angular position corresponding to the fourth location when orbiting scroll 304 is in the second position. Port 370 may be sealed by spiral wrap 310 when orbiting scroll 304 is in the second position.
As seen in
Referring to
Spiral wrap 310 of orbiting scroll 304 may abut an outer radial surface of spiral wrap 320 at a fifth location and may abut the inner radial surface of spiral wrap 320 at a sixth location generally opposite the fifth location when orbiting scroll 304 is in the third position. VVR porting 406 may extend at least twenty degrees along spiral wrap 310 in a rotational direction (R) of the drive shaft starting at an angular position corresponding to the fifth location when orbiting scroll 304 is in the third position.
In
Spiral wrap 310 of orbiting scroll 304 may abut an outer radial surface of spiral wrap 320 at a seventh location and may abut the an inner radial surface of spiral wrap 320 at an eighth location generally opposite the seventh location when orbiting scroll 304 is in the fourth position. VVR porting 408 may extend at least twenty degrees along spiral wrap 310 generally opposite a rotational direction (R) of the drive shaft starting at a fourth angular position corresponding to the eighth location when orbiting scroll 304 is in the fourth position.
The terms “first”, “second”, etc. are used throughout the description for clarity only and are not intended to limit similar terms in the claims.
This application is a continuation of U.S. patent application Ser. No. 12/474,868 filed on May 29, 2009 which claims the benefit of U.S. Provisional Application No. 61/057,372, filed on May 30, 2008. The entire disclosures of each of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4382370 | Suefuji et al. | May 1983 | A |
4383805 | Teegarden et al. | May 1983 | A |
4431388 | Eber et al. | Feb 1984 | A |
4475360 | Suefuji et al. | Oct 1984 | A |
4497615 | Griffith | Feb 1985 | A |
4557675 | Murayama et al. | Dec 1985 | A |
4669962 | Mizuno et al. | Jun 1987 | A |
4676075 | Shiibayashi | Jun 1987 | A |
4767293 | Caillat et al. | Aug 1988 | A |
4774816 | Uchikawa et al. | Oct 1988 | A |
4818195 | Murayama et al. | Apr 1989 | A |
4904164 | Mabe et al. | Feb 1990 | A |
4904165 | Fraser, Jr. et al. | Feb 1990 | A |
4940395 | Yamamoto et al. | Jul 1990 | A |
5074760 | Hirooka et al. | Dec 1991 | A |
5087170 | Kousokabe et al. | Feb 1992 | A |
5156539 | Anderson et al. | Oct 1992 | A |
RE34148 | Terauchi et al. | Dec 1992 | E |
5169294 | Barito | Dec 1992 | A |
5192195 | Iio et al. | Mar 1993 | A |
5193987 | Iio et al. | Mar 1993 | A |
5240389 | Oikawa et al. | Aug 1993 | A |
5336058 | Yokoyama | Aug 1994 | A |
5356271 | Miura et al. | Oct 1994 | A |
5451146 | Inagaki et al. | Sep 1995 | A |
5469716 | Bass et al. | Nov 1995 | A |
5551846 | Taylor et al. | Sep 1996 | A |
5557897 | Kranz et al. | Sep 1996 | A |
5562426 | Watanabe et al. | Oct 1996 | A |
5577897 | Inagaki et al. | Nov 1996 | A |
5607288 | Wallis et al. | Mar 1997 | A |
5611674 | Bass et al. | Mar 1997 | A |
5639225 | Matsuda et al. | Jun 1997 | A |
5640854 | Fogt et al. | Jun 1997 | A |
5674058 | Matsuda et al. | Oct 1997 | A |
5678985 | Brooke et al. | Oct 1997 | A |
5741120 | Bass et al. | Apr 1998 | A |
5803716 | Wallis et al. | Sep 1998 | A |
5810573 | Mitsunaga et al. | Sep 1998 | A |
5833442 | Park et al. | Nov 1998 | A |
5855475 | Fujio et al. | Jan 1999 | A |
5885063 | Makino et al. | Mar 1999 | A |
5993171 | Higashiyama | Nov 1999 | A |
5993177 | Terauchi et al. | Nov 1999 | A |
5996364 | Lifson et al. | Dec 1999 | A |
6077057 | Hugenroth et al. | Jun 2000 | A |
6086335 | Bass et al. | Jul 2000 | A |
6102671 | Yamamoto et al. | Aug 2000 | A |
6123517 | Brooke et al. | Sep 2000 | A |
6132179 | Higashiyama | Oct 2000 | A |
6164940 | Terauchi et al. | Dec 2000 | A |
6176686 | Wallis et al. | Jan 2001 | B1 |
6210120 | Hugenroth et al. | Apr 2001 | B1 |
6213731 | Doepker et al. | Apr 2001 | B1 |
6231316 | Wakisaka et al. | May 2001 | B1 |
6273691 | Morimoto et al. | Aug 2001 | B1 |
6293767 | Bass | Sep 2001 | B1 |
6295821 | Madigan | Oct 2001 | B1 |
6350111 | Perevozchikov et al. | Feb 2002 | B1 |
6412293 | Pham et al. | Jul 2002 | B1 |
6413058 | Williams et al. | Jul 2002 | B1 |
6430959 | Lifson | Aug 2002 | B1 |
6454551 | Kuroki et al. | Sep 2002 | B2 |
6464481 | Tsubai et al. | Oct 2002 | B2 |
6506036 | Tsubai et al. | Jan 2003 | B2 |
6544016 | Gennami et al. | Apr 2003 | B2 |
6558143 | Nakajima et al. | May 2003 | B2 |
6589035 | Tsubono et al. | Jul 2003 | B1 |
6619062 | Shibamoto et al. | Sep 2003 | B1 |
6679683 | Seibel et al. | Jan 2004 | B2 |
6769888 | Tsubono et al. | Aug 2004 | B2 |
6821092 | Gehret et al. | Nov 2004 | B1 |
6881046 | Shibamoto et al. | Apr 2005 | B2 |
6884042 | Zili et al. | Apr 2005 | B2 |
6984114 | Zili et al. | Jan 2006 | B2 |
7118358 | Tsubono et al. | Oct 2006 | B2 |
7137796 | Tsubono et al. | Nov 2006 | B2 |
7228710 | Lifson | Jun 2007 | B2 |
7229261 | Morimoto et al. | Jun 2007 | B2 |
7278832 | Lifson et al. | Oct 2007 | B2 |
7326039 | Kim et al. | Feb 2008 | B2 |
7344365 | Takeuchi et al. | Mar 2008 | B2 |
RE40257 | Doepker et al. | Apr 2008 | E |
7354259 | Tsubono et al. | Apr 2008 | B2 |
RE40344 | Perevozchikov et al. | May 2008 | E |
7404706 | Ishikawa et al. | Jul 2008 | B2 |
7513753 | Shin et al. | Apr 2009 | B2 |
7547202 | Knapke | Jun 2009 | B2 |
7674098 | Lifson | Mar 2010 | B2 |
7771178 | Perevozchikov et al. | Aug 2010 | B2 |
7815423 | Guo et al. | Oct 2010 | B2 |
7967582 | Akei et al. | Jun 2011 | B2 |
7967583 | Stover et al. | Jun 2011 | B2 |
7972125 | Stover et al. | Jul 2011 | B2 |
7976295 | Stover et al. | Jul 2011 | B2 |
7976296 | Stover et al. | Jul 2011 | B2 |
7988433 | Akei et al. | Aug 2011 | B2 |
7988434 | Stover et al. | Aug 2011 | B2 |
8313318 | Stover et al. | Nov 2012 | B2 |
8475140 | Seibel et al. | Jul 2013 | B2 |
20010010800 | Kohsokabe et al. | Aug 2001 | A1 |
20020039540 | Kuroki et al. | Apr 2002 | A1 |
20030012659 | Seibel et al. | Jan 2003 | A1 |
20040071571 | Uchida et al. | Apr 2004 | A1 |
20040146419 | Kawaguchi et al. | Jul 2004 | A1 |
20040197204 | Yamanouchi et al. | Oct 2004 | A1 |
20050019177 | Shin et al. | Jan 2005 | A1 |
20050053507 | Takeuchi et al. | Mar 2005 | A1 |
20060165542 | Sakitani et al. | Jul 2006 | A1 |
20070053782 | Okamoto et al. | Mar 2007 | A1 |
20070092390 | Ignatiev et al. | Apr 2007 | A1 |
20070231172 | Fujimura et al. | Oct 2007 | A1 |
20070237664 | Joo et al. | Oct 2007 | A1 |
20070245892 | Lemke et al. | Oct 2007 | A1 |
20070269326 | Seibel et al. | Nov 2007 | A1 |
20080025861 | Okawa et al. | Jan 2008 | A1 |
20080107555 | Lifson | May 2008 | A1 |
20080159892 | Huang et al. | Jul 2008 | A1 |
20090068048 | Stover et al. | Mar 2009 | A1 |
20090071183 | Stover et al. | Mar 2009 | A1 |
20090196781 | Kiem et al. | Aug 2009 | A1 |
20090297377 | Stover et al. | Dec 2009 | A1 |
20090297378 | Stover et al. | Dec 2009 | A1 |
20090297379 | Stover et al. | Dec 2009 | A1 |
20090297380 | Stover et al. | Dec 2009 | A1 |
20100111741 | Chikano et al. | May 2010 | A1 |
20100135836 | Stover et al. | Jun 2010 | A1 |
20100158731 | Akei et al. | Jun 2010 | A1 |
20100254841 | Akei et al. | Oct 2010 | A1 |
20100300659 | Stover et al. | Dec 2010 | A1 |
20100303659 | Stover et al. | Dec 2010 | A1 |
20110033328 | Stover et al. | Feb 2011 | A1 |
20110103988 | Stover et al. | May 2011 | A1 |
20110256009 | Stover et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
1060699 | Apr 1992 | CN |
1028379 | May 1995 | CN |
1137614 | Dec 1996 | CN |
1434216 | Aug 2003 | CN |
1475673 | Feb 2004 | CN |
1576603 | Feb 2005 | CN |
1707104 | Dec 2005 | CN |
100334352 | Aug 2007 | CN |
100343521 | Oct 2007 | CN |
03081588 | Apr 1991 | JP |
05001677 | Jan 1993 | JP |
2550612 | Nov 1996 | JP |
2000161263 | Jun 2000 | JP |
2007154761 | Jun 2007 | JP |
2009155109 | Dec 2009 | WO |
Entry |
---|
International Search Report dated Jan. 29, 2010 regarding International Application No. PCT/US2009/045647, 3 pages. |
Written Opinion of the International Searching Authority dated Jan. 29, 2010 regarding International Application No. PCT/US2009/045647, 3 pages. |
International Search Report dated Jan. 4, 2010 regarding International Application No. PCT/US2009/045666. |
International Search Report dated Jan. 21, 2010 regarding International Application No. PCT/US2009/045638. |
Written Opinion of the International Searching Authority dated Jan. 21, 2010 regarding International Application No. PCT/US2009/045638, 3 pages. |
International Search Report dated Jan. 8, 2010 regarding International Application No. PCT/US2009/045665. |
Written Opinion of the International Searching Authority dated May 31, 2010 regarding International Application No. PCT/US2009/066551, 3 pgs. |
International Search Report regarding Application No. PCT/US2010/036586, mailed Jan. 17, 2011. |
International Search Report dated Jan. 29, 2010 regarding International Application No. PCT/US2009/045647. |
Written Opinion of the International Searching Authority dated Jan. 29, 2010 regarding International Application No. PCT/US2009/045647. |
Non-Final Office Action for U.S. Appl. No. 12/474,806, mailed Jun. 18, 2012. |
Non-Final Office Action for U.S. Appl. No. 12/909,303, mailed Jan. 10, 2013. |
International Search Report dated Jan. 14, 2010 regarding International Application No. PCT/US2009/045672. |
Written Opinion of the International Searching Authority dated Jan. 14, 2010 regarding International Application No. PCT/US2009/045672. |
Non-Final Office Action for U.S. Appl. No. 13/367,950, mailed Jan. 11, 2013. |
Non-Final Office Action for U.S. Appl. No. 13/167,192, mailed Jan. 25, 2013. |
First Office Action regarding Chinese Patent Application No. 2009801269614.4, dated Feb. 5, 2013. English translation provided by Unitalen Attorneys at Law. |
Written Opinion of the International Searching Authority dated Jan. 4, 2010 regarding Inernational Application No. PCT/US2009/045666. |
Written Opinion of the International Search Authority dated Jan. 8, 2010 regarding International Application No. PCT/US2009/045665. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2010/036586, mailed Jan. 17, 2011. |
International Search Report dated May 31, 2010 regarding International Application No. PCT/US2009/066551, 3 pgs. |
First Office Action and Search Report regarding Chinese Patent Application No. 200980126962.9, issued on Apr. 2, 2013. English translation provided by Unitalen Attorneys at Law. |
First Office Action regarding Chinese Patent Application No. 200980125441.1, dated May 31, 2013. English translation provided by Unitalen Attorneys At Law. |
U.S. Office Action regarding U.S. Appl. No. 12/788,786 mailed Jan. 3, 2013. |
First Office Action regarding China Application No. 201080023038.0 dated Dec. 17, 2013. Translation provided by Unitalen Attorneys at Law. |
First Office Action regarding Chinese Patent Application No. 2012100398842, dated Jan. 20, 2014, and Search English translation provided by Unitalen Attorneys at Law. |
Number | Date | Country | |
---|---|---|---|
20110250085 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
61057372 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12474868 | May 2009 | US |
Child | 13165306 | US |