The present disclosure relates to a compressor having a shell fitting.
This section provides background information related to the present disclosure and is not necessarily prior art.
A climate-control system such as, for example, a heat-pump system, a refrigeration system, or an air conditioning system, may include a fluid circuit having an outdoor heat exchanger, an indoor heat exchanger, an expansion device disposed between the indoor and outdoor heat exchangers, and one or more compressors circulating a working fluid (e.g., refrigerant or carbon dioxide) between the indoor and outdoor heat exchangers. Efficient and reliable operation of the one or more compressors is desirable to ensure that the climate-control system in which the one or more compressors are installed is capable of effectively and efficiently providing a cooling and/or heating effect on demand.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
In one form, the present disclosure provides a compressor that includes a shell, a compression mechanism and a fitting (e.g., a suction fitting, a discharge fitting, or a fluid-injection fitting). The shell includes an opening and defines a chamber. The compression mechanism is disposed within the chamber of the shell. The fitting is attached to the shell at the opening. Working fluid flowing through the fitting flows to compression pockets of the compression mechanism. The opening is partially defined by a first edge and a second edge. The first edge includes a first planar surface and the second edge includes a second planar surface that faces the first planar surface. A first portion of the fitting extends at least partially into the opening and a second portion of the fitting abuts against the first and second edges.
In some configurations of the compressor of the above paragraph, the opening is a non-circular shape.
In some configurations of the compressor of any one or more of the above paragraphs, the opening has opposing arcuate surfaces. An outer diametrical surface of the fitting abuts against at least one of the opposing arcuate surfaces.
In some configurations of the compressor of any one or more of the above paragraphs, the opposing arcuate surfaces and the first and second edges define a circular shape.
In some configurations of the compressor of any one or more of the above paragraphs, the fitting is a suction fitting. Working fluid flowing through the suction fitting flows to the compression pockets of the compression mechanism.
In some configurations of the compressor of any one or more of the above paragraphs, the first portion of the fitting is a first portion of an axial end surface of the fitting and the second portion of the fitting is a second portion of the axial end surface of the fitting.
In some configurations of the compressor of any one or more of the above paragraphs, the opening has opposing arcuate surfaces. The opposing arcuate surfaces extend and the first and second edges define a circular shape.
In some configurations of the compressor of any one or more of the above paragraphs, the opening has opposing arcuate surfaces. Each of the first and second edges are disposed between the opposing arcuate surfaces.
In some configurations of the compressor of any one or more of the above paragraphs, the first and second edges prevent an outer diametrical surface of the fitting from contacting the first and second planar surfaces.
In some configurations of the compressor of any one or more of the above paragraphs, the first and second edges prevent the fitting from extending into the chamber of the shell.
In some configurations of the compressor of any one or more of the above paragraphs, the second portion of the fitting abuts against the first and second edges at a location external to the opening.
In some configurations of the compressor of any one or more of the above paragraphs, each of the opposing arcuate surfaces have a length that is greater than a length of each of the first and second planar surfaces.
In another form, the present disclosure provides a compressor that includes a shell, a compression mechanism and a fitting (e.g., a suction fitting, a discharge fitting, or a fluid-injection fitting). The shell includes an opening and defines a chamber. The compression mechanism is disposed within the chamber of the shell. The fitting is attached to the shell at the opening and at least partially disposed outside of the shell. Working fluid flows between the fitting and compression pockets of the compression mechanism. The opening is partially defined by a first edge having a first planar surface, a second edge having a second planar surface, and an arcuate surface disposed between the first and second planar surfaces. The first and second edges prevent the fitting from contacting the first and second planar surfaces and allow the fitting to contact the arcuate surface.
In some configurations of the compressor of the above paragraph, the opening has another arcuate surface that is opposite the arcuate surface. An outer diametrical surface of the fitting abuts against at least one of the opposing arcuate surfaces.
In some configurations of the compressor of any one or more of the above paragraphs, a first portion of the fitting extends at least partially into the opening and a second portion of the fitting abuts against the first and second edges at a location external to the opening.
In some configurations of the compressor of any one or more of the above paragraphs, the fitting includes a first axial end having a first thickness and a second axial end having a second thickness. The first thickness greater than the second thickness. The first axial end includes a first portion that extends at least partially into the opening and a second portion that contacts the first and second edges.
In some configurations of the compressor of any one or more of the above paragraphs, the first axial end has a first outer diametrical surface and the second axial end has a second outer diametrical surface. A first diameter of the first outer diametrical surface is greater than a second diameter of the second outer diametrical surface.
In some configurations of the compressor of any one or more of the above paragraphs, the fitting has a transition portion positioned between the first axial end and the second axial end and having a third outer diametrical surface. A third diameter of the third outer diametrical surface is smaller than the first and second diameters.
In some configurations of the compressor of any one or more of the above paragraphs, the fitting is made of steel and has a first axial end and a second axial end. The second axial end has a copper plating coating. The first axial end is attached to the shell.
In some configurations of the compressor of any one or more of the above paragraphs, each of the opposing arcuate surfaces have a length that is greater than a length of each of the first and second planar surfaces.
In yet another form, the present disclosure provides a compressor that includes a shell, a compression mechanism and a fitting (e.g., a suction fitting, a discharge fitting, or a fluid-injection fitting). The shell includes an opening and defines a chamber. The compression mechanism is disposed within the chamber of the shell. The fitting includes first and second opposing axial ends. The first axial end is attached to the shell at the opening and has a first outer diametrical surface and a first inner diametrical surface. The second axial end is disposed outside of the shell and has a second outer diametrical surface and a second inner diametrical surface. A first diameter of the first outer diametrical surface is greater than a second diameter of the second outer diametrical surface. A third diameter of the first inner diametrical surface is greater than the second diameter of the second outer diametrical surface and a fourth diameter of the second inner diametrical surface. The first axial end has a first thickness and the second axial end has a second thickness. The first thickness is greater than a second thickness.
In some configurations of the compressor of the above paragraph, the opening includes a first edge and a second edge that opposes the first edge. A first portion of the first axial end extends at least partially into the opening and a second portion of the first axial end abuts against the first and second edges.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
As shown in
As shown in
The first bearing housing assembly 14 may be disposed within the suction-pressure chamber 39 and may be fixed relative to the shell 32. The first bearing housing assembly 14 may include a first main bearing housing 48 and a first bearing 49. The first main bearing housing 48 may house the first bearing 49 therein. The first main bearing housing 48 may fixedly engage the shell 32 and may axially support the compression mechanism 20.
As shown in
The compression mechanism 20 may be disposed within the suction-pressure chamber 39 and may include an orbiting scroll 70 and a non-orbiting scroll 72. The first scroll member or orbiting scroll 70 may include an end plate 74 and a spiral wrap 76 extending therefrom. A cylindrical hub 80 may project downwardly from the end plate 74 and may include the first bearing 49 and an unloader bushing 82 disposed therein. The crank pin flat may drivingly engage a flat surface in a portion of the inner bore to provide a radially compliant driving arrangement. An Oldham coupling 84 may be engaged with the orbiting scroll 70 and the bearing housing 48 to prevent relative rotation therebetween.
As shown in
As shown in
As shown in
The first arcuate surface 96 and the second arcuate surface 98 are opposite each other and may cooperate with the first and second edges 92, 94 to define a circular shape. Each of the first and second arcuate surfaces 96, 98 are positioned between the first and second edges 92, 94 (
The suction fitting 28 may include a shell-attachment section 106, a pipe-attachment section 108 and a transition section 110. The shell-attachment section 106 may have a thickness that is greater than a thickness of the pipe-attachment section 108 and a thickness of the transition section 110. The shell-attachment section 106 has a first outer diametrical surface 112 and a first inner diametrical surface 114. As shown in
The pipe-attachment section 108 may be copper plated and may be attached to an external pipe (not shown) via brazing, for example, so that fluid flowing through the external pipe may flow to the compression pockets (via the suction fitting 28, the suction-pressure chamber 39 and the suction inlet 89). The pipe-attachment section 108 has a second outer diametrical surface 118 and a second inner diametrical surface 120. As shown in
The transition section 110 is positioned between the shell-attachment section 106 and the pipe-attachment section 108 and has a third outer diametrical surface 122 and a third inner diametrical surface 124. A diameter D5 of the third outer diametrical surface 122 is smaller than the diameter D2 of the first outer diametrical surface 112 and the diameter D1 of the second outer diametrical surface 118. A diameter D6 of the third inner diametrical surface 124 is smaller than the diameter D4 of the first inner diametrical surface 114 and the diameter D3 of the second inner diametrical surface 120.
One of the benefits of the compressor 10 of the present disclosure is the suction fitting 28 having varying thicknesses facilitates attachment to both the shell 32 and the external pipe (not shown). That is, the thickness of the shell-attachment section 106 facilitates welding the suction fitting 28 and the shell 32 and the thickness of the pipe-attachment section 108 facilitates brazing the suction fitting 28 and the external pipe. Stated differently, it is advantageous for the shell-attachment section 106 of the suction fitting 28 to have a large thickness to facilitate welding the suction fitting 28 to the shell 32, and it is advantageous for the pipe-attachment section 108 of the suction fitting 28 to have a small thickness to facilitate brazing the suction fitting 28 to the external pipe. Another benefit of the compressor 10 of the present disclosure is the opening 90 of the shell 32 being defined at least partially by the first and second edges 92, 94 and the arcuate surfaces 96, 98 facilitates positioning of the suction fitting 28 relative to the shell 32 and facilitates attachment (i.e., welding) of the suction fitting 28 to the shell 32.
It should be understood that other fittings of the compressor 10 may be attached to a respective opening in the shell assembly 12 having similar or identical features or characteristics of the opening 90 that the suction fitting 28 is attached to. For example, the discharge fitting 24 and/or a fluid-injection fitting (a fitting that provides working fluid directly to an intermediate position of the compression pockets) may be attached to the shell assembly 12 at a respective opening partially defined by opposing edges similar or identical to the edges 92, 94 and/or opposing arcuate surfaces similar or identical to the arcuate surfaces 96, 98. In other words, the discharge fitting 24 and/or fluid-injection fitting could have features similar or identical to the suction fitting 28 described above and shown in the figures, and the discharge fitting 24 and/or fluid-injection fitting could be attached to the shell assembly 12 at respective openings similar or identical to the opening 90.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
1365530 | Moore | Jan 1921 | A |
2142452 | Merrill | Jan 1939 | A |
2157918 | Rankin | May 1939 | A |
3075686 | Steinhagen | Jan 1963 | A |
3817661 | Ingalls et al. | Jun 1974 | A |
3870440 | Zuercher, Jr. | Mar 1975 | A |
4313715 | Richardson, Jr. | Feb 1982 | A |
4343599 | Kousokabe | Aug 1982 | A |
4365941 | Tojo et al. | Dec 1982 | A |
4401418 | Fritchman | Aug 1983 | A |
4412791 | Lal | Nov 1983 | A |
4477229 | Kropiwnicki et al. | Oct 1984 | A |
4496293 | Nakamura et al. | Jan 1985 | A |
4564339 | Nakamura et al. | Jan 1986 | A |
4592703 | Inaba et al. | Jun 1986 | A |
4609334 | Muir et al. | Sep 1986 | A |
4648811 | Tahata | Mar 1987 | A |
4696629 | Shiibayashi et al. | Sep 1987 | A |
4759696 | Ishiai | Jul 1988 | A |
4767293 | Caillat et al. | Aug 1988 | A |
4793775 | Peruzzi | Dec 1988 | A |
4838769 | Gannaway | Jun 1989 | A |
4877382 | Caillat et al. | Oct 1989 | A |
4915554 | Serizawa et al. | Apr 1990 | A |
5007809 | Kimura et al. | Apr 1991 | A |
5030073 | Serizawa et al. | Jul 1991 | A |
5055010 | Logan | Oct 1991 | A |
5064356 | Hom | Nov 1991 | A |
5108274 | Kakuda et al. | Apr 1992 | A |
5114322 | Caillat et al. | May 1992 | A |
5197868 | Caillat et al. | Mar 1993 | A |
5219281 | Caillat et al. | Jun 1993 | A |
5240391 | Ramshankar et al. | Aug 1993 | A |
5288211 | Fry | Feb 1994 | A |
5295813 | Caillat et al. | Mar 1994 | A |
5306126 | Richardson, Jr. | Apr 1994 | A |
5344289 | Fasce | Sep 1994 | A |
5366352 | Deblois et al. | Nov 1994 | A |
5427511 | Caillat et al. | Jun 1995 | A |
5435700 | Park | Jul 1995 | A |
5439361 | Reynolds et al. | Aug 1995 | A |
5476369 | Fowlkes et al. | Dec 1995 | A |
5531078 | Day et al. | Jul 1996 | A |
5533875 | Crum et al. | Jul 1996 | A |
5593294 | Houghtby et al. | Jan 1997 | A |
5597293 | Bushnell et al. | Jan 1997 | A |
5645408 | Fujio et al. | Jul 1997 | A |
5745992 | Caillat et al. | May 1998 | A |
5772411 | Crum et al. | Jun 1998 | A |
5772416 | Caillat et al. | Jun 1998 | A |
5931649 | Caillat et al. | Aug 1999 | A |
5992033 | Scarborough | Nov 1999 | A |
6000917 | Smerud et al. | Dec 1999 | A |
6017205 | Weatherston et al. | Jan 2000 | A |
6131406 | Barowsky et al. | Oct 2000 | A |
6139295 | Utter et al. | Oct 2000 | A |
6158995 | Muramatsu et al. | Dec 2000 | A |
6164934 | Niihara et al. | Dec 2000 | A |
6168404 | Gatecliff | Jan 2001 | B1 |
6174150 | Tsubone et al. | Jan 2001 | B1 |
6244834 | Matsuda et al. | Jun 2001 | B1 |
6261071 | Williams et al. | Jul 2001 | B1 |
6293776 | Hahn et al. | Sep 2001 | B1 |
6352418 | Kohsokabe et al. | Mar 2002 | B1 |
6364643 | Milliff | Apr 2002 | B1 |
6402485 | Hong et al. | Jun 2002 | B2 |
6454538 | Witham et al. | Sep 2002 | B1 |
6474964 | Bernardi et al. | Nov 2002 | B2 |
6537019 | Dent | Mar 2003 | B1 |
6685441 | Nam | Feb 2004 | B2 |
6709244 | Pham | Mar 2004 | B2 |
6736607 | Ginies et al. | May 2004 | B2 |
6814546 | Sekiguchi | Nov 2004 | B2 |
6857808 | Sugimoto et al. | Feb 2005 | B1 |
6887050 | Haller | May 2005 | B2 |
6896496 | Haller et al. | May 2005 | B2 |
7018183 | Haller et al. | Mar 2006 | B2 |
7018184 | Skinner et al. | Mar 2006 | B2 |
7063523 | Skinner | Jun 2006 | B2 |
7094043 | Skinner | Aug 2006 | B2 |
7108494 | Nam | Sep 2006 | B2 |
7137775 | Hopkins | Nov 2006 | B2 |
7147443 | Ogawa et al. | Dec 2006 | B2 |
7207787 | Liang et al. | Apr 2007 | B2 |
7311501 | Wehrenberg et al. | Dec 2007 | B2 |
7318710 | Lee et al. | Jan 2008 | B2 |
7416395 | Sato | Aug 2008 | B2 |
7503755 | Lai et al. | Mar 2009 | B2 |
RE40830 | Caillat | Jul 2009 | E |
7686592 | Inoue et al. | Mar 2010 | B2 |
7699589 | Terauchi et al. | Apr 2010 | B2 |
7708536 | Ginies et al. | May 2010 | B2 |
7771180 | Cho et al. | Aug 2010 | B2 |
7905715 | HIwata et al. | Mar 2011 | B2 |
8133043 | Duppert | Mar 2012 | B2 |
8152503 | Haller | Apr 2012 | B2 |
8348647 | Kiyokawa et al. | Jan 2013 | B2 |
8814537 | Ignatiev et al. | Aug 2014 | B2 |
8974198 | Schaefer et al. | Mar 2015 | B2 |
8992186 | Silveira et al. | Mar 2015 | B2 |
9051934 | Fraser | Jun 2015 | B2 |
9057270 | Strawn et al. | Jun 2015 | B2 |
9366462 | Perevozchikov et al. | Jun 2016 | B2 |
10094600 | Doepker et al. | Oct 2018 | B2 |
20010006603 | Hong et al. | Jul 2001 | A1 |
20010055536 | Bernardi et al. | Dec 2001 | A1 |
20020090305 | Myung et al. | Jul 2002 | A1 |
20030072662 | Reinhart | Apr 2003 | A1 |
20040057843 | Haller et al. | Mar 2004 | A1 |
20040057849 | Skinner et al. | Mar 2004 | A1 |
20040057857 | Skinner | Mar 2004 | A1 |
20040126258 | Lai et al. | Jul 2004 | A1 |
20040166008 | Lai et al. | Aug 2004 | A1 |
20040228751 | Shin | Nov 2004 | A1 |
20050129534 | Lee | Jun 2005 | A1 |
20060073061 | Sato | Apr 2006 | A1 |
20060078452 | Park et al. | Apr 2006 | A1 |
20060127262 | Shin et al. | Jun 2006 | A1 |
20060177335 | Hwang et al. | Aug 2006 | A1 |
20060222545 | Nam et al. | Oct 2006 | A1 |
20060222546 | Lee et al. | Oct 2006 | A1 |
20060245967 | Gopinathan | Nov 2006 | A1 |
20060275150 | Barth | Dec 2006 | A1 |
20070178002 | HIwata et al. | Aug 2007 | A1 |
20070183914 | Gopinathan | Aug 2007 | A1 |
20070237664 | Joo et al. | Oct 2007 | A1 |
20090110586 | Brabek et al. | Apr 2009 | A1 |
20090136344 | Chen et al. | May 2009 | A1 |
20090229303 | Iversen et al. | Sep 2009 | A1 |
20100021330 | Haller | Jan 2010 | A1 |
20120134859 | Duppert | May 2012 | A1 |
20120148433 | Liang et al. | Jun 2012 | A1 |
20130026749 | O'Brien et al. | Jan 2013 | A1 |
20130039792 | Hiratsuka et al. | Feb 2013 | A1 |
20130089451 | Ahn et al. | Apr 2013 | A1 |
20130108496 | Nakai et al. | May 2013 | A1 |
20130129549 | Sakuda et al. | May 2013 | A1 |
20160348675 | Ishii et al. | Dec 2016 | A1 |
20170002812 | Duppert | Jan 2017 | A1 |
20190041106 | Piscopo | Feb 2019 | A1 |
20190041107 | Piscopo et al. | Feb 2019 | A1 |
20200309124 | King | Oct 2020 | A1 |
20200392953 | Stover et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
1208821 | Feb 1999 | CN |
1278892 | Jan 2001 | CN |
1354326 | Jun 2002 | CN |
1371444 | Sep 2002 | CN |
1482365 | Mar 2004 | CN |
1629476 | Jun 2005 | CN |
1779244 | May 2006 | CN |
1869443 | Nov 2006 | CN |
101235932 | Aug 2008 | CN |
101415947 | Apr 2009 | CN |
102216617 | Oct 2011 | CN |
202926625 | May 2013 | CN |
203453064 | Feb 2014 | CN |
104976448 | Oct 2015 | CN |
104999172 | Oct 2015 | CN |
204934897 | Jan 2016 | CN |
205064214 | Mar 2016 | CN |
107246393 | Oct 2017 | CN |
0438243 | Jul 1991 | EP |
0529660 | Mar 1993 | EP |
1338795 | Aug 2003 | EP |
1541868 | Jun 2005 | EP |
S62182486 | Aug 1987 | JP |
S63183773 | Jul 1988 | JP |
H04347387 | Dec 1992 | JP |
H05157064 | Jun 1993 | JP |
H05302581 | Nov 1993 | JP |
H07197893 | Aug 1995 | JP |
H08319965 | Dec 1996 | JP |
H11141470 | May 1999 | JP |
2001165065 | Jun 2001 | JP |
2002155875 | May 2002 | JP |
2002155877 | May 2002 | JP |
2002235524 | Aug 2002 | JP |
2003120539 | Apr 2003 | JP |
2004150370 | May 2004 | JP |
2005188353 | Jul 2005 | JP |
2006144729 | Jun 2006 | JP |
2008223605 | Sep 2008 | JP |
2009019570 | Jan 2009 | JP |
2010043627 | Feb 2010 | JP |
2011236861 | Nov 2011 | JP |
20010064538 | Jul 2001 | KR |
20010068323 | Jul 2001 | KR |
20020024708 | Apr 2002 | KR |
20080019509 | Mar 2008 | KR |
20090045352 | May 2009 | KR |
20140034345 | Mar 2014 | KR |
20180107482 | Oct 2018 | KR |
20190025250 | Mar 2019 | KR |
WO-2006109475 | Oct 2006 | WO |
WO-2007025883 | Mar 2007 | WO |
WO-2007114582 | Oct 2007 | WO |
WO-2008102940 | Aug 2008 | WO |
WO-2009090856 | Jul 2009 | WO |
WO-2011147005 | Dec 2011 | WO |
Entry |
---|
U.S. Appl. No. 16/154,097, filed Oct. 8, 2018, Matthew Thomas Piscopo. |
U.S. Appl. No. 16/154,364, filed Oct. 8, 2018, Matthew Thomas Piscopo et al. |
U.S. Appl. No. 16/803,576, filed Feb. 27, 2020, Joshua S. King. |
U.S. Appl. No. 15/930,785, filed May 13, 2020, Robert C. Stover et al. |
International Search Report regarding International Application No. PCT/BR2010/000179, dated Sep. 1, 2010. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/BR2010/000179, dated Sep. 1, 2010. |
International Search Report regarding International Application No. PCT/US2012/056067, dated Feb. 19, 2013. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2012/056067, dated Feb. 19, 2013. |
Restriction Requirement regarding U.S. Appl. No. 13/610,274, dated Aug. 16, 2013. |
Search Report regarding European Patent Application No. 10851912.5, dated Nov. 15, 2013. |
Office Action regarding Japanese Patent Application No. 2013-511484, dated Nov. 19, 2013. |
Office Action regarding U.S. Appl. No. 13/610,274, dated Nov. 27, 2013. |
International Search Report regarding International Application No. PCT/US2013/059612, dated Dec. 9, 2013. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2013/059612, dated Dec. 9, 2013. |
Office Action regarding U.S. Appl. No. 13/699,207, dated Dec. 18, 2013. |
Notice of Allowance regarding U.S. Appl. No. 13/610,274, dated Mar. 24, 2014. |
Notice of Allowance regarding U.S. Appl. No. 13/610,274, dated Jul. 18, 2014. |
Office Action regarding European Patent Application No. 10851912.5, dated Jul. 18, 2014. |
Office Action regarding U.S. Appl. No. 13/699,207, dated Jul. 24, 2014. |
Office Action regarding Chinese Patent Application No. 201080066999.X, dated Sep. 17, 2014. |
Notice of Allowance regarding U.S. Appl. No. 13/699,207, dated Nov. 24, 2014. |
Office Action regarding Chinese Patent Application No. 201210376153.7, dated Dec. 3, 2014. Translation provided by Unitalen Attorneys At Law. |
Restriction Requirement regarding U.S. Appl. No. 14/025,887, dated Jan. 5, 2015. |
Restriction Requirement regarding U.S. Appl. No. 13/930,834, dated Jan. 29, 2015. |
Office Action regarding U.S. Appl. No. 14/025,887, dated Mar. 26, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/930,834, dated Apr. 24, 2015. |
Office Action regarding Chinese Patent Application No. 201210376153.7, dated Jul. 3, 2015. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/025,887, dated Jul. 23, 2015. |
Office Action regarding Chinese Patent Application No. 201310286638.1, dated Jul. 27, 2015. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/025,887, dated Decembers, 2015. |
Office Action regarding Chinese Patent Application No. 201210376153.7, dated Dec. 28, 2015. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201310286638.1, dated Jan. 21, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201380047907.7, dated Mar. 8, 2016. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 14/025,887, dated Apr. 12, 2016. |
Search Report regarding European Patent Application No. 13836817.0, dated Jun. 1, 2016. |
Office Action regarding Korean Patent Application No. 10-2012-7033723, dated Aug. 22, 2016. |
Office Action regarding Chinese Patent Application No. 201380047907.7, dated Nov. 8, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201380047907.7, dated Apr. 12, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/180,570, dated Oct. 5, 2017. |
Office Action regarding U.S. Appl. No. 15/180,570, dated Mar. 22, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/180,570, dated May 31, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/180,570, dated Jul. 19, 2018. |
Office Action regarding Indian Patent Application No. 476/MUMNP/2015, dated Sep. 7, 2018. |
Office Action regarding Indian Patent Application No. 10655/DELNP/2012, dated Sep. 28, 2018. |
Office Action regarding European Patent Application No. 13836817.0, dated Sep. 10, 2019. |
Office Action regarding U.S. Appl. No. 16/154,097, dated Jun. 23, 2020. |
International Search Report regarding International Application No. PCT/US2020/025564, dated Jul. 8, 2020. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2020/025564, dated Jul. 8, 2020. |
Office Action regarding U.S. Appl. No. 16/154,364, dated Aug. 17, 2020. |
International Search Report regarding International Application No. PCT/US2020/037004, dated Sep. 21, 2020. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2020/037004, dated Sep. 21, 2020. |
Notice of Allowance regarding U.S. Appl. No. 16/154,097, dated Oct. 27, 2020. |
Notice of Allowance regarding U.S. Appl. No. 16/154,364, dated Jan. 6, 2021. |