This application is based on and claims priority under 35 U.S.C. § 119 to Korean Patent Application No. 10-2018-0143218 filed on Nov. 20, 2018 in the Korean Intellectual Property Office, the disclosure of which is incorporated by reference herein in its entirety.
The disclosure relates to an electronic device using a compressor, such as an air conditioner, a refrigerator, and a freezer, and more particularly, to a sealed compressor including a suction guide which guides gas from an outside of a casing to an inlet of a compression unit.
A compressor refers to a mechanical device which increases pressure of gas by compressing the gas. Compressors are classified into a reciprocating type and a rotary type according to operating principles. In a reciprocating-type compressor, a rotary motion of a motor is converted into a linear reciprocating motion of a piston in a cylinder through a crank shaft and a connecting rod so that gas can be sucked and compressed. As rotary-type compressors, there are a rotary compressor which sucks and compresses gas while a roller rotates in a cylinder due to a rotary motion of a motor, and a scroll compressor which continuously sucks and compresses gas while a rotating scroll is rolled in a predetermined direction with respect to a stationary scroll due to a rotary motion of a motor.
The scroll compressor includes a compression unit including a stationary scroll and an rotating scroll, a motor for rolling the rotating scroll of the compression unit, a casing for hermetically accommodating the compression unit and the motor, and a suction guide having a passage for guiding gas from the outside of the casing to the compression unit. The suction guide is disposed so that an outlet of the casing accommodating the compression unit therein can be aligned with a gas inlet of the stationary scroll. The suction guide is fastened around the gas inlet by screw coupling.
In such a conventional compressor, the inlet of the stationary scroll which comes in contact with the outlet of the suction guide has an irregular shape, and thus the outlet of the suction guide also has a complex shape. To commercialize the suction guide having the complicated outlet, the suction guide is generally manufactured with plastic by injection molding. Further, the suction guide is coupled to the fixed scroll to minimize a gap at contact points when assembled. Because the injection-molded plastic has low mechanical strength, the suction guide is likely to be damaged when assembled or operating. In terms of design, the complex structure of the suction guide limits a gas passage, causing reduction in a cross-sectional area and degradation in a compression efficiency. In particular, when the compression unit is being inserted in the casing, it is not easy to couple the suction guide to the stationary scroll because a space between the compression unit and the casing is narrow.
An aspect of one or more exemplary embodiments is to provide a compressor having a suction guide which has a simple structure and high mechanical strength and showing high compression efficiency, and an electronic device using the compressor.
Another aspect of one or more exemplary embodiments is to provide a method of manufacturing a compressor showing high workability.
According to an embodiment, a compressor is provided. The compressor includes a compression unit comprising an inlet for sucking gas and configured to compress the sucked gas; and a casing configured to accommodate the compression unit; and a suction guide comprising a passage for guiding the gas from an outside of the casing to the inlet, wherein the compression unit includes a first surface extending from an edge of the inlet, the suction guide includes a second surface extending from an edge of a vent of the passage, and provided in an internal area of the casing to make the first surface and the second surface face each other, and an external end of the first surface and an internal end of the second surface or an internal end of the first surface and an external end of the second surface do not overlap along a direction of an axis of the compressor. According to a compressor of the disclosure, it is possible to make the inlet of the compression unit and the vent of a suction guide face each other by simply inserting the compression unit with regard to the suction guide coupled to the casing, thereby not only causing high workability but also simplifying the structure of the suction guide so that the suction guide can be manufactured with metal by press work.
The first surface may radially protrude from the compression unit, thereby forming a simple and independent surface facing the suction guide.
Insertion of the compression unit into the casing in the state that the suction guide is coupled to the casing may be enough to align the inlet of the compression unit with the vent of the suction guide casing.
The suction guide may be coupled to the casing.
The compression unit may be accommodated in the casing in a state that the suction guide is coupled to the casing.
The suction guide may include a guide body; and at least one wing comprising one side supported by the guide body and an opposite side supported by the casing.
The wing may support the guide body to elastically bias the guide body in a direction away from the inlet, thereby coping with a mechanical error and a work error.
The suction guide may include one pair of wings supported by left and right sides of the guide body, thereby facilitating coupling work for the suction guide.
The wing may be welded onto and supported by the casing.
The first surface may include a first taper portion inclined toward the axis at the internal end or the external end, thereby facilitating assembling for the compression unit.
The second surface may include a second taper portion inclined away from the axis at the internal end or the external end, thereby facilitating assembling for the compression unit.
The first surface and the second surface may be provided as single surfaces and interlocked without interference.
The compression unit May include a stationary scroll including a first scroll forming a spiral compression compartment; and a rotating scroll comprising a second scroll inserted in and rotating in the spiral compression compartment.
Each of the stationary scroll and the rotating scroll may include three protruding flanges radially protruding from the axis of the compressor.
The inlet may be positioned between two adjacent protruding flanges of the stationary scroll, and the two protruding flanges may be not positioned in a surface extending from the first surface, so that the compression unit can be put to the suction guide coupled to the casing without interference.
According to an embodiment, a method of manufacturing a compressor is provided. The method of manufacturing the compressor includes providing a compression unit comprising an inlet for sucking gas and compressing the sucked gas; providing a casing for accommodating the compression unit; coupling, to an internal wall of the casing, a suction guide comprising a passage for guiding the gas from an outside of the casing to the inlet; and inserting the compression unit into the casing to make the inlet and a vent face each other.
According to an embodiment, an electronic device including a compressor is provided. The compressor includes a compression unit comprising an inlet for sucking a gas and configured to compress the sucked gas; a casing configured to accommodate the compression unit; and a suction guide comprising a passage for guiding the gas from an outside of the casing to the inlet, wherein the compression unit includes a first surface extending from an edge of the inlet, the suction guide includes a second surface extending from an edge of a vent of the passage, and provided in an internal area of the casing to make the first surface and the second surface face each other, and an external end of the first surface and an internal end of the second surface or an internal end of the first surface and an external end of the second surface do not overlap along a direction of an axis of the compressor.
The above and/or the aspects will become apparent and more readily appreciated from the following description of exemplary embodiments, taken in conjunction with the accompanying drawings, in which:
Hereinafter, a compressor 1 used in an electronic device, such as an air conditioner, a refrigerator, and a freezer, will be described in detail with reference to the accompanying drawings. Embodiments set forth herein describe a sealed scroll compressor 1 to aid in understanding the disclosure. However, the embodiments are exemplary, and it should be understood that the disclosure may be modified and implemented in various ways, such as a sealed rotary compressor and a sealed reciprocating compressor, unlike the embodiments set forth herein. In describing the disclosure below, when a detailed description of an associated well-known function or component unnecessarily obscure the gist of the disclosure, the detailed description will be omitted.
The casing 10 is shaped like a cylinder opened downward and includes an upper cover 12 and a cylindrical body 14. The cylindrical body 14 includes a sealer 15 having a tube insertion hole 13 and a gas suction tube 16 put into the tube insertion hole 13.
The discharge cover 20 guides gas, which is compressed in and discharged from the compression unit 50, to be discharged to the outside of the casing 10.
The compression unit 50 compresses sucked gas, for example, a refrigerant, and discharges the compressed gas. The compression unit 50 includes a stationary scroll 30 and a rotating scroll 40 which are coupled to each other.
The stationary scroll 30 has a first scroll 32, which forms a spiral compression compartment 33S spirally extending from the outer portion toward the center having a predetermined width, and a suction portion 35 formed on the circumferential surface. The suction portion 35 has an inlet 31 in which a gas delivered from the suction guide 60 flows. The inlet 31 communicates with the outer portion of the spiral compression compartment 33S.
The rotating scroll 40 includes a plate-shaped base 41, a second scroll 42 protruding in a spiral shape on the upper surface of the base 41, and a shaft coupling unit 44 coupled to the shaft of the motor 70 under the lower surface of the base 41. The rotating scroll 40 rotates with the second scroll 42 inserted in the spiral compression compartment 33S. As the second scroll 42 rotates in the spiral compression compartment 33S, gas sucked into the spiral compression compartment 33S is compressed step by step toward the center and then discharged through an outlet 34.
The suction guide 60 is provided between the inlet 31 of the stationary scroll 30 and the tube insertion hole 13 of the casing 10. The suction guide 60 guides gas from the outside of the casing 10 to the inlet 31 of the stationary scroll 30.
The motor 70 includes a stator 72, a rotor 74, and a rotary shaft 76 coupled to the rotor 74. The rotary shaft 76 includes an eccentric axis unit 77 at an end portion thereof. The eccentric axis unit 77 is coupled to the shaft coupling unit 44 of the rotating scroll 40. The rotating scroll 40 rotates due to the rotation of the eccentric axis unit 77.
The support 80 includes a casing coupling unit 82 which protrudes upward in a ring shape. The casing coupling unit 82 closely contacts and is accommodated in the open lower end of the casing 10 so that the casing 10 can be supported in a standing state.
The compression unit 50 is described in further detail below with reference to
The stationary scroll 30 includes the first scroll 32, which forms the spiral compression compartment 33S spirally extending from the outside toward the center with the predetermined width, and the suction portion 35 having the inlet 31 leading from the circumferential surface to the external end of the spiral compression compartment 33S. The spiral compression compartment 33S refers to a compression space, of which the center communicates with the outlet 34. Gas sucked through the inlet 31 is delivered to the outer portion of the spiral compression compartment 33S, moved to the center while being compressed in the spiral compression compartment 33S due to the rotation of the rotating scroll 40, which will be described later, and then discharged to the outlet 34.
The rotating scroll 40 includes the plate-shaped base 41, the second scroll 42 extending toward the center in a spiral shape on the upper surface of the base 41, and the shaft coupling unit 44 extending from the lower surface of the base 41 in the axial direction of the compressor. The rotating scroll 40 is coupled to the rotary shaft 76 through the shaft coupling unit 44 and orbits. As a result, when the second scroll 42 rotates in the spiral compression compartment 33S of the stationary scroll 30, gas flowing into the spiral compression compartment 33S through the inlet 31 is moved from the outer unit toward the center while being gradually compressed.
A compression operation of the compressor 1 according to the embodiment of the disclosure will be described below with reference to
In
In
In
In
As described above, the medium A, which is sucked from the outside of the casing 10 into the inlet 31 through the suction guide 60, is gradually compressed moving toward the center due to repeated rotation of the rotating scroll 40.
The first surface 1S has a single surface which extends from the edge boundary of the inlet 31. The first surface 1S may be a curved surface or a complex surface. The suction portion 35 may include a first taper portion which is inclined toward the axis 0 at the internal end 38. Due to this structure, the convenience of operation is further improved in the manufacturing process of inserting the compression unit 50 into the casing 10. As necessary, the suction portion 35 may include a taper portion which is inclined toward the axis 0 at the external end 37 of the first surface 1S.
The rear of the suction guide 60 is opened. Therefore, when the suction guide 60 is installed on the internal wall of the casing 10, the internal wall of the casing 10 serves as the back wall.
The wings 64 are coupled to the guide body 62 through connecting units 63. The connecting units 63 are bent from the left and right back edges of the guide body 62 at a predetermined angle and extend. The connecting unit 63 may have slight elasticity so that the guide body 62 can be elastically pushed back. The wings 64 may be coupled to the internal wall of the casing 10, for example, by welding. The wings 64 have a curvature similar to that of the internal wall of the casing 10. The wings 64 are coupled to the casing 10 at only end portions, while spacing the other portions apart from the casing 10 so that the guide body 62 may be additionally provided with elasticity.
As described above, the suction guide 60 has a simple structure and may be easily manufactured with metal by press work. Also, the suction guide 60 formed of metal has superior durability to conventional injection molded plastic and can be welded to the casing 10 formed of metal.
The motor 70 is previously installed in the casing 10 in the axial direction, and the suction guide 60 is previously installed on the internal wall of the casing 10. The suction guide 60 is previously coupled at a position corresponding to the gas suction tube 16 of the casing 10, for example, by welding. Subsequently, the compression unit 50 is inserted into the casing 10 through the lower opening. In this case, the compression unit 50 is inserted into the casing 10 inverted with the lower opening facing upward. Due to this assembling of the compression unit 50, the inlet 31 of the suction portion 35 and the vent 61 of the suction guide 60 are disposed to face each other. In this casing, the external end (see “37” in
In
The external end 37 of the first surface 1S of the suction portion 35 and the internal end 68 of the second surface 2S of the suction guide 60 may have the first taper portion and the second taper portion, respectively. Even when the first taper portion and the second taper portion slightly overlap in the axial direction due to a mechanical tolerance of the suction guide 60 or the stationary scroll 30 or due to a coupling position error of the suction guide 60 caused by a worker, the suction guide 60 may be pushed back due to the elasticity of the connecting units (see “63” in
A motor 70 is previously installed in the casing 10 in an axial direction, and the suction guide 60 is previously installed on the internal wall of the casing 10. The suction guide 60 is previously coupled a position corresponding to a gas suction tube 16 of the casing 10, for example, by welding. Subsequently, the compression unit 50 is inserted into the casing 10 through the upper opening. Due to this assembling of the compression unit 50, an inlet 31 of a suction portion 35 and a vent 61 of the suction guide 60 are disposed to face each other. In this case, an internal end (see “38” in
According to embodiments of the disclosure, because an inlet boundary of a stationary scroll which comes in contact with a gas vent of a suction guide is planar, the gas vent boundary of the suction guide, which will be put together with the inlet boundary of the stationary scroll, can be also designed to be planar. In this way, as the gas vent of the suction guide is simplified in shape, the suction guide can be manufactured with metal by press work instead of plastic based on injection molding and can be directly welded to the casing. Therefore, the suction guide is improved in mechanical strength, and is thus prevented from damage when assembled or operating.
Also, in the compressor, the structure of a suction guide is simplified. Therefore, the design of a gas flow channel is simplified, and efficiency is improved with increase in a channel area.
Further, because it is possible to omit an operation of coupling the suction guide to the stationary scroll with a bolt, workability is improved.
Although a few exemplary embodiments have been shown and described, the disclosure is not limited to the specific embodiments set forth herein and can be modified in various ways by those skilled in the art without departing from the spirit of the disclosure defined in the claims. The modified embodiments should not be understood separately from the technical spirit and prospect of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
10-2018-0143218 | Nov 2018 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
7316549 | Kim et al. | Jan 2008 | B2 |
9366462 | Perevozchikov et al. | Jun 2016 | B2 |
20010055536 | Bernardi | Dec 2001 | A1 |
20040126258 | Lai | Jul 2004 | A1 |
20060177332 | Kim et al. | Aug 2006 | A1 |
20060222550 | Shin et al. | Oct 2006 | A1 |
20070183914 | Gopinathan | Aug 2007 | A1 |
20090035168 | Ginies et al. | Feb 2009 | A1 |
20090229303 | Iversen | Sep 2009 | A1 |
20140069139 | Perevozchikov | Mar 2014 | A1 |
20200109711 | Futagami | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
1840909 | Oct 2006 | CN |
101223364 | Jul 2008 | CN |
104619987 | May 2015 | CN |
20010015515 | Feb 2001 | KR |
20080019509 | Mar 2008 | KR |
10-1462943 | Nov 2014 | KR |
10-2015-0081691 | Jul 2015 | KR |
Entry |
---|
Office Action dated Jun. 9, 2021 in Chinese Application No. 201911134853.3. |
Office Action dated Jan. 18, 2022 in Chinese Application No. 201911134853.3. |
Number | Date | Country | |
---|---|---|---|
20200158110 A1 | May 2020 | US |