Compressor Housing

Information

  • Patent Application
  • 20080152516
  • Publication Number
    20080152516
  • Date Filed
    November 28, 2005
    18 years ago
  • Date Published
    June 26, 2008
    16 years ago
Abstract
A compressor housing comprising an upper shell and a lower shell assembled at a peripheral weld seam. At least one shell extends from the center of the housing beyond the weld seam outwards and upwards.
Description

The present invention relates to a refrigerant compressor housing, especially for a compressor for use in a domestic refrigerator. Such a compressor housing is known for example from DE 20 209 839 U1.


The conventional compressor housing is composed of two shell sections which are hermetically welded to each other and which enclose the compressor. To cool the compressor on the one hand and on the other hand to remove condensation which regularly occurs in normal operation within the refrigerator, a vaporizing container is mounted on the upper shell of the housing into which the condensation is directed and in which vaporization is undertaken with the aid of the waste heat of the compressor.


Only when the floor of the condensation holder is nestling very closely against the curved upper side of the upper housing shell is an efficient heat transfer from the housing shell into the condensation and thereby an efficient cooling of the compressor and vaporization of the condensation possible. To guarantee a close fit, the floor of the condensation holder and the upper housing shell must be manufactured with close tolerances, which is a costly operation.


The object of the invention is to specify a housing for a compressor which, with minimal manufacturing costs and low demands on the dimensional accuracy of the shell sections, guarantees a uniformly efficient and effective cooling of the compressor or vaporization of the condensation.


The object is achieved by a compressor housing with an upper and a lower shell which are assembled at a peripheral weld seam, in which at least one of the shells extends in a radial direction outwards as well as upwards beyond the weld seam. The result of this shape is a concavity on the upper side of the compressor housing of which the walls are formed directly by the shells of the compressor housing and which is in a position to accommodate condensation. The omission of the conventional vaporization shell as a separate component and the direct contact of the condensation with the shells of the compressor housing guarantees an efficient transfer of heat to the condensation independent of any possible manufacturing disparities in the shape of the shells and thereby an efficient cooling and vaporization.


According to a first embodiment it is the lower shell which extends beyond the weld seam and which is assembled at this seam with the outer edge of the upper shell, so that the walls of the concavity produced are formed partly by the upper shell and partly by the part of the lower shell extending beyond the weld seam.


According to a second embodiment it is the upper shell which extends beyond the weld seam and is assembled at the weld seam with the outer edge of the lower shell. In this case the upper shell alone delimits the concavity.


Preferably the weld seam forms a lowest point of a peripheral channel open at the top.


For different shell heights, especially for a lower shell which is higher in relation to the upper shell, the compressors can be pre-fitted particularly easily.





Further features and advantages of the invention emerge from the description of exemplary embodiments given below with reference to the enclosed figures. The figures show:



FIG. 1 a schematic cross-section through a compressor housing in accordance with a first embodiment of the invention;



FIG. 2 an enlarged detail from FIG. 1;



FIG. 3 a schematic cross-section through a second embodiment of the housing; and



FIG. 4 an enlarged detail of an embodiment modified slightly compared to that shown in FIG. 3.





The housing shown in FIG. 1 is composed of a flat lower shell 1, to the outer side of which a number of attachment feet 2 are welded for mounting the compressor housing in a refrigerator, and a upper shell 4 which is assembled with the outside edge of the lower shell 1 via a weld seam 3. The upper shell 4 extends out in cross section outwards and upwards from a central vertex to the weld seam 3 as well as in radial direction initially beyond the weld seam 3 further downwards, to finally rise once more. In this way the upper shell 4 forms a peripheral channel 5 open at the top which is able to accommodate condensation to be vaporized.


The lowest point 6 of the channel 5 lies in this embodiment in a radial direction slightly outside the weld seam 3, so that with a low water level the water in the channel 5 does not touch the area of the upper shell 4 lying within the weld seam 3 and thus is only heated slightly. As the water level rises, as a result of the slope of the inner area of the shell 4 which rises gradually through to the central point, the water extends ever further to this inner area, which greatly increases on the one hand the effectiveness of the heat transfer to the water and on the other hand the vaporization surface available. Thus the rate of vaporization increases with the increase in the water level and an overflow is avoided.


As the enlarged detail in FIG. 2 shows, a peripheral bead 7 is formed in the upper shell 4 at the height of the weld seam, into which the edge of the lower shell 1 engages. Thus the position of the shells 1, 4 in relation to one another is defined before welding and it is easy to ensure that they are in contact over the entire circumference of the lower shell 1 and can be tightly welded.



FIG. 3 shows a section through a compressor housing similar to that shown in FIG. 1 in accordance with a second embodiment of the invention. Here the lower shell 1 is shown in the form of a bowl with a flat bottom and with side walls 8 rising steeply in a lower area diverging from each other in an upper area, but it could also have a curved bottom as shown in FIG. 1; Accordingly the bowl form of FIG. 3 could also be transferred to the embodiment of FIG. 1.


A curved upper shell 4 rests on the widened-out upper section of the side wall 8; its edge is welded to the side wall 8. The uppermost area of side wall 8, above the weld seam 3, delimits together with the upper shell 4 a peripheral channel 5 which accommodates condensation. Because of the curved form of the shell 4, here too the surface on which the water in the channel 5 is heated directly through the upper shell 4 increases as the water level increases, exactly like the free surface of the water on which the vaporization takes place.


In this embodiment the weld seam 3 and the lowest point 6 of the channel 5 coincide, so that even with a low water level in the channel 5 the water located within it is heated directly through the upper shell 4.



FIG. 4 shows in an enlarged cross section the surrounding area of the weld seam 3 in an embodiment slightly modified from that shown in FIG. 3. Here the side wall 8 of the lower shell 1 is essentially vertical up to a shoulder 9 which joins two wall sections of slightly different diameters and serves as a support onto which the upper shell 4 is welded.

Claims
  • 1-10. (canceled)
  • 11. A compressor housing comprising an upper and a lower shell which are assembled at a peripheral weld seam, wherein at least one of the shells extends from the center of the housing outwardly beyond the weld seam and upwardly over the weld seam.
  • 12. The compressor housing as claimed in claim 11, wherein the upper shell has a peripheral formed channel which protrudes outwardly in relation to the shell side wall.
  • 13. The compressor housing as claimed in claim 12, wherein the weld seam is provided between the upper shell and the lower shell on the outside of the formed channel.
  • 14. The compressor housing as claimed in claim 11, wherein the lower shell extends beyond the weld seam and is assembled at the weld seam with an outer edge of the upper shell.
  • 15. The compressor housing as claimed in claim 11, wherein the upper shell extends beyond the weld seam and is assembled at the weld seam with an outer edge of the lower shell.
  • 16. The compressor housing as claimed in claim 15, wherein the upper shell has a peripheral formed channel which protrudes outwards in relation to the shell side wall.
  • 17. The compressor housing as claimed in claim 16, wherein the weld seam is provided between the upper shell and the lower shell on the outside of the formed channel.
  • 18. The compressor housing as claimed in claim 11, wherein the weld seam forms a lowest point of a peripheral channel open at the top.
  • 19. The compressor housing as claimed in claim 11, wherein the seam includes a welded seam.
  • 20. The compressor housing as claimed in claim 11, wherein one of the shells has at least one of a bead and a shoulder at the weld seam.
  • 21. The compressor housing as claimed in claim 11, wherein the shells have a different shell height.
  • 22. The compressor housing as claimed in claim 21, wherein the lower shell has a greater shell height than the upper shell.
  • 23. The compressor housing as claimed in claim 22, wherein the upper shell has a peripheral formed channel which protrudes outwards in relation to the shell side wall.
  • 24. The compressor housing as claimed in claim 23, wherein the weld seam is provided between the upper shell and the lower shell on the outside of the formed channel.
Priority Claims (1)
Number Date Country Kind
10 2004 062 305.8 Dec 2004 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2005/056274 11/28/2005 WO 00 6/21/2007