Compressor, in particular for a vehicle air conditioning system

Information

  • Patent Grant
  • 6250204
  • Patent Number
    6,250,204
  • Date Filed
    Tuesday, March 3, 1998
    26 years ago
  • Date Issued
    Tuesday, June 26, 2001
    23 years ago
Abstract
A compressor, in particular for a vehicle air conditioning system, with a housing, which contains a device for conveying a compressed medium driven by a drive shaft, designed as an axial piston machine and having at least one piston reciprocating in a cylinder block and a take-up plate connected to the piston working in combination with a swash plate rotating around a rotational axis, whereby the swash plate is connected to the drive shaft by a carrier and whereby the take-up plate encompasses a support device working in combination with a non-rotating thrust bearing. The compressor is distinguished by the fact that the housing has two housing sections each with a clamping shoulder between which the cylinder block is clamped, and that the drive shaft is carried in the cylinder block by a fixed bearing and/or that the carrier and the drive shaft are materially connected together or are made as one piece and/or that the support device includes a projection projecting from the take-up plate preferably connected to this as one piece, and a support element, that the support element has a first sliding surface which works in combination with a bearing surface (second bearing surface) of the thrust bearing and that the projection and the support element are positively connected together via a second sliding surface.
Description




BACKGROUND OF THE INVENTION




The invention relates to a compressor, in particular for a vehicle air conditioning system.




Conventional compressors for air conditioning systems, so-called air conditioning compressors, have a housing that surrounds a device for the transfer of the compressed medium. The pump unit, in the form of an axial piston pump, has at least one piston that can reciprocate within a cylinder block, and a swash plate rotating around a rotational axis, working in combination with a non-rotating take-up plate located within the compressor housing, which is connected to the pistons. The swash plate is coupled to the drive shaft via a carrier. The take-up plate rests upon a support device on a non-rotating thrust bearing. The thrust bearing serves to intercept the torque that is transferred from the rotating swash plate to the take-up plate. Normally a compressor of the type described here has several pistons. These transfer the medium to be compressed from a suction area to a compression area. The forces required for the compression of the coolant are very high. They are transferred into the housing via the drive shaft, which gives rise to high air borne/structure borne noise emissions. Familiar compressors of this type also have the disadvantage that the carriers surround the drive shaft or the transfer of torque from the swash plate takes place using pegs or by pressing. This leads to a relatively high space requirement. Furthermore, it has also become evident that compressors of the conventional type are of expensive construction and encompass many components in the area where the take-up plate is supported. Furthermore, the take-up plate is often weakened by the support device.




SUMMARY OF THE INVENTION




The objective of the invention is to create a compressor of the type discussed here of simple and compact construction that gives rise to low air-borne/structure-borne noise emissions and in particular can be economically manufactured.




For the achievement of this objective a compressor is suggested that has the characteristics described in claim


1


. It is characterised by the fact that the forces required for the compression of the coolant are principally carried in the inside of the compressor housing. To achieve this the housing is made up of two sections, which each have a clamping shoulder. The cylinder block, in which at least one of the pistons of the device for conveying the compression medium reciprocates, is clamped between these. The drive shaft of the device for conveying the compression medium is fixed in the cylinder block by a fixed bearing.




It is therefore possible to transfer the forces required for the reciprocal movement of the pistons and the compression of the coolant via the swash plate, which is rigidly connected to the drive shaft, into the drive shaft and therefore into the inside of the housing. From the drive shaft the forces travel into the cylinder block, which is clamped by the two housing sections. The lines of force only run via the small housing section that runs outside via the fixing point of the cylinder block. The radiation area for air-borne/structure-borne noise is therefore reduced to a minimum. Furthermore, the housing is stabilised by the fixing points of the two housing sections to such a degree that when the device for conveying compressed medium is in operation only low vibrations occur at this point, greatly reducing the emission of noise.




Alternatively, or in addition to the above mentioned measures, it is suggested that the carrier and the drive shaft are fastened together by adhesion—preferably by welding, soldering and/or gluing—or manufactured as a single piece. This type of design makes it unnecessary for the drive shaft to be surrounded by the carrier, so less space is required. It is also evident that due to this construction the swash plate can swing out further, meaning that the compressor can be shorter. According to the invention, the construction of the compressor can also be simplified in that the take-up plate support device encompasses one of these projections, constructed as part of the take-up plate, that works in combination with a single support element. The number of parts is thus reduced to a minimum. The support element has a first sliding surface that works in combination with a first bearing surface of the support bearing, upon which the take-up plate is supported, for example in the compressor housing. The projection and the support element are positively connected together via a second sliding surface, whereby, on the one hand, a secure retention of the support element onto the projection is ensured without the need for additional support elements and, on the other hand, the relative movement of the two sections on the sliding surface is possible without giving rise to high loading.




A compressor design is preferred that is characterised by the fact that the cylinder block has a rotating mounting flange. The height of this flange is much less that that of the cylinder block. The mounting area of the housing can therefore be greatly reduced, so that the sound emission area is extremely small.




Particularly preferred is a compressor design that is characterised by the fact that the two housing sections are welded together. The vibrations and pulsations emitted by the operating compressor are conducted directly by the welded area of the housing sections, which are therefore connected together in a particularly stable and low vibration manner. This leads to a reduction in noise emissions. Furthermore, assembly parts, such as flanges and screws fitted outside the compressor housing, can be avoided completely, thus avoiding the surfaces of parts, which could contribute to noise emissions. The pump is therefore very light and compact, which greatly reduced the total noise emission area.











BRIEF DESCRIPTION OF THE DRAWINGS




Further advantageous developments are described in the other subclaims.




The invention is described in more detail below based on the following drawings:





FIG. 1

is an example of a longitudinal section of a compressor design;





FIG. 2

is a cross-section through the compressor shown in

FIG. 1

;





FIG. 3

is a detailed enlargement of a longitudinal section of a modified design of the support device shown in

FIG. 1







FIG. 4

is a detailed enlargement of a modified design of the support device in cross-section and,





FIG. 5

is a diagram showing an enlarged view of a take-up plate and support.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




The basic design and function of a compressor in the form of an axial piston transfer device are familiar, and will therefore be described only briefly here.




The longitudinal section shown in

FIG. 1

shows a compressor


1


with a housing


3


that encompasses a first housing section


5


and a second housing section


7


. The first housing section


5


includes a hollow


9


also denoted as a driving area, in which a compressed medium transfer device


11


is located. This is driven in an appropriate manner, for example via a pulley


13


, which may, for example, be driven by a vehicle internal combustion engine and via a drive shaft


15


rotating around rotational axis


17


. The drive shaft is carried in the housing


3


close to the pulley


13


by a movable bearing


19


. A swash plate


21


is rigidly connected to the drive shaft


15


, i.e. it turns with the drive shaft and is secured against axial displacement, i.e. against displacement in the direction of the axis of rotation


17


. The swash plate


21


acts via a bearing device


23


in combination with a non-rotating take-up plate


25


located in housing


3


, which is coupled via a connecting rod to at least one piston, which reciprocates in the direction of its longitudinal axis


29


when the swash plate rotates via the take-up plate


25


. The longitudinal axis


29


of the piston


27


normally runs parallel or parallel to rotational axis


17


of the rotatable swash plate


21


. However, it is also possible that the axes are at an angle to each other. The important fact is that the longitudinal axes of the pistons do not run at right angles to the rotational axis


17


of the drive shaft, so that a so-called axial piston pump or compressor is formed.




The take-up plate


25


is supported via a support device


127


on an thrust bearing


129


, which is fitted in housing


3


so that it cannot turn. The thrust bearing


129


has two bearing surfaces, of which bearing surface


145


is shown in FIG.


1


.




The example represented in

FIG. 1

has several pistons. Only one further connecting rod


26


′ and associated piston


27


′ are shown here, the rod reciprocates in relation to its longitudinal axis and is coupled to take-up plate


25


. The longitudinal axis


29


′ of piston


27


′ also runs parallel to the rotational axis


17


here. The pistons are run in bores


31


and


31


′, which are located in a cylinder block


35


. This lies flat on a valve plate


37


, through which the compressed medium from the compressor is transferred into a pressure area


39


, denoted also as a high pressure chamber, located in the second housing section


7


. The second housing section


7


contains a further pressure area, the second pressure area


39


′, which represents the suction area for the pressurised medium. The medium located in the second pressure area


39


′ can have a pressure of up to 40 Bar or above. The pressure areas are separated from each other by a first dam


40


. A second dam


40


′ seals the first pressure area


39


in relation to the environment. The dams can be fitted with suitable seals and lie directly next to the cylinder block


35


or—as in the example construction represented in FIG.


1


—on the valve plate denoted as valve disk


37


, which acts in connection with the cylinder block.




The cylinder block


35


has a rotating mounting flange


41


, the height of which is significantly less than the total height of the cylinder block, for example less than a quarter of the total height.




The mounting flange


41


is clamped between a first clamping shoulder


43


on the first housing section


5


and a second clamping shoulder


45


, that is fitted in the second housing section


7


. The first clamping shoulder


43


is created because the wall thickness of a first wall area


47


of the first housing section


5


in the area of the hollow


9


is significantly greater than in the area of the mounting flange


41


and the valve plate


37


. A second wall area


49


, which is significantly less thick than the first wall area


47


originates from the first wall area


47


. There is a sealing device


51


in the area of the first clamping shoulder


43


, which may for example consist of an O-ring inserted into a groove


53


, which is not shown here. This design ensures that the pressure in the hollow


9


can only act upon the first wall area


47


and is screened from the second wall area


49


, so that it can be significantly thinner.




The second wall area


49


extends over a section of the second housing section


7


and is located there is an indentation


55


, so that there is a continuous external surface of housing


3


. The end of the indentation


55


and the second wall area


49


is constructed such that there is a circumferential v-groove


57


, in the area of which the two housing sections


5


and


7


can be welded. By the use of a laser welding process the v-groove


57


can be avoided. Basically, however, the desired method of connecting the housing sections


5


and


7


is possible, to seal housing


3


in an airtight manner. The v-groove


57


is located to the right of mounting flange


41


and in the area of the second housing section


7


in

FIG. 1

, so that when the two housing sections are connected the second housing section


7


can be pressed against the valve plate under pre-stressing.




In the external area of the second housing section


7


, supported on the right-hand surface of the valve plate


37


, thus in the area of the clamping shoulder


45


, a seal


59


is again fitted, which has a circumferential groove


61


, in which an O-ring can be fitted. This seal


59


ensures that the medium in pressure area


39


, which is under a high excess pressure, cannot reach the second wall area


49


, so that it is not subject to any radial outward acting pressure forces, only axial tensile forces.




It is clear from the sectional representation that a relief bore E can be located in the second wall area


49


, through which coolant that travels underneath the second wall area


49


by passing through the seal


51


or the seal


59


can be discharged to the environment. In this manner overpressure under the second wall area


49


, which could give rise to radial outward acting compressive force, is avoided. It is therefore possible to make the wall so thin that it is only suitable for taking up axial tensile forces.




If the drive shaft


15


is set in rotation by the pulley


13


, then the swash plate


21


turns in relation to the take-up plate


25


, which rests on the on-rotating support bearing


129


, and therefore does not follow the rotation of the swash plate


21


. The take-up plate


25


, together with the swash plate


21


, wobbles, so that the pistons


27


and


27


′ reciprocate in the direction of their longitudinal axes


29


and


29


′. In this manner a medium is transferred via a flap valve into the pressure area


39


and from there travels to a consumer. For example the compressor


1


conveys a compressible medium for a vehicle air conditioning unit.




In the operation of the compressor


1


high pulsation forces occur due to the reciprocal movement of the pistons


27


,


27


′ and any further pistons. These forces are conducted via the take-up plate


25


and the bearing


23


into the swash plate


21


. From here the forces travel into the drive shaft


15


. As this is anchored to the cylinder block


35


via a fixed bearing


63


, the forces, for example tensile forces in the drive shaft, are transferred into the cylinder block. Other forces are transferred under high pressure through the medium into the pressure area


39


by the pistons


27


,


27


′ and act on the second housing section


7


, attempting to lift it from the valve plate


37


or from the first housing section


5


. As the first housing section


5


and the second housing section


7


are rigidly connected together in the area of the V-groove


57


, the forces acting on the second housing section


7


are transferred back to the cylinder block


35


via the second wall area


49


and via the first clamping shoulder


43


, giving a closed line of force. Due to this design and the layout of the moveable bearing


19


represented in

FIG. 1

it is possible to ensure that the housing


3


is, to a large degree at least, free of forces, i.e. the forces transferred via the drive shaft into the inside of the housing are not transferred to the housing.




It is clearly shown that the lines of force run almost entirely in the inside of the compressor


1


, and only run in the outer area of the housing


3


in the small wall section of housing


3


that is made up of the second wall area


49


. Pulsations and vibrations that occur during the operation of the compressor


1


therefore remain, apart from a very small proportion, entirely enclosed within the inside of housing


3


, so that the noise emissions of the compressor


1


are greatly reduced compared to conventional compressors, in which the entire axial forces in the direction of the rotational axis


17


are transferred via the external housing wall, therefore particularly via the first wall area


47


, to the drive shaft


15


, giving a very large emission area.




Noise emissions are further reduced by the fact that in the connecting area between the housing sections


5


and


7


the second wall area


49


is rigidly connected to the base of the second housing section


7


, so that vibrations are greatly damped. This leads to a damping of the noise emissions. It is clear that the type of connection between the housing sections


5


and


7


does not matter. A welded housing


3


is distinguished by a very compact construction and simple method of manufacture. It is, however, also possible to connect the end of the second wall area


49


with a flanged edge or with an edge-raised groove by deformation, which can be fitted onto the second housing section


7


.




In both cases it is possible to firmly clamp the cylinder block


35


or the clamping flange


41


between the clamping shoulders


43


and


45


, which are fitted to the housing sections


5


and


7


, so that there is only an external emission surface for air and structure-borne emissions in this small clamping area. To ensure optimal rigidity, the second wall area


49


is formed to partially take in the second housing section


7


so that the connection area between the first housing section


5


and the second housing section


7


lies at a distance from the clamping area between the two clamping shoulders


43


and


45


.




The important point is that additional fitting elements can be avoided by the direct connection of the two housing sections


5


and


7


by welding or flanging, which greatly reduces the radiating surfaces that produce air-borne and structure-borne noise. At the same time a very simple, compact construction of compressor


1


is achieved.




It is particularly advantageous that, with the method of connecting the housing sections


5


and


7


described here, the sections can be axially pre-stressed, for example by subjecting the second wall area


49


to a warming process prior to welding or flanging so that there is an axial expansion. It has also become evident that because of the fact that a fixed bearing


63


is fitted in the cylinder block the compressor structural relatively small compared to conventional structural shapes.




As the drive shaft


15


is carried via a fixed bearing in cylinder block


35


, there is a common datum level for the drive shaft


15


and for the other parts of the pump unit


11


, for example for the pistons


27


,


27


′ and their connecting rods


26


and


26


′. Even if the present compressor


1


has a housing


3


made of aluminium and a drive shaft


15


made of steel, when the compressor is warmed that so called clearance volume, namely the volume when the piston is at top dead centre, remains very small.




The compressor described according to

FIG. 1

is suited for an outlet pressure of between 10 Bar and 200 Bar.





FIG. 1

shows that the take-up plate


25


continues into a projection


137


, which is part of the support device


127


and works in combination with a support element


139


, which for its part is part of the support device


127


. The thickness of the projection


137


is the same as that of the take-up plates


25


, giving particularly high solidity. The support element


139


encompasses a sliding surface, which slides upon the bearing surface


145


of the thrust bearing


129


. In the representation according to

FIG. 1

the support element


139


is located in its furthest left deflection. The furthest right deflection of the support element


139


is indicated by a dotted circle


141


, which should indicate the opposite swing position of the swash plate


21


. In the position represented here, the upper piston


27


is in its uppermost position in the cylinder block


35


, which is also known as top dead centre, whilst the lower piston


27


′ is practically at its maximum waiting position, also known as bottom dead centre.





FIG. 2

shows a cross-section through the compressor


1


. The same parts have the same reference number, so that the description for

FIG. 1

can be referred to.




Referring to

FIGS. 2 and 5

the compressor


1


has seven connecting rods


26


,


26


′,


26


″ and so on, equally spaced in the longitudinal direction. It is clear from the drawing that the take-up plate


25


ends in a projection


137


, which is part of the support device


127


. The projection


137


is connected to the take-up plate


25


as one piece. It works in connection with the support element


139


, which slides along a bearing surface


145


of the thrust bearing


129


with a first sliding surface


143


. The projection


137


and the support element


139


are positively connected together. A second sliding surface


147


is formed in their contact area, which is preferably spherically curved. Here the projection


137


has a—preferably spherically—curved indentation, in which a curve of the support element


139


—preferably formed as a spherical section—engages. This ensures that the support element


139


is carried along with the reciprocation of the projection


137


. Therefore no additional securing elements are required to couple the two sections of the support device


127


together.




On the opposite side of the projection


137


to the support element


139


there is a third sliding surface


149


, which works in combination with the bearing surface


145


of the thrust hearing


129


represented in FIG.


1


.





FIG. 2

shows that the first bearing surface


131


and the second bearing surface


145


of the thrust bearing


129


run generally parallel to each other. It is also possible, that they form an acute angle with each other, which opens out towards the take-up plate


25


. The drawing also shows that the bearing surfaces and an imaginary line


151


intersecting rotational axis


17


form an angle α. This is an actuate angle of approximately 12°.




It is, however, also possible to have the bearing surfaces parallel to the radially running line


151


. This design is not represented separately here.





FIG. 3

shows a modified design for the projection


137


of the support device


127


. This is distinguished by the fact that the third sliding surface


149


is not straight, but is curved. It is therefore possible to permit a tipping or swinging movement of the projection


137


in relation to the first bearing surface


131


.




A further variant can incorporate a curve in the third sliding surface


149


perpendicular to the curve shown in FIG.


3


. It is also feasible to imaging a variant with only one of the aforementioned curves shown. This variant is represented in

FIG. 4

, which shows the projection


137


in cross-section. In both cases the second sliding surface


147


can be recognised. The support element


139


is, however, not reproducing here. It is only shown in

FIG. 4

as a dotted line.




Because of the additional curve of the third sliding surface


149


represented in

FIG. 4

, a swinging movement in relation to a line perpendicular to the focal plane in

FIG. 4

is also possible.




All variants have in common the fact that the two bearing surfaces


131


and


145


and/or the sliding surfaces


143


,


147


and


149


have a particularly resistive layer. It is also possible to coat the bearing surfaces


131


and


145


of the thrust bearing


129


with a resistive metal strip. This is particularly advantageous for a cost effective realisation if the housing


3


of the compressor


1


is made of a relatively soft material, for example aluminium, so that wear to the bearing surface of the thrust bearing


129


is to be feared. It is, however, feasible to use a silicious aluminium for the manufacture of the housing, so that the bearing surfaces are intrinsically relatively resistive. In this case coating the bearing surfaces can be avoided.




The sliding surfaces can also be given a resistive coating, which can also be called a wearing coat. It is particularly advisible to provide the first sliding surface


143


of the support element


139


with this type of wearing coat. It is, however, also possible to manufacture the support element


139


from a resistive material, for example steel, thereby reducing to a minimum the wear during interaction with the thrust bearing


129


.




The special design of the third sliding surface


149


represented according to

FIGS. 3 and 4

, can not only be used in the variant according to

FIG. 2

, in which the bearing surfaces of the thrust bearing


129


form an angle α with an imaginary line


151


. Rather, it is possible to have a curved sliding surface with a projection that works in combination with an thrust bearing, the bearing surface of which runs parallel to the above mentioned line


151


.




From the above, it is clear that for the compressor construction represented here an optimal support of the take-up plate


25


on an thrust bearing


129


of a housing


3


is possible.

FIG. 2

shows that the thrust bearing


129


can be formed as a single piece with housing


3


, thus representing part of the housing, giving a very simple and economical construction. From the sectional representation in

FIGS. 3 and 1

it is clear that the projection


137


is formed as one piece with the take-up plate


25


, and so there is therefore no weakening of the take-up plate or the projection


137


, as is often the case for the state of the art. It is also clear that the support device


127


is very simply constructed and only has one support element


139


, that is positively secured onto projection


137


by a second sliding surface


147


. It is also feasible to have the opposite curve of the sliding surface and to provide the projection with a spherical section curve that engages with a support element having a suitable indentation. Here, too, a relative movement between the projection and support element is possible, as is the case for the construction example represented here. At the same time, the simple construction of the support device is ensured, making an economical and functional realisation possible.




The compact construction of the support device ensures that the torque transmitted to the take-up plate


29


is safely taken up. An optimal power feed to the take-up plate is therefore achieved.




The construction of the support device


127


shown in the Figures contains a peculiarity, the projection


137


resets via support element


139


on the corresponding second bearing surface


145


particularly well. Because of the rotation of the swash plate


21


, for example anti-clockwise, a torque is introduced into the take-up plate, so that the projection


137


is pressed against the second bearing surface


145


. In the design selected here, the preferred direction of rotation of the swash plate


25


is therefore pre-determined. According to

FIG. 2

it runs anti-clockwise. Therefore, if the compressor runs in the opposite direction, then the support device


127


should be designed as a quasi mirror image, to ensure optimal torque support. Particularly low surface pressures are achieved in interaction with the support element


139


and the thrust bearing


129


, therefore also giving the preferred direction of rotation of the compressor.




As described above based on

FIG. 1

, the drive forces from the pulley


13


driven by a vehicle internal combustion engine are transmitted via the drive shaft


15


which rotates around the rotational axis


17


. The swash plate


21


is connected to the drive shaft


15


. It is set in rotation via a carrier


119


, that here engages with a recess


121


running perpendicularly to the rotational axis


17


of the drive shaft


15


, the base of which is preferably level and is manufactured, for example, by a milling process in the peripheral surface of the drive shaft


15


. The carrier


119


is connected to the drive shaft by welding, friction welding, gluing, soldering or similar. The construction example represented in the Figure therefore shows a material connection between the carrier


119


and the drive shaft


15


. The contact area


122


between carrier


119


and drive shaft


15


can also be differently formed. It is, for example, also possible to give the carrier or the drive shaft a curved surface and the other piece a corresponding indentation. The carrier can also have a partial cylindrical recess, which can be placed on the external surface of the drive shaft


15


and connected with this.




It is, however, also possible to design the drive shaft and carrier as a single piece, thereby transmitting the driving forces introduced into the drive shaft


15


via the pulley


13


to the swash plate


21


.




It is immediately clear from the sectional representation according to

FIG. 1

that the carrier


119


is coupled to the drive shaft


15


without any devices (bolts or pegs) in such a manner that torque can be transmitted from the pulley


13


to the swash plate


21


. This is rigidly connected to the drive shaft in the axial direction so as not to rotate. This makes it unnecessary for the carrier


119


to encompass the drive shaft


15


or for the two components to be pressed together, giving rise to a smaller space requirement than is the case for conventional compressors. Because the carrier itself is very small, the swash plate can swing out further, meaning that the compressor itself is smaller than conventional compressors.




To sum up, a compressors can be realised using one or more of the constructional measures described according to

FIGS. 1

to


5


, that has a simple and therefore economical and compact construction. Particularly preferred is a variant of the compressor in which the carrier and drive shaft are materially connected together or made as one piece. The support device of the take-up plate includes one of these projecting support elements that has a first sliding surface that works in combination with a bearing surface of the thrust bearing, whereby the projection and the support element are positively connected together via a second sliding surface. The construction of this preferred construction example can be further simplified by constructing the compressor as two sections, whereby the two housing sections each have a clamping shoulder, between which the cylinder block is clamped. The drive shaft is carried in the cylinder block by a fixed bearing that supports or can absorb forces acting in the axial and radial directions. Furthermore, it is particularly advantageous here that by clamping the cylinder block between the two housing sections, the radiation surface for the creation of air-borne or structure-borne noise is reduced. The compressor described above is particularly advantageous for use in an air conditioning system in a vehicle due to its short and compact construction and low noise emissions. The required space for the compressor can be further reduced by the material connection of carrier and drive shaft. Naturally, a compressor in which only one or two of the constructional measures described above are used can also be realised in which the disadvantages of familiar compressors are avoided or at least reduced.



Claims
  • 1. A compressor, comprising:a housing; a drive shaft; at least one piston coupled to said drive shaft and reciprocating within a cylinder block; a take-up plate connected to said at least one piston, and working in connection with a swash plate rotating around a rotational axis, wherein said swash plate is coupled to said drive shaft via a carrier, said take-up plate is coupled to said swash plate through a non-rotating bearing, and said take-up plate is movably mounted in said housing through a support device; said drive shaft being rotatably mounted in said housing through a fixed bearing disposed in said cylinder block; said support device including a projection projecting from said take-up plate; and said support device further including a support element having a first sliding surface, which works in combination with a first bearing surface of said thrust bearing, said support element being positively connected with said projection through a second sliding surface on said projection; wherein: said housing includes two housing sections each with a clamping shoulder, said cylinder block being clamped between said clamping shoulders; and said cylinder block has a rotating mounting flange with a height which is less than the height of said cylinder block, said mounting flange being clamped between said clamping shoulders.
  • 2. The compressor according to claim 1, wherein:said housing includes two housing sections each with a clamping shoulder, said cylinder block being clamped between said clamping shoulders; and said housing sections are connected together at a connection point which is located in said second housing section and next to said mounting flange.
  • 3. A compressor, comprising:a housing; a drive shaft; at least one piston coupled to said drive shaft and reciprocating within a cylinder block; a take-up plate connected to said at least one piston, and working in connection with a swash plate rotating around a rotational axis, wherein said swash plate is coupled to said drive shaft via a carrier, said take-up plate is coupled to said swash plate through a non-rotating bearing, and said take-up plate is movably mounted in said housing through a support device; said drive shaft being rotatably mounted in said housing through a fixed bearing disposed in said cylinder block; said support device including a projection projecting from said take-up plate; and said support device further including a support element having a first sliding surface, which works in combination with a first bearing surface of said thrust bearing, said support element being positively connected with said projection through a second sliding surface on said projection; wherein: said housing includes two housing sections each with a clamping shoulder, said cylinder block being clamped between said clamping shoulders; and said housing sections are welded together.
  • 4. A compressor, comprising:a housing; a drive shaft; at least one piston coupled to said drive shaft and reciprocating within a cylinder block; a take-up plate connected to said at least one piston, and working in connection with a swash plate rotating around a rotational axis, wherein said swash plate is coupled to said drive shaft via a carrier, said take-up plate is coupled to said swash plate through a non-rotating bearing, and said take-up plate is movably mounted in said housing through a support device; said drive shaft being rotatably mounted in said housing through a fixed bearing disposed in said cylinder block; said support device including a projection projecting from said take-up plate; and said support device further including a support element having a first sliding surface, which works in combination with a first bearing surface of said thrust bearing, said support element being positively connected with said projection through a second sliding surface on said projection; wherein: said housing includes two housing sections each with a clamping shoulder, said cylinder block being clamped between said clamping shoulders; and said housing sections are connected together by flanging.
  • 5. A compressor, comprising:a housing; a drive shaft; at least one piston coupled to said drive shaft and reciprocating within a cylinder block; a take-up plate connected to said at least one piston, and working in connection with a swash plate rotating around a rotational axis, wherein said swash plate is coupled to said drive shaft via a carrier, said take-up plate is coupled to said swash plate through a non-rotating bearing, and said take-up plate is movably mounted in said housing through a support device; said drive shaft being rotatably mounted in said housing through a fixed bearing disposed in said cylinder block; said support device including a projection projecting from said take-up plate; and said support device further including a support element having a first sliding surface, which works in combination with a first bearing surface of said thrust bearing, said support element being positively connected with said projection through a second sliding surface on said projection; wherein: said housing includes two housing sections each with a clamping shoulder, said cylinder block being clamped between said clamping shoulders; and said first housing section has a second wall area that at least partially overlaps said second housing section.
  • 6. A compressor, comprising:a housing; a drive shaft; at least one piston coupled to said drive shaft and reciprocating within a cylinder block; a take-up plate connected to said at least one piston, and working in connection with a swash plate rotating around a rotational axis, wherein said swash plate is coupled to said drive shaft via a carrier, said take-up plate is coupled to said swash plate through a non-rotating bearing, and said take-up plate is movably mounted in said housing through a support device; said drive shaft being rotatably mounted in said housing through a fixed bearing disposed in said cylinder block; said support device including a projection projecting from said take-up plate; and said support device further including a support element having a first sliding surface, which works in combination with a first bearing surface of said thrust bearing, said support element being positively connected with said projection through a second sliding surface on said projection; wherein said carrier and said drive shaft are connected together by at least one of welding, friction welding, soldering and gluing.
  • 7. A compressor, comprising:a housing; a drive shaft; at least one piston coupled to said drive shaft and reciprocating within a cylinder block; a take-up plate connected to said at least one piston, and working in connection with a swash plate rotating around a rotational axis, wherein said swash plate is coupled to said drive shaft via a carrier, said take-up plate is coupled to said swash plate through a non-rotating bearing, and said take-up plate is movably mounted in said housing through a support device; said drive shaft being rotatably mounted in said housing through a fixed bearing disposed in said cylinder block; said support device including a projection projecting from said take-up plate; and said support device further including a support element having a first sliding surface, which works in combination with a first bearing surface of said thrust bearing, said support element being positively connected with said projection through a second sliding surface on said projection; wherein said second sliding surface is curved hemispherically.
  • 8. A compressor, comprising:a housing; a drive shaft; at least one piston coupled to said drive shaft and reciprocating within a cylinder block; a take-up plate connected to said at least one piston, and working in connection with a swash plate rotating around a rotational axis, wherein said swash plate is coupled to said drive shaft via a carrier, said take-up plate is coupled to said swash plate through a non-rotating bearing, and said take-up plate is movably mounted in said housing through a support device; said drive shaft being rotatably mounted in said housing through a fixed bearing disposed in said cylinder block; said support device including a projection projecting from said take-up plate; and said support device further including a support element having a first sliding surface, which works in combination with a first bearing surface of said thrust bearing, said support element being positively connected with said projection through a second sliding surface on said projection; wherein said projection has a third sliding surface that works in combination with a second bearing surface disposed on said thrust bearing.
  • 9. The compressor according to claim 8, wherein said third sliding surface is curved in two planes.
  • 10. The compressor according to claim 8, wherein at least one of said second bearing surface and said first bearing surface have a resistive coating.
  • 11. The compressor according to claim 8, wherein said first and second bearing surfaces run substantially parallel to each other.
  • 12. The compressor according to claim 8, wherein said first and second bearing surfaces form an acute angle with each other.
  • 13. The compressor according to claim 8, wherein at least one of said first and second bearing surface run parallel to an imaginary line intersecting a rotational axis of said drive shaft.
  • 14. The compressor according to claim 8, wherein at least one of said first and second bearing surface extends angularly with respect to an imaginary line intersecting a rotational axis of said drive shaft.
Priority Claims (4)
Number Date Country Kind
197 08 598 Mar 1997 DE
197 08 522 Mar 1997 DE
197 08 517 Mar 1997 DE
198 07 947 Feb 1998 DE
US Referenced Citations (20)
Number Name Date Kind
3712759 Olson Jan 1973
3861829 Roberts et al. Jan 1978
4175915 Black et al. Nov 1979
4178136 Reid et al. Dec 1979
4480964 Skinner Nov 1984
4508495 Monden et al. Apr 1985
4586874 Hiraga, et al. May 1986
4696629 Shiibayashi et al. Sep 1987
4801248 Tojo et al. Jan 1989
4815358 Smith Mar 1989
5013222 Sokol et al. May 1991
5137431 Kiyoshi et al. Aug 1992
5370505 Takenaka et al. Dec 1994
5509346 Kumpf Apr 1996
5528976 Ikeda et al. Jun 1996
5540560 Kimura et al. Jul 1996
5573379 Kimura et al. Nov 1996
5613836 Takenaka et al. Mar 1997
5674054 Ota et al. Oct 1997
5768974 Ikeda et al. Jun 1998
Foreign Referenced Citations (5)
Number Date Country
47019 Nov 1963 DE
3103147 Aug 1982 DE
381027 Oct 1989 DE
1216338 May 1996 DE
2265877 May 1992 JP
Non-Patent Literature Citations (2)
Entry
French Search Report dated March 3, 2000.
PATENT ABSRACTS OF JAPAN, vol. 007, No. 141 (M-223), Jun 21 1983 & JP 58 053687 A (HITACHI SEISAKUSHO KK), 30 Mar. 1983, abstract.