The present application and the resultant patent relate generally to a compressor manifold assembly and more particularly relate to a modular compressor manifold assembly for fluid flow therein while also providing structural support and ease of assembly and use.
Retail stores such as supermarkets and the like generally have a number of refrigerated display cases with food and/or beverages therein. A number of the refrigerated display cases may be operated within a central refrigeration system. Such a refrigeration system may include an evaporator and a fan mounted about each refrigerated display case for cooling the items therein, an external condenser, and a number of compressors. Generally described, a refrigerant fluid is heated and expanded in the evaporators while removing heat from the refrigerated display cases. The compressors compress the heated refrigerant gas and force the refrigerant to the condenser. The condenser transfers heat from the refrigerant and condenses the refrigerant such that the cycle may be repeated. The refrigeration system may use extended discharge and suction lines between the several components.
The compressors are generally arranged in a parallel configuration. Each of the compressors thus may be in communication with a discharge header and a suction header for the flow of refrigerant. Such an arrangement, however, may result in a complex configuration of compressors, piping, and the like. Moreover, all of the components generally may not be uniform such that adding or removing compressors or other components within the overall refrigeration system may be time consuming and difficult.
There is thus a desire for an improved refrigeration system in general and, more particularly, an compressor manifold assembly and configuration. Such an compressor manifold assembly and configuration may provide substantially uniform components for ease of support, installation, and repair.
The present application and the resultant patent provide a compressor manifold assembly. The compressor manifold assembly may include a suction manifold with a number of suction manifold modules, a discharge manifold with a number of discharge manifold modules, and a number of compressors positioned on the suction manifold and the discharge manifold.
The present application and the resultant patent further provide a compressor manifold assembly. The compressor manifold assembly may include a manifold, a suction conduit extending through the manifold, a discharge conduit extending through the manifold, and a number of compressors positioned on the manifold.
The present application and the resultant patent further provide a refrigeration system. The refrigeration system may include an evaporator, a condenser, and a compressor manifold assembly in communication with the evaporator and the condenser. The compressor manifold assembly may include a manifold and a number of compressors mounted on the manifold.
These and other features and improvements of the present application and the resultant patent will become apparent to one of ordinary skill in the art upon review of the following detailed description when taken in conjunction with the several drawings and the appended claims.
Referring now to the drawings, in which like numerals refer to like elements throughout the several views,
The compressor manifold assembly 110 may include a number of modular components such as a suction manifold 130. The suction manifold 130 may be in communication with the evaporators 15. The suction manifold 130 may be in the form of a number of suction modules 140. Any number of the suction modules 140 may be used herein. As is shown in
Each suction module 140 may include one or more support blocks 220. The support block 220 may extend the length of the suction module 140 as is shown in
The compressor manifold assembly 110 also may include a discharge manifold 240. The discharge manifold 240 may be in communication with the condenser 20. The discharge manifold 240 may be in the form of a number of discharge modules 250. Any number of the discharge modules 250 may be used herein. As is shown in
Each discharge module 250 also may include one or more support blocks 360. The support blocks 360 may extend the length of the discharge module 250 as is shown in
In use, any number of the compressors 120 may be mounted about the compressor manifold assembly 110. The compressors 120 may be attached via the equipment grooves 230, 370. Each compressor 120 may be connected to a suction module 140 of the suction manifold 130 and a discharge module 250 of the discharge manifold 240. The compressor 120 may be in communication with the suction manifold 130 via the suction port 180 and the suction pipe 190. Likewise, the compressor 120 may be in communication with the discharge manifold 240 via the discharge pipe 320 and the discharge port 310. The compressor 120 also may be in communication with a flow of fluids such as oil and the like via the fluid conduit 300. The respective ends of the manifolds 130, 240 may be enclosed by the end caps 200, 210, 340. Holes may be drilled therethrough for the passage of refrigerant and the like. The number of compressors 120 in the compressor manifold assembly 110 may be varied by adding or removing a compressor 120 and the associated suction module 140 and discharge module 250. The compressor manifold assembly 110 also may accommodate other components such as filters, suction accumulators, oil systems, oil separators, receivers, and the like.
The unitary manifold 410 may include a suction conduit 450 extending therethrough. The suction conduit 450 may have any desired diameter. The unitary manifold 410 may include a number of suction ports 460. The suction ports 460 may be in communication with the suction conduit 450 and with one of the compressors 120 via a suction pipe 470. The unitary manifold 410 also may include one or more discharge conduits 480. The discharge conduits 480 may have any desired diameter. The unitary manifold 410 may include a number of discharge ports 490. The discharge ports 490 may be in communication with the discharge conduits 480 and with one of the compressors 120 via a discharge pipe 500. The unitary manifold 410 also may include a number of fluid conduits 510 extending therethrough. The unitary manifold 410 also may include a number of fluid ports (not shown) in communication with the fluid conduits 510. Other components and other configurations may be used herein.
In use, the compressor manifold assembly 400 with the unitary manifold 410 may support any number of the compressors 120. The compressors 120 may be attached via the equipment grooves 440. The respective ports and conduits may be attached in a manner similar to that described above. Moreover, all of the respective conduits are positioned within the outer shell 420 so as to eliminate multiple pipes and connections.
In this example, the unitary manifold 560 also includes a receiver tank 660. Generally described, a receiver tank may be positioned downstream of the condenser 20 to receive the condensate outflow therefrom. The use of the unitary manifold 560 with the internal receiver tank 660 thus eliminates a further stand alone component. Moreover, the refrigerant within the receiver tank 660 also may exchange heat with refrigerant in the suction conduit 600 or elsewhere for more efficient operation. Other components and other configurations may be used herein.
The compressor manifold assemblies described herein thus reduce and/or eliminate many of the pipes and other structures currently in use with a modular and uniform system. The compressor manifold assemblies provide structural support, uniformity, and even the ability to provide heat transfer. The compressor manifold assemblies allow for a smaller footprint while providing overall refrigeration system efficiencies.
It should be apparent that the foregoing relates only to certain embodiments of the present application and the resultant patent. Numerous changes and modifications may be made herein by one of ordinary skill in the art without departing from the general spirit and scope of the invention as defined by the following claims and the equivalents thereof.