1. Field of the Invention
The invention relates to a compressor of a turbocharger.
2. Description of the Related Art
A typical compressor of a turbocharger includes a single impeller and one flow passage. The compressor tends to surge when running at low speeds and tends to block when running at high speeds, and cannot meet the requirement for high pressure ratio, wide range of flow, and high efficiency. A two-class turbocharged system is employed to solve the above-mentioned problems. However, the two-class turbocharged system is bulky and difficult to install, and its manufacturing costs are high.
In view of the above-described problems, it is one objective of the invention to provide a compressor of a turbocharger that is capable of improving the surge of the compressor in conditions of small flow rates and the blockage in conditions of large flow rates, thereby effectively broadening the range of the flow rate of the turbocharger.
To achieve the above objective, in accordance with one embodiment of the invention, there is provided a compressor of a turbocharger comprising a compressor housing and a compressor impeller. The compressor housing comprises: a compressor flow passage, a compressor air inlet, and a compressor air outlet. The compressor impeller comprises an impeller feeding flow passage. The compressor impeller is disposed inside the compressor housing. The compressor flow passage is disposed inside the compressor housing. The compressor flow passage is connected to the compressor air inlet and the compressor air outlet. The impeller air feeding flow passage is connected to the compressor air inlet and the compressor flow passage.
In a class of this embodiment, the compressor flow passage comprises a compressor inner flow passage and a compressor outer flow passage which are arranged side by side on the compressor housing. A ratio of a width of an air inlet of the compressor inner flow passage to a width of an air inlet of the compressor outer flow passage is between 0.1 and 10.
In a class of this embodiment, a compressor diffuser is disposed at the air inlet of the compressor inner flow passage.
In a class of this embodiment, the compressor air outlet comprises: an air outlet of the compressor inner flow passage connected to the compressor inner flow passage and an air outlet of the compressor outer flow passage connected to the compressor outer flow passage. A ratio of a width of the air outlet of the compressor inner flow passage to a width of the air outlet of the compressor outer flow passage is between 0.1 and 10.
In a class of this embodiment, a ratio of the width of the air inlet of the compressor inner flow passage to the width of the air inlet of the compressor outer flow passage is nonequivalent to the ratio of the width of the air outlet of the compressor inner flow passage to the width of the air outlet of the compressor outer flow passage.
In a class of this embodiment, the compressor impeller comprises an impeller air inlet and an impeller air outlet. A partition plate is circumferentially disposed on the compressor impeller between the impeller air inlet and the impeller air outlet. The partition plate divides the impeller air feeding flow passage into an impeller air feeding inner flow passage communicating with the compressor inner flow passage and an impeller air feeding outer flow passage communicating with the compressor outer flow passage.
In a class of this embodiment, a partition wall is disposed inside an air inlet channel between the compressor impeller and the compressor air inlet. The partition wall is circumferentially arranged and extends in an axial direction. The partition wall divides the air inlet channel between the compressor impeller and the compressor air inlet into an inner channel of the compressor air inlet and an outer channel of the compressor air inlet.
In a class of this embodiment, the outer channel of the compressor air inlet is disposed outside an outer circumference of the inner channel of the compressor air inlet.
In a class of this embodiment, the inner channel of the compressor air inlet is corresponding to and communicates with the impeller air feeding inner flow passage. The outer channel of the compressor air inlet is corresponding to and communicates with the impeller air feeding outer flow passage.
In a class of this embodiment, a distance between one end of the partition wall in the vicinity of the compressor air inlet and the impeller gas inlet is between 60 and 100 mm. A distance between one end of the partition wall in the vicinity of the compressor air inlet and the compressor gas inlet 3 is between 5 and 20 mm.
In a class of this embodiment, a plurality of fixed guide vanes is uniformly disposed inside the outer channel of the compressor air inlet.
In a class of this embodiment, the outer channel of the compressor air inlet, the impeller air feeding outer flow channel, and the compressor outer flow passage are normal open flow passages.
In a class of this embodiment, a butterfly valve matching with the inner channel of the compressor air inlet is disposed inside the inner channel of the compressor air inlet in the vicinity of the compressor air inlet. The butterfly valve is provided with a valve shaft, and the valve shaft is integrated to the butterfly valve. The valve shaft is in transmission connection with a control mechanism. The butterfly valve is driven by the control mechanism to rotate along the valve shaft whereby opening or closing the inner channel of the compressor air inlet.
In a class of this embodiment, an adjustable valve is disposed inside the compressor inner flow passage in the vicinity of the air outlet of the compressor inner flow passage. One end of the adjustable valve is connected to a valve shaft. The valve shaft is in transmission connection with a control mechanism. The adjustable valve is driven by the control mechanism to rotate along the valve shaft whereby opening or closing the compressor inner flow passage.
In a class of this embodiment, a plurality of adjustable guide vanes is uniformly disposed in a circle inside the compressor diffuser in the vicinity of the impeller air outlet. A ratio of a number of the fixed guide vanes to a number of the adjustable guide vanes is between 0.2 and 6.
In a class of this embodiment, each adjustable guide vane is in rotary connection with a fork lever. The fork level is in rotary connection with a fork plate. The fork plate is driven by a control mechanism to rotate so as to achieve rotation of the adjustable guide vanes and to open or close the compressor inner flow passage.
In a class of this embodiment, the inner channel of the compressor air inlet, the impeller gas feeding inner flow channel, and the compressor inner flow passage are normal open flow passages.
In a class of this embodiment, a plurality of adjustable guide vanes is uniformly disposed inside the outer channel of the compressor air inlet in the vicinity of the impeller air inlet. Each adjustable guide vane matches with a corresponding gear. The gear is correspondingly provided with a gear disk. The gear disk is driven by a control mechanism to rotate so as to achieve rotation of the adjustable guide vane and to open or close the outer channel of the compressor air inlet.
In a class of this embodiment, an adjustable valve is disposed inside the compressor outer flow passage in the vicinity of the outlet of the compressor outer flow passage. One end of the adjustable valve is connected to a valve shaft. The valve shaft is in transmission connection with a control mechanism. The adjustable valve is driven by the control mechanism to rotate along the valve shaft whereby opening or closing the compressor outer flow passage.
In the above technical solution, when the outer channel of the compressor air inlet, the impeller air feeding outer flow passage, and the compressor outer flow passage are normal open flow passages, the working process of the scheme of arranging the butterfly valve in the vicinity of the compressor air inlet, the working process of the scheme of arranging the adjustable valve at the air outlet of the compressor inner flow passage, and the working process of the scheme of arranging the adjustable guide vanes at the compressor diffuser are the same.
When the motor works at low speeds, the butterfly valve, the adjustable valve, or the adjustable guide vanes disposed at the compressor diffuser is driven by the control mechanism to rotate to close the inner channel of the compressor air inlet or the air outlet of the compressor inner flow passage. Because the impeller air feeding inner flow passage and the compressor inner flow passage communicate with the inner channel of the compressor air inlet, the impeller air feeding inner flow passage and the compressor inner flow passage are also at a closed state. Driven by the centrifugal force produced by the rotation of the compressor impeller, fresh air is sucked into the outer channel of the compressor air inlet and compressed and accelerated by the impeller air feeding outer flow passage and the compressor outer flow passage to participate in combustion. As a cross sectional area of the air inlet channel of the compressor housing is reduced, the surge of the compressor at low speeds is effectively improved.
When the motor works at intermediate or high speeds, the butterfly valve, the adjustable valve, or the adjustable guide vanes disposed at the compressor diffuser is driven by the control mechanism to rotate and to open the inner channel of the compressor air inlet or the air outlet of the compressor inner flow passage, so that the impeller air feeding inner flow passage and the compressor inner flow passage are simultaneously opened, and the fresh air is driven by the centrifugal force produced by the compressor impeller and sucked into the inner channel of the compressor air inlet and the outer channel of the compressor air inlet. The fresh air entering the inner channel of the compressor air inlet is driven by the centrifugal force and compressed and accelerated by the impeller air feeding inner flow passage and the compressor inner flow passage to participate in the combustion. The fresh air entering the outer channel of the compressor air inlet is driven by the centrifugal force and compressed and accelerated by the impeller air feeding outer flow passage and the compressor outer flow passage to participate in the combustion. As the cross sectional area of the air inlet channel of the compressor housing is enlarged, the flow rate of the intake air at the intermediate or high speeds is effectively broadened, thereby improving the motor performance.
When the inner channel of the compressor air inlet, the impeller air feeding inner flow passage, and the compressor inner flow passage are normal open flow passages, the working process of the scheme of arranging the adjustable guide vanes in the vicinity of the impeller air inlet is the same as the working process of the scheme of arranging the adjustable valve in the vicinity of the air outlet of the compressor inner flow passage.
When the motor works at low speeds, the adjustable guide vanes or the adjustable valve are driven by the control mechanism to rotate to close the outer channel of the compressor air inlet or the air outlet of the compressor outer flow passage. Because the impeller air feeding outer flow passage and the compressor outer flow passage communicate with the outer channel of the compressor air inlet, the impeller air feeding outer flow passage and the compressor outer flow passage are also at the closed state. Driven by the centrifugal force produced by the rotation of the compressor impeller, the fresh air is sucked into the inner channel of the compressor air inlet and compressed and accelerated by the impeller air feeding inner flow passage and the compressor inner flow passage to participate in the combustion. As the cross sectional area of the air inlet channel of the compressor housing is reduced, the surge of the compressor at low speeds is effectively improved.
When the motor works at intermediate or high speeds, the adjustable guide vanes or the adjustable valve are driven by the control mechanism to rotate and to open the outer channel of the compressor air inlet or the air outlet of the compressor outer flow passage, so that the impeller air feeding outer flow passage and the compressor outer flow passage are simultaneously opened, and the fresh air is driven by the centrifugal force produced by the compressor impeller and sucked into the inner channel of the compressor air inlet and the outer channel of the compressor air inlet. The fresh air entering the inner channel of the compressor air inlet is driven by the centrifugal force and compressed and accelerated by the impeller air feeding inner flow passage and the compressor inner flow passage to participate in combustion. The fresh air entering the outer channel of the compressor air inlet is driven by the centrifugal force and compressed and accelerated by the impeller air feeding outer flow passage and the compressor outer flow passage to participate in combustion. As the cross sectional area of the air inlet channel of the compressor housing is enlarged, the flow rate of the intake air at the intermediate and high speeds is effectively increased, thereby improving the motor performance.
Advantages according to embodiments of the invention are summarized as follows: the compressor of the turbocharger is capable effectively improving the surge the compressor at low speeds and as well as effectively broadening the flow rate of the intake air at high speeds, thereby improving the performance of the motor. The compressor housing and the compressor impeller are excellent in the structural succession and are easy to achieve engineering.
The invention is described hereinbelow with reference to the accompanying drawings, in which:
In the drawings, the following reference numbers are used: 1. Compressor housing; 2. Compressor impeller; 3. Compressor air inlet; 4. Compressor diffuser; 5. Impeller air inlet; 6. Impeller air outlet; 7. Compressor inner flow passage; 8. Compressor outer flow passage; 9. Air outlet of compressor inner flow passage; 10. Air outlet of compressor outer flow passage; 11. Partition plate; 12. Impeller air feeding inner flow passage; 13. Impeller air feeding outer flow passage; 14. Partition wall; 15. Inner channel of compressor air inlet; 16. Outer channel of compressor air inlet; 17. Fixed guide vanes; 18. Butterfly valve; 19. Valve shaft; 20. Adjustable valve; 21. Adjustable guide vanes; 22. Fork lever; 23. Fork plate; 24. Gear; and 25. Gear disk.
For further illustrating the invention, examples detailing a compressor of a turbocharger are described below. It should be noted that the following examples are intended to describe and not to limit the invention.
As shown in
The compressor flow passage comprises a compressor inner flow passage 7 and a compressor outer flow passage 8 which are arranged side by side on the compressor housing. A ratio of a width W1 of an air inlet of the compressor inner flow passage 7 to a width W2 of an air inlet of the compressor outer flow passage 8 is between 0.1 and 10.
A compressor diffuser 4 is disposed at the air inlet of the compressor inner flow passage 7.
The compressor air outlet comprises: an air outlet 9 of the compressor inner flow passage connected to the compressor inner flow passage 7 and an air outlet 10 of the compressor outer flow passage connected to the compressor outer flow passage 8. A ratio of a width W3 of the air outlet 9 of the compressor inner flow passage to a width W4 of the air outlet 10 of the compressor outer flow passage is between 0.1 and 10.
A ratio of the width W1 of the air inlet of the compressor inner flow passage 7 to the width W2 of the air inlet of the compressor outer flow passage 8 is nonequivalent to the ratio of the width W3 of the air outlet 9 of the compressor inner flow passage to the width W4 of the air outlet 10 of the compressor outer flow passage.
As shown in
As shown in
The partition wall 14 divides the air inlet channel between the compressor impeller 2 and the compressor air inlet 3 into an inner channel 15 of the compressor air inlet and an outer channel 16 of the compressor air inlet.
The outer channel 16 of the compressor air inlet is disposed outside an outer circumference of the inner channel 15 of the compressor air inlet.
The inner channel 15 of the compressor air inlet is corresponding to and communicates with the impeller air feeding inner flow passage 12. The outer channel 16 of the compressor air inlet is corresponding to and communicates with the impeller air feeding outer flow passage 13.
The outer channel 16 of the compressor air inlet, the impeller air feeding outer flow channel 13, and the compressor outer flow passage 8 are normal open flow passages.
A distance H between one end of the partition wall 14 in the vicinity of the compressor air inlet 3 and the impeller gas inlet 5 is between 60 and 100 mm. A distance h between one end of the partition wall 14 in the vicinity of the compressor air inlet 3 and the compressor gas inlet 3 is between 5 and 20 mm.
A plurality of fixed guide vanes 17 is uniformly disposed inside the outer channel 16 of the compressor air inlet. In one respect, the structure design mainly functions in fixing and connecting the partition wall 14 and the compressor housing, and in another respect, it is capable of effectively guiding the exhaust gas from the outer channel 16 of the compressor air inlet to smoothly enter the impeller air feeding outer flow passage 13.
A butterfly valve 18 matching with the inner channel 15 of the compressor air inlet is disposed inside the inner channel 15 of the compressor air inlet in the vicinity of the compressor air inlet 3.
The butterfly valve 18 is provided with a valve shaft 19, and the valve shaft 19 is integrated to the butterfly valve 18. The valve shaft 19 is in transmission connection with a control mechanism. The butterfly valve 18 is driven by the control mechanism to rotate along the valve shaft 19 whereby opening or closing the inner channel 15 of the compressor air inlet.
As shown in
As shown in
As shown in
Working process of this example is as follows: as shown in
As shown in
As shown in
The control mechanism in Example 3 is not limited to the fork lever control mechanism and can be control mechanisms of any structures.
Working process of this example is as follows: as shown in
As shown in
The control mechanism in Example 4 is not limited to the gear control mechanism and can be control mechanisms of any structures.
Working process of this example is as follows: as shown in
As shown in
As shown in
Working process of this Example is as follows: when the motor works at low speeds, the adjustable valve 20 is at the closed state (the adjustable valve is indicated as a solid line in the figure) under the drive of the control mechanism. Driven by the centrifugal force produced by the rotation of the compressor impeller 2, the fresh air is sucked into the inner channel 15 of the compressor air inlet and compressed and accelerated by the impeller air feeding inner flow passage 12 and the compressor inner flow passage 7 to participate in the combustion. As the cross sectional area of the air inlet channel of the compressor housing 1 is reduced, the surge of the compressor at low speeds is effectively improved. Because the adjustable valve 20 is closed, the fresh air is prevented from entering the outer channel 16 of the compressor air inlet, the impeller air feeding outer flow passage 13, and the compressor outer flow passage 8. When the motor works at intermediate or high speeds, the adjustable valve 20 is at the open state (the adjustable valve is indicated by a dash line in the figure) under the drive of the control mechanism, and the working process at this working condition is the same as the working process at the intermediate or high speeds of the motor in Example 4.
In the Examples 1-5, as shown in
While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
201210137085.9 | May 2012 | CN | national |
This application is a continuation-in-part of International Patent Application No. PCT/CN2012/000713 with an international filing date of May 22, 2012, designating the United States, now pending, and further claims priority benefits to Chinese Patent Application No. 201210137085.9 filed May 7, 2012. The contents of all of the aforementioned applications, including any intervening amendments thereto, are incorporated herein by reference. Inquiries from the public to applicants or assignees concerning this document or the related applications should be directed to: Matthias Scholl P.C., Attn.: Dr. Matthias Scholl Esq., 245 First Street, 18th Floor, Cambridge, Mass. 02142.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2012/000713 | May 2012 | US |
Child | 14535344 | US |