The present disclosure relates to a compressor and a plug assembly for an electric terminal of a compressor.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Compressors typically include at least one terminal assembly for electrically coupling a motor of the compressor to a power source. A plug is typically received by the terminal assembly and serves as an interface between the power source and the terminal assembly to selectively supply the terminal assembly and, thus, the compressor motor with power.
A compressor including a shell, a compression mechanism disposed within the shell, a motor actuating the compression mechanism, and a terminal body secured to the shell, may further include at least one conductor pin extending through the terminal body and a fence disposed around the terminal body and secured to the shell. A plug assembly having an inner core surrounded by an outer body includes at least one electrical receptacle housed by the inner core for selective electrical communication with the at least one conductor pin. A seal may be integrally formed with the outer body and may engage the fence when the at least one electrical receptacle is in electrical communication with the at least one conductor pin.
In some variations, at least one of the inner core and the outer body may be formed from a rigid thermoset or thermoplastic material. The inner core and the outer body may alternatively or additionally be formed of the same or different rigid and non-flexible thermoset or thermoplastic materials. A retainer may be provided for securing the plug assembly to the fence. The retainer may be attached to the plug assembly by a tether in each of the engaged state and the disengaged state.
In another configuration, a compressor includes a shell, a compression mechanism disposed within the shell, a motor for actuating the compression mechanism, and a terminal body secured to the shell. At least one conductor pin extends through the terminal body, and a fence is disposed around the terminal body and secured to the shell. A plug assembly includes an outer body and a seal extending around a perimeter and covering a distal end of the outer body.
In some variations, the plug assembly may include an inner core and an outer body formed from a rigid thermoset or thermoplastic material. Also, a retainer may be provided for securing the plug assembly to the fence. The retainer may optionally be attached to the plug assembly by a tether in each of the engaged state and the disengaged state.
In another configuration, a plug assembly for a compressor includes an inner core and an outer body surrounding the inner core. At least one electrical receptacle is housed by the inner core and a seal is mechanically and chemically attached to the outer body.
In some variations, at least one of the inner core and the outer body may be formed from a rigid thermoset or thermoplastic material. Optionally, the material may be polyethylene terephthalate and the seal may be formed from a thermoplastic polyester copolymer. The inner core and the outer body may each be formed of different rigid and non-flexible thermoset or thermoplastic materials.
A method of manufacturing a plug assembly for a compressor includes molding an inner core having at least one connector and at least one terminal connection assembly. The method may further include molding a rigid and non-flexible outer body over the inner core and molding a seal over a portion of the outer body.
Molding of the outer body over the inner core may include molding a different material than the inner core or may include molding the same material as the inner core. The processes for molding the inner core, molding the outer body, or molding the seal over the portion of the outer body may include injection molding. Optionally, molding a seal over the portion of the outer body may include covering a distal end of the outer body with the seal. This may further include molding a thermoplastic polyester copolymer over a portion of the outer body.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
With particular reference to
Each of holes 34 may receive a respective fused-glass insulator 26, which may be sealingly fused to both the terminal body 24 and a respective conductor pin 22. Each conductor pin 22 may extend through a respective fused-glass insulator 26 to provide electrical communication between an exterior and interior of the shell 12. Each conductor pin 22 may include a reduced-diameter section 36 that acts as a fuse-link in the event of an internal short circuit. While the reduced-diameter sections 36 are shown as being located within the sealed chamber 16, the reduced-diameter sections 36 could alternatively be located on the outside of the shell 12.
Each of the conductor pins 22 may include a respective ceramic insulator 28 secured to an end of the conductor pin 22 that extends into the chamber 16. The ceramic insulators 28 may insulate the conductor pins 22 and their associated connection to the motor within the chamber 16 from contact with the terminal body 24 as well as provide insulation between adjacent pins 22. The silicon rubber molding 30 may be located on the outside of the terminal body 24 and may include a plurality of upstanding jackets 40 that extend from a base 42. The upstanding jackets 40 may be equal to and arranged in the same pattern as the plurality of conductor pins 22. Each of the upstanding jackets 40 may include an aperture 44 extending through the molding 30 and may receive a respective conductor pin 22. The relationship between the apertures 44 and the conductor pins 22 may serve to both seal and provide oversurface insulation protection for the conductor pins 22.
The fence 32 may be physically secured to the outside of the shell 12 by resistance welding or other methods known to those skilled in the art. In this regard, the terminal body 24 and the fence 32 may be simultaneously resistance welded to the shell 12 to provide a hermetic seal. The fence 32 may include a flange 46 having a welding bead 48 that extends circumferentially around the flange 46 and enhances the resistance welding operation that secures and seals the fence 32 to the shell 12.
The fence 32 may include an opening 49 that engages the terminal body 24 to locate the fence 32 on the shell 12 and to locate the fence 32 with respect to the conductor pins 22. Locating the fence 32 with respect to the conductor pins 22 allows for a close fit between a plug assembly 54 and both the terminal 14 and the fence 32. The fence 32 may also include a cavity 50 within which the conductor pins 22 may be located. Attachment between the fence 32 and the shell 12 provides a seal that prohibits moisture and/or debris from leaking into the cavity 50 and causing corrosion of the conductor pins 22.
With reference to
In addition to providing an interface between the terminal 14 and the plug assembly 54, the fence 32 also protects the conductor pins 22 from damage. For example, the fence 32 protects the conductor pins 22 from damage caused during manufacturing of the compressor assembly 10, during manufacturing of the apparatus utilizing compressor assembly 10, and during servicing of the compressor assembly 10 and/or the apparatus utilizing the compressor assembly 10.
The plug assembly 54 allows for the connection of the portion of the conductor pins 22 located outside of the shell 12 to the plurality of wires 55 that extend between the plug assembly 54 and the external supply of electrical power. The plug assembly 54 may include a molded body formed of a dual-body structure. For example, the plug assembly 54 may include a molded-outer body 64 surrounding a molded-inner core 66. The inner core 66 houses connectors 68 that provide a female-electrical receptacle 70 for receiving a respective conductor pin 22. The plurality of receptacles 70 are equal in number to and arranged in the identical pattern as the conductor pins 22 of terminal 14. The connection between the conductor pins 22 and the receptacles 70 provides for both an electrical connection between the conductor pins 22 and receptacles 70 as well as a mechanical connection that maintains the plug assembly 54 in a desired position relative to the terminal 14 and fence 32. In addition, the location of the receptacles 70 within the plug assembly 54 insures that separation between each of the wires 55 is maintained.
The inner core 66 also includes a radially extending housing 72 having a plurality of conduits 74. The conduits 74 provide access into the inner core 66 for the plurality of wires 55 that extend between plug assembly 54 and the external source of electrical power. The housing 72 positions the wires 55 relative to the receptacles 70 and associated connectors 68 to allow the wires 55 to be in electrical communication with the conductor pins 22 when the conductor pins 22 are received within the receptacles 70. The conduits 74 house terminal-connection assemblies 76 that allow electrical communication between wires 55 and connectors 68 (
The outer body 64 may include an end cap 78, a connector body 80, and a housing cover 81 that surround the inner core 66. The cap 78 may seat against the outside edge of the fence 32 when the plug assembly 54 is properly installed onto the terminal 14. The seating of the cap 78 against the fence 32 aids in the sealing of cavity 50. The connector body 80 extends from the cap 78 into cavity 50 and includes a pocket 82 the provides clearance for the silicone rubber molding 30 of the terminal. While the connector body 80 is shown as including a single pocket 82, a plurality of pockets equal to and in the same pattern as the plurality of conductor pins 22 may also be incorporated. The housing cover 81 covers the radially extending housing 72.
The inner core 66 and the outer body 64 may be molded from materials such as thermoset materials or thermoplastic materials. In this regard, the inner core 66 and the outer body 64 may be formed of different thermoset or thermoplastic materials or, alternatively, may be formed of the same material. Regardless, materials that are sufficiently rigid and non-flexible, flame resistant, and electrically insulating may be used. In addition to rigidity, flame resistance, and insulation properties, the material for the inner core 66 and the outer body 64 should provide adequate chemical resistance, resistance to oil, and should be a high-temperature material.
The selected thermoset or thermoplastic material may have a rigidity defined by the tensile modulus of the selected material. In addition, the selected thermoset or thermoplastic material may have a flame resistance defined by the U.L. 94 flammability index that is capable of withstanding the IEC glow-wire-ignition test (IEC 60695-2-13). In addition, the selected thermoset or thermoplastic material may have a density in the range of 1.40 g/cm3 to 2.00 g/cm3, a tensile modulus in the range of 9500 Megapascal (MPa) to 18000 MPa, and for a thermoplastic material, a melting point in the range of 240 degrees Celsius to 295 degrees Celsius. The tensile modulus range for the selected thermoset or thermoplastic may be further defined between 10000 MPa to 15000 MPa. Furthermore, the selected material should be able to withstand ball-pressure testing in compliance with IEC 695-10-2 at 125 degrees Celsius. Examples of materials that are rigid, flame resistant, and electrically insulating are polyethylene terephthalate, polybutylene terephthalate, polyamide 6, polyamide 4,6, and polyamide 6,6. A glass fiber filler content that ranges between ten percent (10%) and fifty percent (50%) may be used to further increase the rigidity, synergistically improve flame resistance, and electrical insulating properties of these materials for the inner core 66 and the outer body 64.
The thermoset or thermoplastic material used in manufacturing the plug assembly 54 may be molded during a two-step process to provide the plug assembly 54 with a dual-body structure. In this regard, the inner core 66 of the plug assembly 54 including the terminal connection assemblies 76 and the connectors 68 may be molded first. After the inner core 66 is formed, the outer body 64 may be molded over the inner core 66. To mold the plug assembly 54, a vertical and/or a horizontal injection-molding process may be used. A compression-molding process could also be employed to form the inner core 66 and the outer body 64. Alternatively, the inner core 66 and the outer body 64 may be molded using different molding processes. Further, a transfer molding process may be used for thermoset materials. For example, the inner core 66 may be injection molded and the outer body 64 may be overmolded to the inner core 66 using a compression-molding process, or vice versa. Regardless, one skilled in the art would acknowledge and appreciate that any type of molding processes may be used without departing from the spirit and scope of the present teachings.
The wires 55 of the plug assembly 54 may be provided with sheathings that have different colorings to allow the plug assembly 54 to be used in a wide array of applications and by various original equipment manufacturers (OEMs). The plug assembly 54, therefore, may be provided as a kit that includes a plurality of different colored wirings that may be interchanged depending on the particular application of the plug assembly 54 and/or the particular OEM using the plug assembly 54. For example, the wirings 55 may be provided with a red wire, a blue wire, and a black wire for one application, while yellow, orange, and green wirings may be used for a different application. By providing the plug assembly 54 in a kit, each of the different colored wirings may be provided with the plug assembly 54 and changed depending on the specific application desired.
With particular reference to
The extensions 104 of the seal assembly 100 extend generally from the seal body 102 and flank an upwardly extending portion 110 of the connector body 80. The extensions 104 may include any shape that matingly receives the upwardly extending portion 110 of the connector body 80. The overall shape of the extensions 104 may be configured to maximize the overall surface area of each extension 104 to increase the overall surface area contact between the seal assembly 100 and the connector body 80.
The flange 106 may extend around an outer peripheral surface of the seal body 102 such that the flange 106 is generally cantilevered from the seal body 102. The flange 106 may include any shape that facilitates insertion of the plug assembly 54 into the fence 32 while concurrently sealing the plug assembly 54 to the fence 32. As shown in
As described above, the seal body 102 is generally received over the distal end 108 of the connector body 80 while the extensions 104 extend into and are attached around an upwardly extending portion 110 of the connector body 80. The seal body 102 and extensions 104 may be mechanically and/or chemically attached to the connector body 80 to maintain engagement between the seal assembly 100 and the outer body 64. For example, positioning the extensions 104 relative to the connector body 80 such that the extensions 104 flank the upwardly extending portion 110 and extend generally into the connector body 80 maximizes the surface area of the seal assembly 100 that is in contact with the connector body 80. To the extent that the seal assembly 100 is chemically bonded to the connector body 80, increasing the overall surface area of the seal assembly 100 that is in contact with the connector body 80 increases the potential of chemical adhesion of the seal assembly 100 to the connector body 80 and, thus, may increase the force required to remove the seal assembly 100 from the connector body 80.
Mechanical adhesion of the seal assembly 100 to the connector body 80 is facilitated by allowing the material of the seal assembly 100 to flow into a series of apertures 116 formed through the upwardly extending portion 110 of the connector body 80 during manufacturing of the seal assembly 100. Allowing the material of the seal assembly 100 to flow into and solidify within the apertures 116 of the connector body 80 increases the mechanical attachment of the seal assembly 100 to the connector body 80 and increases the force required to remove the seal assembly 100 from the connector body 80. In addition, allowing the material of the seal assembly 100 to flow into and solidify within the apertures 116 of the connector body 80 also increase the overall surface area of the connector body 80 that is in contact with the seal assembly 100 and, as such, may improve the chemical adhesion of the seal assembly 100 to the connector body 80.
Allowing the material of the seal assembly 100 to flow into and solidify within the apertures 116 of the connector body 80 is accomplished during manufacturing of the plug assembly 54. Specifically, during manufacturing of the plug assembly 54, the seal assembly 100 may be attached to the outer body 64 via a melt-processing process such as, for example, injection molding, transfer molding, compression molding, or an injection-compression process. During any of the foregoing melt-processing processes, the material of the seal assembly 100 is above the transition temperatures such that viscous flow is capable under reasonable plastic pressures within a molding cavity (not shown) such that the material of the seal assembly 100 generally conforms to the net shape of the mold cavity. When the material of the seal assembly 100 is capable of viscous flow, the material may likewise flow around the distal end 108, around the upwardly extending portion 110, and into apertures 116 of the connector body 80 to both chemically and/or mechanically attach the seal assembly 100 to the connector body 80 when the material of the seal assembly 100 is solidified. Once solidified, the material of the seal assembly 100 transitions from a viscous fluid or viscous fluidized state to an infinite viscosity, more commonly referred to as a solid state, thereby bonding (mechanically and/or chemically) the seal assembly 100 and outer body 64.
The material of the seal assembly 100 may be chosen to facilitate the above-described manufacturing processes, as well as to provide the plug assembly 54 with a seal that both prevents debris and other foreign matter from entering the joint between the plug assembly 54 and the fence 32 and restricts removal of the plug assembly 54 from the fence 32 when the plug assembly 54 is attached to the fence 32. In one configuration, the material of the seal assembly 100 may include an elastomer such as, for example, a thermoplastic polyester copolymer with modified hard and soft segments or other melt-processable thermoplastic elastomers such as, for example, Santoprene™. A suitable thermoplastic polyester copolymer is offered by Ticona under the trade name Riteflex® (Grade 435). The Riteflex® material offered by Ticona provides a sufficient coefficient of friction that aides in maintaining engagement of the seal assembly 100 with the fence 32 while concurrently providing the seal assembly 100 with durability.
With particular reference to
Attachment feature 128 may include a ramped portion 132 that facilitates insertion of the plug retainer 118 into the fence 32. Attachment feature 128 may also include an extension 134 that secures the plug retainer 118 relative to the fence 32. Attachment feature 130 may similarly include a ramped portion 136 that facilitates insertion of the plug retainer 118 into the fence 32 and an extension 138 that secures a position of the plug retainer 118 relative to the fence 32.
The projection 126 extends from the main body 120 generally between the arms 122, 124 and may include a cantilevered body 140 having a projection 142 disposed at a distal end thereof. The projection 142 may engage the fence 32 when the plug retainer 118 is attached to the fence 32 to exert a force on the arms 122, 124 to securely attach the plug retainer 118 to the fence 32.
With continued reference to
Once the extensions 134, 138 are received within the slots 144 of the fence, the material of the main body 120 causes the arms 122, 124 to return to the relaxed state and snap the plug retainer 118 into engagement with the fence 32. The projection 126 may cooperate with the arms 122, 124 by applying a force on the ramped portions 132, 136 to account for any free play between the extensions 134, 138 and the slots 144. Specifically, the projection 142 may engage an outer surface of the fence 32 such that the cantilevered body 140 of the projection 126 is deflected. Deflection of the cantilevered body 140 applies a force on the arms 122, 124 in the Y direction (
The plug retainer 118 may be removed from the fence 32 by applying a force in the X direction (
The plug retainer 118 may include a tether 148 that attaches the plug retainer 118 to the plug assembly 54. The tether 148 may include a braided-metal cable that is received within an aperture 150 of the plug assembly 54 and an aperture 152 of the plug retainer 118. The tether 148 may include a length that allows the plug retainer 118 to be attached to and removed from the fence 32 while concurrently allowing the plug retainer 118 to be held in close proximity to the fence 32 when the plug retainer 118 is not attached to the fence 32.
The above description of the present teachings is merely exemplary in nature and, thus, variations that do not depart from the gist of the present teachings are intended to be within the scope of the present teachings. Such variations are not to be regarded as a departure from the spirit and scope of the present teachings.
This application claims the benefit of U.S. Provisional Application No. 61/164,149, filed on Mar. 27, 2009. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1658861 | Slade | Feb 1928 | A |
1658862 | Slade | Feb 1928 | A |
2205051 | Schmitt | Jun 1940 | A |
2658185 | Hatcher | Nov 1953 | A |
2728060 | Doeg | Dec 1955 | A |
3016511 | Unger | Jan 1962 | A |
3022097 | Seniff et al. | Feb 1962 | A |
3031861 | McCormack | May 1962 | A |
3417361 | Heller | Dec 1968 | A |
3605076 | Dozier | Sep 1971 | A |
3684819 | Wilson | Aug 1972 | A |
3696321 | Cooper, Jr. | Oct 1972 | A |
3850496 | Hague | Nov 1974 | A |
3873656 | Garner | Mar 1975 | A |
4059325 | Diminnie et al. | Nov 1977 | A |
4120555 | Shiflett et al. | Oct 1978 | A |
4252394 | Miller | Feb 1981 | A |
4469923 | Charboneau | Sep 1984 | A |
4480151 | Dozier | Oct 1984 | A |
4508413 | Bailey | Apr 1985 | A |
4523798 | Barrows et al. | Jun 1985 | A |
4551069 | Gilmore | Nov 1985 | A |
4597581 | Nimberger | Jul 1986 | A |
4712430 | Wareham | Dec 1987 | A |
4743184 | Sumikawa et al. | May 1988 | A |
4782197 | Stunzi et al. | Nov 1988 | A |
4840547 | Fry | Jun 1989 | A |
4925404 | Dutcher | May 1990 | A |
4964788 | Itameri-Kinter et al. | Oct 1990 | A |
4966559 | Wisner | Oct 1990 | A |
4984468 | Hafner | Jan 1991 | A |
4984973 | Itameri-Kinter et al. | Jan 1991 | A |
5035653 | Honkomp et al. | Jul 1991 | A |
5121094 | Ting et al. | Jun 1992 | A |
5134888 | Zylka et al. | Aug 1992 | A |
5152672 | Miyazawa et al. | Oct 1992 | A |
5201673 | Minezawa et al. | Apr 1993 | A |
5219041 | Greve | Jun 1993 | A |
5252036 | Bunch et al. | Oct 1993 | A |
5315878 | Birenheide | May 1994 | A |
5471015 | Paterek et al. | Nov 1995 | A |
5493073 | Honkomp | Feb 1996 | A |
5503542 | Grassbaugh et al. | Apr 1996 | A |
5513603 | Ang et al. | May 1996 | A |
5522267 | Lewis | Jun 1996 | A |
5580282 | Paterek | Dec 1996 | A |
5584716 | Bergman | Dec 1996 | A |
5669763 | Pryce et al. | Sep 1997 | A |
5712428 | Schleiferbock et al. | Jan 1998 | A |
5746622 | Consoli et al. | May 1998 | A |
5750899 | Hegner et al. | May 1998 | A |
5756899 | Ugai et al. | May 1998 | A |
5831170 | Sokn | Nov 1998 | A |
5872315 | Nagase et al. | Feb 1999 | A |
5941730 | Uchiyama et al. | Aug 1999 | A |
5984645 | Cummings | Nov 1999 | A |
6037423 | Nagano et al. | Mar 2000 | A |
6102666 | Albrecht | Aug 2000 | A |
6140592 | Paterek et al. | Oct 2000 | A |
6224348 | Fukanuma et al. | May 2001 | B1 |
6276901 | Farr et al. | Aug 2001 | B1 |
6290528 | Moore et al. | Sep 2001 | B1 |
6332327 | Street et al. | Dec 2001 | B1 |
6350630 | Wildgen | Feb 2002 | B1 |
6351996 | Nasiri et al. | Mar 2002 | B1 |
6361281 | Wurth et al. | Mar 2002 | B1 |
6372993 | Eckels et al. | Apr 2002 | B1 |
6375497 | DiFlora | Apr 2002 | B1 |
6422830 | Yamada et al. | Jul 2002 | B1 |
6435017 | Nowicki, Jr. et al. | Aug 2002 | B1 |
6454612 | Wang | Sep 2002 | B1 |
6484585 | Sittler et al. | Nov 2002 | B1 |
6607367 | Shibamoto et al. | Aug 2003 | B1 |
6716009 | Sowa et al. | Apr 2004 | B2 |
6752646 | McCoy | Jun 2004 | B2 |
6755631 | Kawashima et al. | Jun 2004 | B2 |
6779989 | Makino et al. | Aug 2004 | B2 |
6866487 | Abe et al. | Mar 2005 | B2 |
6883379 | Kaneko et al. | Apr 2005 | B2 |
6910904 | Herrick et al. | Jun 2005 | B2 |
6923068 | Barron | Aug 2005 | B2 |
6925885 | Ishio et al. | Aug 2005 | B2 |
7056104 | Kimura et al. | Jun 2006 | B2 |
7077694 | Nakano et al. | Jul 2006 | B2 |
7108489 | Yap | Sep 2006 | B2 |
7252005 | Schulman | Aug 2007 | B2 |
7290989 | Yayanth | Nov 2007 | B2 |
7559794 | Taguchi et al. | Jul 2009 | B2 |
7866964 | Jayanth | Jan 2011 | B2 |
8235687 | Hasegawa | Aug 2012 | B2 |
20020081899 | Korber | Jun 2002 | A1 |
20020127120 | Hahn et al. | Sep 2002 | A1 |
20020130770 | Keyworth et al. | Sep 2002 | A1 |
20020155741 | Herrick et al. | Oct 2002 | A1 |
20020182935 | Monde et al. | Dec 2002 | A1 |
20040020299 | Freakes et al. | Feb 2004 | A1 |
20040118146 | Haller et al. | Jun 2004 | A1 |
20050028585 | Matsumura et al. | Feb 2005 | A1 |
20050028596 | Gall | Feb 2005 | A1 |
20050217383 | Tohyama et al. | Oct 2005 | A1 |
20060013697 | Uratani | Jan 2006 | A1 |
20060068626 | Hasegawa | Mar 2006 | A1 |
20060141838 | Kertesz | Jun 2006 | A1 |
20060144153 | Brosh | Jul 2006 | A1 |
20060211810 | Persigehl et al. | Sep 2006 | A1 |
20060275143 | Yayanth | Dec 2006 | A1 |
20070184697 | Taguchi et al. | Aug 2007 | A1 |
20080136122 | Gambier | Jun 2008 | A1 |
20090060749 | Hoying et al. | Mar 2009 | A1 |
20090234051 | Endtner et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
0284633 | Oct 1988 | EP |
0 677 727 | Oct 1995 | EP |
1020646 | Jul 2000 | EP |
02104995 | Apr 1990 | JP |
09032775 | Feb 1997 | JP |
2001-116638 | Apr 2001 | JP |
2006097557 | Apr 2006 | JP |
2006013872 | Feb 2006 | WO |
2007074852 | Jul 2007 | WO |
Entry |
---|
Chinese Office Action dated Nov. 28, 2008, and English translation of the Chinese Office Action entitled “Text Portion of the First OfficeAction” provided by CCPIT Patent and Trademark Law Office on Dec. 18, 2008. |
Summary of the Second Office Action received from the Mexican Institute of Industrial Property (IMPI) regarding Application No. PA/a/2006/005167. Summary provided by Goodrich, Riquelme y Asociados on Mar. 20, 2009. |
Summary of the Third Office Action received from the Mexican Institute of Industrial Property (IMPI) regarding Application No. PA/a/2006/005167. Summary provided by Goodrich, Riquelme y Asociados on Sep. 3, 2009. |
Partial European Search Report dated Sep. 2, 2009 regarding Application No. EP05256767. |
Chinese Second Office Action dated Jan. 8, 2010 and issued in connection with a corresponding Chinese Application. Translation prepared by Unitalen Attorneys at Law. |
Summary of the Fourth Office Action received from the Mexican Institute of Industrial Property (IMPI) regarding Application No. PA/a/2006/005167. Summary provided by Goodrich, Riquelme y Asociados on Mar. 25, 2010. |
International Preliminary Report on Patentability dated Nov. 10, 2009 regarding International Application No. PCT/US2008/005971. |
First Office Action regarding Chinese Patent Application No. 200880015473.1, dated May 23, 2011. English translation provided by Unitalen Attorneys at Law. |
Non-final Office Action for U.S. Appl. No. 12/115,651, dated Aug. 11, 2011. |
Final Office Action for U.S. Appl. No. 12/115,651, dated Jan. 6, 2012. |
International Preliminary Report on Patentability regarding International Application No. PCT/US2008/010228 dated Mar. 2, 2010. |
First Office Action regarding Chinese Patent Application No. 200880104495.5, dated Apr. 19, 2011. English translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action for U.S. Appl. No. 12/199,467, dated Jul. 29, 2011. |
Final Office Action for U.S. Appl. No. 12/199,467, dated Jan. 18, 2012. |
Non-Final Office Action for U.S. Appl. No. 11/134,130, dated Jun. 18, 2010. |
Final Office Action for U.S. Appl. No. 11/134,130, dated Mar. 9, 2010. |
Non-Final Office Action for U.S. Appl. No. 11/134,130, dated Oct. 23, 2009. |
Final Office Action for U.S. Appl. No. 11/134,130, dated May 14, 2009. |
Non-Final Office Action for U.S. Appl. No. 11/134,130, dated Dec. 19, 2008. |
International Search Report regarding International Application No. PCT/US2008/010228 dated Feb. 3, 2009. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2008/010228 dated Feb. 3, 2009. |
International Search Report regarding International Application No. PCT/US2008/005971 dated Sep. 30, 2008. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2008/005971 dated Sep. 30, 2008. |
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 11/134,130 dated Oct. 24, 2008. |
Office Action dated Jul. 9, 2008 regarding U.S. Appl. No. 11/134,130. |
Office Action dated Dec. 21, 2007 regarding U.S. Appl. No. 11/134,130. |
Office Action dated Aug. 13, 2007 regarding U.S. Appl. No. 11/134,130. |
Office Action dated Feb. 23, 2007 regarding U.S. Appl. No. 12/134,130. |
International Search Report regarding Application No. PCT/US2010/028667, mailed Oct. 28, 2010. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2010/028667, mailed. Oct. 28, 2010. |
Final Office Action for U.S. Appl. No. 12/199,467, mailed Sep. 9, 2013. |
Non-Final Office Action for U.S. Appl. No. 12/199,467, mailed Dec. 26, 2013. |
First Office Action regarding Chinese Application No. 201080013757.4, dated Sep. 2, 2013, and Search Report. English translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action for U.S. Appl. No. 12/199,467, mailed May 20, 2013. |
Second Office Action regarding Chinese Application No. 201080013757.4, dated Apr. 16, 2014, and Supplementary Search Report. English translation provided by Unitalen Attorneys at Law. |
Final Office Action regarding U.S. Appl. No. 12/199,467, mailed Apr. 7, 2014. |
Number | Date | Country | |
---|---|---|---|
20110076162 A1 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
61164149 | Mar 2009 | US |