This invention relates generally to refrigeration systems and, more particularly, to transport refrigeration systems with compressor speed controls.
For the transport of goods that are required to be kept cold or frozen, vehicles such as trucks or trailers or refrigerated containers are provided with a refrigeration system which interfaces with the cargo space to cool the cargo down to a predetermined temperature. The refrigeration system includes a compressor which is driven by an electric motor, with the most common type being a hermetic compressor with the motor being disposed within the compressor housing.
In the usual transport refrigeration system, the duty cycle of the compressor will vary substantially depending on various factors such as the ambient temperature, the type and volume of cargo, the desired temperature for the cargo space, and the frequency and length of time that the cargo space is opened for loading or unloading. The compressor must be designed to operate at sufficient capacity and speed to provide a cooling capability that is necessary to satisfy the most adverse conditions (such as pulldown) that are anticipated. However, during a majority of the operating time, the compressor can be operating at less than full capacity and at times may be completely shut off. For purposes of efficiency, it is therefore become common to provide a control system for varying the speed of the compressor so as to thereby maximize the efficiency while at the same time meeting the demands of the cooling system.
One way in which the speed control is accomplished is by way of a power electronics unit which is used to selectively vary the power to the drive motor, and in particular, by varying the current, voltage and/or frequency thereto. When using such a unit with its various electronic components, it has been recognized that even the most robust power electronic systems are subject to malfunction and/or failure unless they are protected from certain unfavorable conditions. Firstly, it is recognized that the inverter must be protected against overheating. This is often accomplished by the use of heat sinks and by providing fans to circulate air through the electronic components to provide the necessary cooling thereof. In this regard, it is recognized that, generally, the size of the power electronics package can be reduced as the cooling capabilities are increased.
The second condition against which one would preferably protect a power electronics unit is that of mechanical shock that can be transferred to the electronic components by jarring movements of the type that may occur in moving vehicles. This can be accomplished by providing resilient structure between the inverter apparatus and the structure to which it is mounted.
Briefly, in accordance with one aspect of the invention, the power electronics package is cooled by way of refrigerant that is being returned to the suction inlet of the compressor, with the suction gas being routed to flow first through the power electronics package and then to the suction port of the compressor. In this way, the electronic components are more effectively cooled than by the mere circulation of air therethrough, and thereby allowing for the use of a smaller power electronics package.
In accordance with another aspect of the invention, the speed of the compressor, as controlled by the electronics package, is generally proportional to both the degree of heat generated by the electronic components and the amount of refrigerant that is circulated by the compressor, thereby providing an inherent balanced arrangement to obtain efficient operation with a smaller electronics package.
In accordance with yet another aspect of the invention, a power electronics unit is mounted directly to the side of a hermetic compressor, with the compressor itself being mounted on shock mounts. In this way, the power electronics unit derives the benefit of the compressor mounting system without the need for its own resilient mounting system.
In the drawings as hereinafter described, a preferred embodiment is depicted; however, various other modifications and alternate constructions can be made thereto without departing from the spirit and scope of the invention.
Referring to
The compressor 12 is a hermetic compressor with the motor enclosed in its casing and may be a reciprocating compressor, a rotary compressor or a scroll compressor. It is operatively connected within a refrigeration system that includes, in serial flow relationship, a condenser coil 13, an expansion device 14, and an evaporator coil 16. It preferably also includes a receiver 18, a filter/dryer 19, an economizer heat exchanger 21 and a liquid injection valve 22.
The evaporator coil 16 is so positioned within the cargo space 17 as to provide cooling thereto, and one or more fans 23 are provided to circulate the air from the cargo space over the evaporator coil 16. Similarly, the condenser coil 13 is so positioned that its fan 24 is operable to circulate ambient air thereover for purposes of condensing the refrigerant gases within the condenser coil 13.
In operation, the refrigerant gas passes from discharge service connection 15 of the compressor 12 along line 26 to the condenser coil 13 with the condensed refrigerant then passing along line 27 to the receiver 18 where liquid refrigerant can be temporarily stored. The liquid refrigerant then passes along line 28 to the filter dryer 19 which acts to remove any impurities from the refrigerant. The refrigerant then passes along line 29 to the economizer heat exchanger 21 and from there along line 31 to the expansion device 14. The expanded refrigerant passes to the evaporator 16 for purposes of cooling the cargo space, and then along line 32 to a suction service connection 33 through the power electronics package 11 and to the compressor 12.
In an economized mode of operation, the frozen range and pull down capacity of the unit is increased by subcooling the liquid refrigerant entering the evaporator expansion valve such that overall efficiency is increased because the gas leaving the economizer enters the compressor at a higher pressure, therefore requiring less energy to compress it to the required condensing conditions.
Liquid refrigerant for use in economizer circuit is taken from the main liquid line as it leave the filter dryer 19 with the flow being activated when the controller energizes the economizer celluloid valve 20. A liquid refrigerant flows through the economizer expansion valve 25 the economizer heat exchanger 21 and the line 30 to the economizer service connection 35.
During unloaded operation, the economizer solenoid valve 20 is closed and the unloading solenoid valve 40 is opened such that a portion of the mid-staged compressed gas is bypassed to decrease compressor capacity.
It should be understood that the power electronics package 11 can be any electronic system that is provided for the purpose of varying the speed of the compressor 12, and the compressor can be of any type of rotary or reciprocating compressor that is driven by an ac or a dc motor. For example, it can be an ac induction motor with an inverter to vary its speed. Alternatively, the speed control can be provided by other apparatus such as a PWM (pulse width modulation) unit or even a variable resistance power electronics package.
Referring now to
The power electronics package 11 includes a power wiring terminal block housing 43 which contains the power electronics 44. As will be seen, the power wiring terminal block housing 43 is rigidly secured to a side 46 of the compressor 12 by a plurality of bolts 47. The resilient mounting that is normally required for the power electronics package 11 is not required since, because of the direct connection to the compressor 12, the power electronics package 11 derives the benefit of the shock mounts 41 for the compressor. Thus, the power electronics package 11 is protected from shocks by way of the shock mounts 41.
An electrical power input is made to the power electronics 44 by way of electrical line 48, and the power electronics 44 is electrically connected to the motor M by way of electrical line 49, preferably by way of a fusite member 50.
A control device C is electrically interconnected between the power electronics 44 and the motor M so as to selectively vary the power from the power electronics 44 to control the speed of the motor M in a desired manner, with certain operational parameters and sensed conditions being provided to the control C by way of various inputs indicated at numeral 52.
Even more important than the resilient mounting benefit is that of using the refrigerant system to cool the electrical components within the inverter power electronics 44 by way of circulating the returning refrigerant gas therethrough. That is, at one side 53 of the housing 43, provision is made to introduce the flow of suction gas as shown at 54 in such a way as to cause it to flow through the housing 43 and, in doing so to cool the power electronics 44. The refrigerant gas then flows out the other side 56, with the flow stream 57 then passing to the suction inlet of the compressor 12. In this way, the electronic components can be more efficiently cooled than by way of the usual method of circulating air thereover, and will thus allow for the reduction in size and weight of the power electronic package 11. Further, it will allow operation of the system in a more harsh environment such as at higher ambient temperatures and higher shock loads.
Considering now in greater detail as to how the refrigerant is applied to cool the electronic components, reference is made to
In the refrigeration section 59, there are a plurality of heat transfer elements that are integrally connected to the heat sink 61 and whose geometry are designed to maximize the heat transfer effect from the heat sink 61 to the low temperature refrigerant that flows through this section. In
Referring to
It should be recognized that since the power switching semiconductors are part of the compressor speed control there is an inherent relationship between the amount of cooling that is required and the amount of cooling that is provided. That is, when the compressor is operating at full speed the power switching semiconductors will be operating at maximum capacity and maximum generation of heat. At the same time however, since the compressor is operating at full speed the amount of refrigerant being circulated through the system is at a maximum flow rate, and therefore the maximum cooling effect is provided to the heat sink 61. On the other hand, when the compressor is operating at lower speeds, the heat loss from the power switching semiconductors will be lower as will be the rate of refrigerant flow through the system. In this way, the amount of cooling that occurs is automatically adjusted with changes in compressor motor speed.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US06/23303 | 6/15/2006 | WO | 00 | 12/2/2008 |