This application claims priority to German Patent Application No. 10 2016 120 346.7 filed on Oct. 25, 2016, the entirety of which is incorporated by reference herein.
The invention relates to a compressor rotor of a turbomachine.
As a basic principle, it should be aimed at introducing residual compressive stresses into a material in order to limit the crack propagation in the material. This also applies to the blades of the compressor rotor of a turbomachine, in which cracks may for example be created by foreign bodies impacting the blade surface. Such foreign bodies may be external objects, in which case the term “foreign object damage” (FOD) is used, or they may be objects of the engine, in which case the term “domestic object damage” (DOD) is applied.
In order to improve the robustness of a blade with respect to foreign bodies, it is known to introduce residual compressive stresses by means of external measures, such as for example by shot peening or compacting with cooled rolling. In the course of this process, the surface roughness is also disadvantageously increased.
Document U.S. Pat. No. 7,445,433 B2 discloses to contour the bottom side of the rotor hub of a compressor rotor in a periodic manner in such a way that the rotor hub is respectively thickened in the area of a blade root.
There is a need to provide a compressor rotor of a turbomachine that has an improved robustness with respect to the damages caused by foreign bodies.
According to an embodiment of the invention, a compressor rotor of a turbomachine is provided that has a rotor disk, a rotor hub, and a plurality of rotor blades that are arranged at the rotor hub, extending radially outwards. The rotor hub has an axially frontal leading edge, an axially rear trailing edge, a top side of the hub, a frontal bottom side of the hub, and a rear bottom side of the hub. The frontal bottom side of the hub extends on the bottom side of the rotor hub from the leading edge in the direction of the rotor disk, and transitions into the same. The rear bottom side of the hub extends on the bottom side of the rotor hub from the trailing edge in the direction of the rotor disk, and transitions into the same.
It is thus provided that the frontal bottom side of the hub and/or the rear bottom side of the hub is contoured in such a manner in the circumferential direction of the rotor hub that it forms respectively one indentation in the area below a rotor blade. Accordingly, the rotor hub respectively has a reduced thickness in the area of a rotor blade, wherein what is being referred to as the thickness of the rotor hub is the radial distance between the top side of the hub and the bottom side of the hub.
Due to the respectively provided indentation on the bottom side of the hub in the area of a rotor blade and the respectively accompanying thinning of the rotor hub in the area of a rotor blade, the rotor hub becomes softer in these areas. In this manner, it is achieved that the rotor blades stronger are set further upright in the radial direction during rotation of the compressor rotor as a result of the centrifugal force, with stronger residual compressive stresses being thus created in the rotor blades, in particular at the leading edge and/or at the trailing edge of the rotor blades. Due to the increased residual compressive stresses, an improved robustness against foreign objects that collide with the rotor blades, i.e. an improved FOD and DOD performance, is provided.
It is to be understood that the leading edge and the trailing edge can also be embodied in a planar manner, in which case they form a frontal face side and a rear face side. Thus, within the meaning of the present invention, the terms “leading edge” and “trailing edge” are thus to be understood in such a manner that they may refer to a angular edge as well as to a planar face side.
The invention can be realized in axial compressors as well as in radial compressors.
In one embodiment of the invention it is provided that the rotor hub respectively forms an indentation below a rotor blade, starting from the leading edge and/or starting from the trailing edge. Thus, the indentations are embodied respectively at the edges of the rotor hub and adjoining thereto at the bottom side of the hub. In this manner, it is achieved that residual compressive stresses are particularly introduced into the blades at the blade leading edge or the blade trailing edge.
In a further embodiment of the invention, it is provided that the indentations are respectively embodied in a concave manner (as viewed in the circumferential direction), extending in the axial direction in the direction of the rotor disk. Here, it can be provided that the depth of the indentation decreases in the direction of the rotor disk until it disappears completely, at the latest on the axial height of the rotor disk. Accordingly, the indentations are embodied so as to be approximately trench-shaped, wherein the trench extends starting from the leading edge or the trailing edge in the axial direction, decreasing in depth in the direction of the rotor disk.
According to one embodiment of the invention, it applies to at least one section through the hub in a plane transverse to the rotational axis that the indentation and the maximum blade root thickness in the circumferential direction cover angular ranges that overlap each other. In other words, the indentation and the maximum blade root thickness overlap if they are shifted over each other in the radial direction. At that, the blade root thickness is defined in such a manner that it comprises the thickness (i.e. the distance in the circumferential direction between suction side and the pressure side) of the blade plus the extension in the circumferential direction of the two rounded-off portions, which are also referred to as the “fillet” and form the transition from the actual blade to the rotor hub. Thus, the maximum blade thickness is that area of a rotor blade that extends in the circumferential direction and extends from the rounded-off portion of the blade on the suction side up to a rounded-off portion of the blade on the pressure side of the blade extend.
In one embodiment of the invention, it is provided that the indentations extend in the circumferential direction over a length that is between half and five times the maximum blade root thickness, in particular between the maximum blade root thickness and three times the maximum blade root thickness. This shall apply to at least one section through the hub in a plane transverse to the rotational axis, in particular at the leading edge and/or the trailing edge of the rotor hub.
Further, it can be provided that is applies to at least one section through the hub in a plane transverse to rotational axis that the maximum thickness reduction of the rotor hub that is provided by an indentation is in the range of between 5% and 30%, in particular in the range of between 10% and 20% with respect to the thickness of the rotor hub in the middle between two adjacent rotor blades.
In one embodiment of the invention, it is provided that the contouring of the frontal bottom side of the hub and/or the contouring of the rear bottom side of the hub in the circumferential direction is realized in a periodic manner in the sense that the indentations have the same relative position to the rotor blade at all rotor blades. For example, the indentations may be respectively embodied symmetrically with respect to the rotor blades.
According to an alternative embodiment, it is provided that the contouring of the frontal bottom side of the hub and/or the contouring of the rear bottom side of the hub in the circumferential direction is realized in a non-periodic manner in the sense that the indentations at least at some of the rotor blades differ with respect to the relative position to the rotor blade. As a result, such rotor blades have differing natural frequencies. Consequently, such an embodiment has the advantage that the system is detuned, and thus resonance conditions are avoided. With the system being detuned, it is avoided that energy is transported to other blades at the natural frequency, or this effect is reduced.
A detuning of the system through a non-periodic arrangement of the indentations with respect to the rotor blades is in particular advantageous in compressor rotors that have only weak damping in the transition between the blade and the rotor hub. A weak damping in the transition between the blade and rotor hub is in particular present in the case that the compressor rotor is embodied in BLISK design, in which case the rotor disk, the rotor hub and the rotor blades are embodied in an integral (one-piece) manner (BLISK=“bladed disk”), or in the case that the compressor rotor is embodied in BLING design, in which case the rotor hub and the rotor blades are embodied in an integral (one-piece) manner (BLING=“bladed ring”). Accordingly, it is provided in embodiments of the invention that the compressor rotor is embodied in BLISK design or in BLING design.
In other exemplary embodiments of the invention, the compressor rotor is the compressor rotor of a radial compressor, and is embodied with an integral radial compressor impeller.
In the case of a non-periodic contouring of the bottom side of the hub, it is provided in one embodiment of the invention that the contouring is realized in a non-periodic manner, namely in such a way that, for a group of neighboring blades, the relative position of the indentations with respect to the respective blade is shifted by the same amount in the circumferential direction from one blade to the other. Here, the term “in the circumferential direction” also includes a displacement counter to the circumferential direction. For example, it can be provided that the relative position of the indentations with respect to the respective blade is shifted in such a manner in the circumferential direction in a regarded group of neighboring blades that if—d2 is the maximum blade root thickness and n is the number of the blades of the regarded group—the indentations are displaced in the circumferential direction by an angle that equals d2/n from one blade to the other. Here, a group of neighboring blades may for example have between three and seven, in particular between four and six, blades.
If thus a regarded group has for example four blades, the indentation from one blade to the other is displaced by 25% of the maximum blade root thickness. Of course, it still applies here that the indentation is at least partially embodied in the area below the blades in each blade. In the circumferential direction of the compressor rotor, such groups of detuned blades can connect to each other, and thus form the compressor blading together.
According to a further aspect of the invention, a compressor rotor is provided in which the frontal bottom side of the hub and/or the rear bottom side of the hub are contoured in such a manner that it applies to each meridional section through the rotor hub that the boundary line of the frontal bottom side of the hub at least adjoining at the leading edge and/or the boundary line of the rear bottom side of the hub at least adjoining at the trailing edge can be described by an ellipse in the meridional section.
Thus, in this aspect of the invention a very specific course of the boundary line of the frontal bottom side of the hub and/or the rear bottom side of the hub adjoining at the leading edge or the trailing edge is provided, namely an elliptical course, i.e. a course, in which the boundary line lies at least partially on an ellipse. Such a shape of the bottom side of the hub has the advantage that forces acting at the bottom side of the hub are guided into the rotor disk in an effective manner.
A meridional section is made along the axial and radial direction, and contains the rotational axis. The statement that the mentioned feature applies to each meridional section through the rotor hub means that the described embodiment of the bottom side of the hub is circumferentially symmetrical.
According to one embodiment, the boundary line is embodied in an elliptical manner in its entire length up to the transition to the rotor disk. In a further embodiment, it can be provided that the boundary line extends at the bottom side of the hub from the leading edge or trailing edge over a length in the direction of the rotor disk, with its axial component being in the range of between 10% and 30% of the axial extension (between the leading edge and the trailing edge) of the rotor hub. This range relates to the axial component, i.e. the projection of the boundary line onto the axial direction. The latter is regarded because the boundary line also has a radial component in the direction of the rotational axis.
Within the meaning of the present invention, a compressor rotor may be any rotor of a compressor stage of a turbomachine. For example, the compressor rotor can be a fan rotor, a rotor of a low-pressure compressor, a rotor of a medium-pressure compressor, or a rotor of a high-pressure compressor.
Within the meaning of the present invention, a turbomachine may for example be an aircraft engine, in particular a turbofan engine, or a gas turbine for energy generation.
The invention will be explained in more detail on the basis of exemplary embodiments with reference to the accompanying drawings in which:
The medium-pressure compressor 20 and the high-pressure compressor 30 respectively have a plurality of compressor stages that respectively comprise a rotor stage and a stator stage. The turbofan engine 100 of
The turbofan engine 100 has an engine nacelle 1 that comprises an inlet lip 14 and forms an engine inlet 11 at the inner side, supplying inflowing air to the fan 10. The fan 10 has a plurality of fan blades 101 that are connected to a fan disk 102. Here, the annulus of the fan disk 102 forms the radially inner boundary of the flow path through the fan 10. Radially outside, the flow path is delimited by the fan housing 2. Upstream of the fan-disc 102, a nose cone 103 is arranged.
Behind the fan 10, the turbofan engine 100 forms a secondary flow channel 4 and a primary flow channel 5. The primary flow channel 5 leads through the core engine (gas turbine) that comprises the medium-pressure compressor 20, the high-pressure compressor 30, the combustion chamber 40, the high-pressure turbine 50, the medium-pressure turbine 60, and the low-pressure turbine 70. At that, the medium-pressure compressor 20 and the high-pressure compressor 30 are surrounded by a circumferential housing 29 which forms an annulus surface at the internal side, delimitating the primary flow channel 5 radially outside. Radially inside, the primary flow channel 5 is delimitated by corresponding rim surfaces of the rotors and stators of the respective compressor stages, or by the hub or by elements of the corresponding drive shaft connected to the hub.
During operation of the turbofan engine 100, a primary flow flows through the primary flow channel 5, which is also referred to as the main flow channel. The secondary flow channel 4, which is also referred to as the partial-flow channel, sheath flow channel, or bypass channel, guides air sucked in by the fan 10 during operation of the turbofan engine 100 past the core engine.
The described components have a common rotational or machine axis 90. The rotational axis 90 defines an axial direction of the turbofan engine. A radial direction of the turbofan engine extends perpendicularly to the axial direction.
What is important in the context of the present invention is the embodiment of a compressor rotor, i.e. of the rotor of a compressor stage, wherein one or multiple compressor rotors of the low-pressure compressor, of the medium-pressure compressor, or of the high-pressure compressor can be embodied in the manner described in the following.
The basic structure of the compressor rotor 2 is shown in the meridional section in
The compressor rotor 20 has a rotor disk 21, a rotor hub 22, and a plurality of rotor blades 23. The rotor disk 21 can be rotated about a rotational axis that extends in an axial direction x (e.g. the rotational axis 90 of
The compressor rotor 20 is described in a cylindrical coordinate system having the coordinates x, r and φ. Here, x indicates the axial direction, r indicates the radial direction, and φ indicates the angle in the circumferential direction. Starting at the x-axis, the radial direction points radially outwards. Here, terms such as “in front”, “behind”, “frontal” and “rear” always refer to the axial direction, which substantially corresponds to the flow direction.
The rotor blades 23 have a leading edge 231, a trailing edge 232, a pressure side 234, a suction side 235, and a blade tip 236. A separate blade root is not provided in the shown exemplary embodiment, since the compressor rotor is embodied in BLISK design, i.e. the rotor disk 21, the rotor hub 22, and the rotor blades 23 are embodied in an integral manner. However, this is not necessarily the case. Alternatively, the rotor blades can respectively have a blade root that is fixated in a corresponding recess inside the rotor hub. It can alternatively also be provided that the compressor rotor is realized in BLING design, with the rotor hub 22 and the rotor blades 23 being embodied in an integral manner.
Since the compressor rotor is realized in BLISK design in the
The rotor hub 22, which may also be referred to as a blade platform, has a leading edge 221, a trailing edge 222, and a top side of the hub 223 that extends from the leading edge 221 to the trailing edge 222, with the rotor blades 23 projecting from the same. The top side of the hub 223 forms a ring surface that delimits the flow channel through the rotor blade ring radially inside during operation of the compressor rotor.
Further, the rotor hub 22 has a frontal bottom side of the hub 224 that extends on the bottom side of the rotor hub 22 from the leading edge 221 in the direction of the rotor disk 21 and transitions into the same, and a rear bottom side of the hub 225 that extends on the bottom side of the rotor hub 22 from the trailing edge 222 in the direction of the rotor disk 21 and transitions into the same.
The rotor disk 21 has a disk-shaped area 211 and a disk root 212.
The indentation 40 extends in the circumferential direction as well as in the axial direction. The surface of the indentation 40 correspondingly has a larger radius (i.e. a radial distance from the rotational axis) in the circumferential direction as well as in the radial direction that the areas at the bottom side of the hub 224, which do not form an indentation.
According to one embodiment, it is provided that the indentation 40 begins at the leading edge 221 of the rotor hub and from there extends in the axial direction in the direction of the rotor disk 21. Here, it can be provided that the depth of the indentation 40 decreases in the direction of the rotor disk 21, and that is disappears completely starting at a certain axial extension (e.g. after an axial extension that is in the range of between 10% and 30% of the axial extension of the rotor hub 22). The softness that is achieved by means of the indentation 40 is thus in particular realized in the edge area of the rotor hub 22.
The indentation 40 is concave and in principle can have any desired shape. Preferably, it has soft transitions to the adjoining areas of the bottom side of the hub 224, which are not provided with an indentation.
The indentation 40 is embodied in the area below the rotor blade 23 at the bottom side of the hub 224. This will be described in more detail in the following. The rotor blade 23 has a blade thickness d1 that is defined by the distance between the suction side 235 and the pressure side 234. In the transition to the top side of the hub 223, the rotor blade forms a rounded-off portion 237, 238 at the suction side 235 and the pressure side 234 in a per se known manner, with that rounded-off portion 237, 238 also being referred to as the “fillet”. What is referred to as the maximum blade root thickness d2 is the blade thickness d1 plus the thickness in the circumferential direction of the rounded-off portions 237, 238. Thus, the maximum blade root thickness d2 is the area of the rotor blade 23 that extends in the circumferential direction at its intersection point with the hub surface 223, extending from the rounded-off portion 237 on the suction side 235 up to the rounded-off portion 238 on the pressure side 234 of the blade 23.
An angular range Δφ1 of the polar angle φ of the regarded cylindrical coordinate system corresponds to the maximum blade root thickness d2. Likewise, an angular range Δφ2 corresponds to the indentation 40 extending in the circumferential direction from the beginning of the indentation 40 up to the end of an indentation 40. As the indentation 40 is embodied in the area below a rotor blade 23, the indentation 40 and the maximum blade root thickness d2 overlap in the circumferential direction. This means that the angles Δφ1 and Δφ2 overlap at least partially. In other words, at least one section of the indentation 40 lies in the radial direction below the maximum blade root thickness d2. Like in the exemplary embodiment of
Alternatively or additionally, such an indentation can also be inserted into the rotor hub 22 in the area of the rear bottom side of the hub 225 (cf.
As can be seen in
The indentations 41, 42, 43 may for example extend in the circumferential direction φ across a length that is between half (d2/2) and five times (5*d2) the maximum blade root thickness d2, in particular between the maximum blade root thickness (d2) and three times (3*d2) the maximum blade root thickness d2, wherein the maximum blade root thickness d2 is defined in the manner as described with respect to
What is regarded here in
In the group of four blades that is regarded in
Alternatively or additionally, such a displacement of the indentations can also be realized in the area of the rear bottom side of the hub 225 (cf.
It is provided that, in the meridional section, the boundary line 226 of the frontal bottom side of the hub 224 can be described by an ellipse at least adjoining at the leading edge 221. Alternatively or additionally, it is provided that, in the meridional section, the boundary line 227 of the rear bottom side of the hub 225 can be described by an ellipse at least adjoining at the trailing edge 222. At that, the described contouring is circumferentially symmetrical, meaning that it applies to each meridional section through the rotor hub 22.
It can be provided that the boundary line 226 and/or the boundary line 227 is embodied in an elliptical manner in its total length up to the transition to the rotor disk 21 or its disk-shaped area 211. Alternatively, it can be provided that the boundary line 226 and/or the boundary line 227 is embodied in an elliptical manner only over a part of its length, for example across a section that adjoins the leading edge 221 or the trailing edge 222 and that has an axial component in the range of between 10% and 30% of the axial extension of the rotor hub 22 (i.e. between the leading edge 221 and the trailing edge 222).
The present invention is not limited in its embodiment to the previously described exemplary embodiments. For example, the shape of the indentations in
It is furthermore pointed out that the features of the individually described exemplary embodiments of the invention can be combined in various combinations with one another. Where areas are defined, they include all the values within these areas and all the sub-areas falling within an area.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 120 346.7 | Oct 2016 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5292385 | Kington | Mar 1994 | A |
6354780 | Davis et al. | Mar 2002 | B1 |
7445433 | Chivers et al. | Nov 2008 | B2 |
8636474 | Evans | Jan 2014 | B2 |
20050186080 | Chivers | Aug 2005 | A1 |
20110305578 | Smarsly | Dec 2011 | A1 |
20130209260 | Stone | Aug 2013 | A1 |
20150292337 | Gentile | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
102008052247 | Apr 2010 | DE |
1507064 | Feb 2005 | EP |
3002414 | Apr 2016 | EP |
2874232 | Feb 2006 | FR |
2255138 | Oct 1992 | GB |
2468722 | Sep 2010 | GB |
2009197649 | Sep 2009 | JP |
Entry |
---|
Partial European Search Report dated Feb. 20, 2018 for counterpart European Application No. 17197050.3. |
European Search Report dated May 7, 2018 from counterpart App No. 17197040.3. |
German Search Report dated Aug. 22, 2017 from counterpart German App No. 10 2016 120 346.7. |
European Office Action dated Feb. 3, 2020 from counterpart App No. 17197040.3. |
European Office Action dated Sep. 29, 2020 from counterpart App No. 17197040.3. |
Number | Date | Country | |
---|---|---|---|
20180112674 A1 | Apr 2018 | US |