Disclosed embodiments relate generally to the field of turbomachinery, and, more particularly, to a rotor structure for a turbomachine, such as a compressor.
Turbomachinery is used extensively in the oil and gas industry, such as for performing compression of a process fluid, conversion of thermal energy into mechanical energy, fluid liquefaction, etc. One example of such turbomachinery is a compressor, such as a centrifugal compressor.
As would be appreciated by those skilled in the art, turbomachinery, such as centrifugal compressors, may involve rotors of tie bolt construction (also referred to in the art as thru bolt or tie rod construction), where the tie bolt supports a plurality of impeller bodies and where adjacent impeller bodies may be interconnected to one another by way of elastically averaged coupling techniques, such as involving hirth couplings or curvic couplings. These coupling types use different forms of face gear teeth (straight and curved, respectively) to form a robust coupling between two components.
These couplings and associated structures may be subject to greatly varying forces (e.g., centrifugal forces), such as from an initial rotor speed of zero revolutions per minute (RPM) to a maximum rotor speed, (e.g., as may involve tens of thousands of RPM). Additionally, these couplings and associated structures may be exposed to contaminants and/or byproducts that may be present in process fluids processed by the compressor. If so exposed, such couplings and associated structures could be potentially affected in ways that could impact their long-term durability. By way of example, a combination of carbon dioxide (CO2), liquid water and high-pressure levels can lead to the formation of carbonic acid (H2CO3), which is a chemical compound that can corrode, rust or pit certain steel components. Physical debris may also be present in the process fluids that if allowed to reach the hirth couplings and associated structures could potentially affect their functionality and durability.
In view of the foregoing considerations, the present inventors have recognized that attaining consistent high performance and long-term durability in a centrifugal compressor, for example, may involve in disclosed embodiments appropriately covering respective hirth couplings with appropriate sealing structures to inhibit passage onto the respective hirth coupling of process fluid being processed by the compressor, and thus ameliorating the issues discussed above.
In the following detailed description, various specific details are set forth in order to provide a thorough understanding of such embodiments. However, those skilled in the art will understand that disclosed embodiments may be practiced without these specific details that the aspects of the present invention are not limited to the disclosed embodiments, and that aspects of the present invention may be practiced in a variety of alternative embodiments. In other instances, methods, procedures, and components, which would be well-understood by one skilled in the art have not been described in detail to avoid unnecessary and burdensome explanation.
Furthermore, various operations may be described as multiple discrete steps performed in a manner that is helpful for understanding embodiments of the present invention. However, the order of description should not be construed as to imply that these operations need be performed in the order they are presented, nor that they are even order dependent, unless otherwise indicated. Moreover, repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment, although it may. It is noted that disclosed embodiments need not be construed as mutually exclusive embodiments, since aspects of such disclosed embodiments may be appropriately combined by one skilled in the art depending on the needs of a given application.
In one disclosed embodiment, a tie bolt 102 extends along a rotor axis 103 between a first end and a second end of the tie bolt 102. A first rotor shaft 1041 may be fixed to the first end of tie bolt 102. A second rotor shaft 1042 may be fixed to the second end of tie bolt 102. Rotor shafts 1041, 1042 may be referred to in the art as stubs shafts. It will be appreciated that in certain embodiments more than two rotor shafts may be involved.
A plurality of impeller bodies 106, such as impeller bodies 1061 through 106n, may be disposed between rotor shafts 1041, 1042. In the illustrated embodiment, the number of impeller bodies is six and thus n=6; it will be appreciated that this is just one example and should not be construed in a limiting sense regarding the number of impeller bodies that may be used in disclosed embodiments. The embodiment illustrated in
The plurality of impeller bodies 106 is supported by tie bolt 102 and is mechanically coupled to one another along the rotor axis by way of a plurality of hirth couplings, such as hirth couplings 1081 through 108n-1. In the illustrated embodiment, since as noted above, the number of impeller bodies is six, then the number of hirth couplings between adjoining impeller bodies 106 would be five. It will be appreciated that two additional hirth couplings 1091 and 1092 may be used to respectively mechanically couple the impeller bodies 106n, 1061 with respectively abutting rotor shafts 1041, 1042. It will be appreciated that the foregoing arrangement of impeller bodies and hirth couplings is just one example and should not be construed in a limiting sense.
As may be better appreciated in
The respective sealing sleeve 120 may axially extend between a first axial edge 122 and a second axial edge 124 of sealing sleeve 120. Sealing sleeve 120 may be arranged to span (e.g., along 360 degrees) a circumferentially extending junction 126 between adjoining impeller bodies 1061, 1062 to inhibit passage onto the respective hirth coupling 1081 of process fluid being processed by the compressor. Respective sealing arrangements, as described above, would be featured in each of the remaining adjoining impeller bodies, such as between adjoining impeller bodies 1062, 1063, and so on and so forth.
In one non-limiting embodiment, sealing sleeve 120 may be affixed to a respective one of the two adjoining impeller bodies (e.g, impeller body 1061) by way of an interference fit. That is, a circumferential interference fit about radially outward surface 121 of impeller body 1061 In one non limiting embodiment, a radially inward surface 132 of sealing sleeve 120 may include a relief 135 (e.g, groove or cut) positioned between first axial edge 122 and second axial edge 124 of sealing sleeve 120 to facilitate assembly of sealing sleeve 120.
In this example, sealing sleeve 120 may be affixed to the other impeller body of the two adjoining impeller bodies (e.g, impeller body 1062) by way of a slip fit. For example, a radially inward surface 132 of sealing sleeve 120 would have a slightly larger diameter compared to the diameter of radially outward surface 123 of impeller body 1062. This type of affixing design involving a slip fit connection with respect to one of the two adjoining impeller bodies and an interference fit in connection with respect to the other of the two adjoining impeller bodies is conducive to user-friendly assembly of the sealing sleeves between the supporting structures, e.g., the respective radially outward surfaces 121, 123 of adjoining impeller bodies 1061,1062.
In one non-limiting embodiment, a circumferentially-extending groove 128 may be disposed in a first (e.g., radially outward surface 123) of the radially outward surfaces 121, 123 of adjoining impeller bodies 1061,1062. A seal member 130 is positioned in groove 128 to form a seal (e.g., extending along 360 degrees) between the first of the radially outward surfaces (e.g., radially outward surface 123) and sealing sleeve 120. Seal member 130 may be arranged to compressively abut against a corresponding radially inward surface 132 of sealing sleeve 120 and against a corresponding surface disposed at a respective axial location, such as the radially-extending surfaces 125 that in part define groove 128. This is effective to butress the sealing functionality of sealing sleeve 120 affixed to impeller body 1062 by way of the slip fit.
Without limitation, seal member 130 may be an O-ring, a C-shaped seal, an omega-shaped seal, a cloth seal or other seal member. As will be appreciated by one skilled in the art, a cloth seal may comprise a high temperature-resistant material, such as metal, ceramic or polymer fibers which may be woven, knitted or otherwise pressed into a layer of fabric.
As may be better appreciated in
The further sealing sleeve 140 axially extends between a first axial edge 142 and a second axial edge 144 of the further sealing sleeve. The further sealing sleeve 140 may be arranged to span (e.g., along 360 degrees) a circumferentially extending junction 146 between impeller body 1061 and the abutting rotor shaft 1042 to inhibit passage onto hirth coupling 1092 of process fluid being processed by the compressor.
It will be appreciated that further sealing sleeve 140 may be configured with a cylindrical cross-section about the rotor axis. A sealing arrangement, as described above, would be featured in connection with impeller body 106n and abutting rotor shaft 1041.
In one non-limiting embodiment, further sealing sleeve 140 may be affixed to a respective one of rotor shaft 1042 or the abutting impeller body (e.g, impeller body 1061) by way of an interference fit. That is, a circumferential interference fit about radially outward surface 141 of rotor shaft 1042. In this example, further sealing sleeve 140 may be affixed to abutting impeller body 1061 by way of a slip fit. For example, a radially inward surface 147 of further sealing sleeve 140 would have a slightly larger diameter compared to the diameter of radially outward surface 143 of impeller body 1061. This type of affixing design involving a slip fit connection with respect to one of a respective abutting impeller body (e.g, impeller body 1061) and a respective rotor shaft (e.g., rotor shaft 1042) is conducive to user-friendly assembly of the further sealing sleeve between the supporting structures, e.g., the radially outward surfaces 143, 141 of a respective abutting impeller body (e.g, impeller body 1061) of the plurality of impeller bodies 106 and a respective rotor shaft (e.g., rotor shaft 1042) of the two rotor shafts 1041, 1042.
In one non-limiting embodiment, a circumferentially-extending groove 148 may be disposed in a first one (e.g., radially outward surface 143) of the radially outward surfaces 141, 143 of rotor shaft 1042 and the abutting impeller body 1061. A seal member 150 is positioned in groove 148 to form a seal (e.g., along 360 degrees) between the first of the radially outward surfaces (e.g., radially outward surface 143) and further sealing sleeve 140. Seal member 150 may be arranged to compressively abut against a corresponding radially inward surface 147 of further sealing sleeve 140 and against a corresponding surface disposed at a respective axial location, such as radially-extending surfaces 145 that in part define groove 148. This is effective to butress the sealing functionality of further sealing sleeve 140 affixed to impeller body 1061 by way of the slip fit.
Without limitation, seal member 150 may be an O-ring, a C-shaped seal, an omega-shaped seal, a cloth seal or other seal member. As will be appreciated by one skilled in the art, a cloth seal may comprise a high temperature-resistant material, such as metal, ceramic or polymer fibers which may be woven, knitted or otherwise pressed into a layer of fabric.
In operation, disclosed embodiments can make use of sealing structures appropriately arranged to cover the hirth couplings and effective to inhibit passage onto the respective hirth coupling of process fluid being processed by the compressor, and thus inhibiting potential exposure of the hirth couplings and associated structures to contaminants, chemical byproducts, and/or physical debris.
While embodiments of the present disclosure have been disclosed in exemplary forms, it will be apparent to those skilled in the art that many modifications, additions, and deletions can be made therein without departing from the scope of the invention and its equivalents, as set forth in the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/032946 | 5/14/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/230874 | 11/18/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1660792 | Hirth | Feb 1928 | A |
2458149 | Cronstedt | Jan 1949 | A |
2650017 | Pedersen | Aug 1953 | A |
2741454 | Eppley | Apr 1956 | A |
9103212 | Le Brusq | Aug 2015 | B2 |
20030017878 | Muju | Jan 2003 | A1 |
20110052371 | Aschenbruck et al. | Mar 2011 | A1 |
20110262284 | Guernard | Oct 2011 | A1 |
20150316064 | Kosamana | Nov 2015 | A1 |
20150322961 | Slotman | Nov 2015 | A1 |
20160319820 | Venkatachalam | Nov 2016 | A1 |
20180371916 | Jahrmarcht | Dec 2018 | A1 |
20190112938 | Shemyatovskiy et al. | Apr 2019 | A1 |
20210262346 | Patel | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
102013110727 | Apr 2015 | DE |
3025559 | Mar 2016 | FR |
S57210103 | Dec 1982 | JP |
Entry |
---|
PCT International Search Report and Written Opinion of International Searching Authority dated Jan. 29, 2021 corresponding to PCT International Application No. PCT/US2020/032946 filed May 14, 2020. |
Number | Date | Country | |
---|---|---|---|
20230125483 A1 | Apr 2023 | US |