The following relates to a compressor section of a gas turbine engine and, more particularly, to a compressor section of a gas turbine engine that includes a shroud with a serrated casing treatment.
Gas turbine engines are often used in aircraft, among other applications. For example, gas turbine engines used as aircraft main engines may provide propulsion for the aircraft but are also used to provide power generation. It is desirable for such propulsion systems to deliver high performance in a compact, lightweight configuration. This is particularly important in smaller jet propulsion systems typically used in regional and business aviation applications as well as in other turbofan, turboshaft, turboprop and rotorcraft applications.
The compressor section may be configured for increasing cycle pressure ratios to improve engine performance. Aerodynamic loading or rotational speeds may be increased, but these changes may reduce the compressor stall margin, causing engine instability, increased specific fuel consumption, and/or increased turbine operating temperatures. Stage counts may be increased, but this may negatively impact weight, volume, and cost. Also, some features intended to improve engine performance may negatively affect the robustness of the compressor section.
Accordingly, there is a need for an improved compressor stage that achieves superior surge and stability margins, that maintains high efficiency potential for the gas turbine engine, and that is also highly robust. There is also a need for an improved gas turbine engine with this type of compressor stage. Moreover, there is a need for improved methods of manufacturing these compressor stages for gas turbine engines. Furthermore, other desirable features and characteristics of the present disclosure will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and this background section.
In one embodiment, a compressor section of a gas turbine engine is disclosed that defines a downstream direction and an upstream direction. The compressor section includes a shroud with a shroud surface. The compressor section also includes a rotor rotatably supported within the shroud. The rotor includes a blade that radially terminates at a blade tip. The blade tip opposes the shroud surface. The rotor is configured to rotate within the shroud about an axis of rotation. Moreover, the compressor section includes a serration groove that is recessed into the shroud surface. The serration groove includes a forward portion with a forward transition and a forward surface that faces in the downstream direction. The forward transition is convexly contoured between the shroud surface and the forward surface. The serration groove includes a trailing portion with a taper surface and a trailing transition. The taper surface tapers inward as the taper surface extends from the forward surface to the trailing transition. The trailing transition is convexly contoured between the taper surface and the shroud surface.
In another embodiment, a method of manufacturing a shroud of a gas turbine engine is disclosed that includes forming a shroud surface of the shroud. The shroud surface is configured to oppose a blade tip of a rotor rotatably supported within the shroud. The shroud surface defines a downstream direction. The method also includes forming a serration groove that is recessed into the shroud surface to include a forward portion with a forward transition and a forward surface that faces in the downstream direction. The forward transition is convexly contoured between the shroud surface and the forward surface. The serration groove includes a trailing portion with a taper surface and a trailing transition. The taper surface tapers in an inward direction as the taper surface extends from the forward surface to the trailing transition. The trailing transition is convexly contoured between the taper surface and the shroud surface.
In yet another embodiment, a compressor section of a gas turbine engine is disclosed. The compressor section defines a downstream direction and an upstream direction. Also, the compressor section includes a shroud with a shroud surface and a rotor rotatably supported within the shroud. The rotor includes a blade that radially terminates at a blade tip. The blade tip is curved between a forward end of the blade tip and an aft end of the blade tip. The blade tip opposes the shroud surface. The rotor is configured to rotate within the shroud about an axis of rotation. Also, the compressor section includes a casing treatment with a plurality of serration grooves that are recessed into the shroud surface. The serration grooves respectively include a forward portion and a trailing portion. The forward portion including a forward transition and a forward surface that faces in the downstream direction. The forward transition is convexly contoured between the shroud surface and the forward surface. The trailing portion includes a taper surface and a trailing transition. The taper surface tapers inward as the taper surface extends from the forward surface to the trailing transition. The trailing transition is convexly contoured between the taper surface and the shroud surface. The forward transition intersects the shroud surface at a first intersection and intersects the forward surface at a second intersection. The forward surface intersects the taper surface at a third intersection. The taper surface intersects the trailing transition at a fourth intersection. The trailing transition intersects the shroud surface at a fifth intersection. The forward surface and the shroud surface define an imaginary sixth intersection, and the taper surface and the shroud surface define an imaginary seventh intersection. The forward portion has a first dimension measured from the first intersection to the sixth intersection. The trailing portion has a second dimension and a third dimension measured along the taper surface. The second dimension is measured from the third intersection to the seventh intersection, and the third dimension is measured from the fourth intersection to the seventh intersection. The first dimension is between approximately six percent (6%) and thirteen percent (13%) of the second dimension. The third dimension is between approximately twenty percent (20%) and forty percent (40%) of the second dimension.
Furthermore, other desirable features and characteristics of the present disclosure will become apparent from the above background, the subsequent detailed description, and the appended claims, taken in conjunction with the accompanying drawings.
The following detailed description is merely exemplary in nature and is not intended to limit the present disclosure or the application and uses of the present disclosure. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.
The present disclosure provides a turbomachine, such as a compressor section for a gas turbine engine. The compressor section includes a rotor blade with an outer radial edge or blade tip that radially opposes a shroud. The shroud may include one or more casing treatments, such as one or more grooves that are recessed radially into the inner shroud surface. The groove(s), in at least one axial cross section of the compressor section, may be generally shaped to resemble a triangle, wedge, sawtooth, and/or serration.
The casing treatment may also include smoothly blended transitions between the shroud surface and the internal surfaces of the groove. The transitions may be rounded and convexly contoured, similar to the profile of an external fillet. The dimensions of the contoured transitions and dimensional relationships of the transitions with respect to other areas of the shroud are controlled, tailored, and determined according to various considerations discussed below. Accordingly, the rotor tip and opposing shroud configuration are configured to provide a uniquely robust compressor section that provides high efficiency and operability throughout a wide range of operating conditions—including “near-stall” conditions and conditions involving “rubbing” between the rotor blade and the shroud surface.
Turning now to
In some embodiments, the depicted engine 100 may be a single-spool turbo-shaft gas turbine propulsion engine; however, the exemplary embodiments discussed herein are not intended to be limited to this type, but rather may be readily adapted for use in other types of turbine engines including but not limited to two-spool engines, three-spool engines, turbofan and turboprop engines or other turbomachines.
The engine 100 may generally include an intake section 101, a compressor section 102, a combustion section 104, a turbine section 106, and an exhaust section 108, which may be arranged along a longitudinal axis 103. A downstream direction through the engine 100 may be defined generally along the axis 103 from the intake section 101 to the exhaust section 108. Conversely, an upstream direction is defined from the exhaust section 108 to the intake section 101.
The intake section 101 may receive an intake airstream indicated by arrows 107 in
The compressed air from the compressor section 102 may be directed into the combustion section 104. In the combustion section 104, which includes a combustor assembly 114, the compressed air is mixed with fuel supplied from a non-illustrated fuel source. The fuel-and-air mixture is combusted in the combustion section 104, and the high energy combusted air mixture is then directed into the turbine section 106.
The turbine section 106 includes one or more turbines. In the depicted embodiment, the turbine section 106 includes two turbines: a high-pressure turbine 116 and a low-pressure turbine 118. However, it will be appreciated that the engine 100 could be configured with more or less than this number of turbines. No matter the particular number, the combusted air mixture from the combustion section 104 expands through each turbine 116, 118, causing it to rotate at least one shaft 119. The combusted air mixture is then exhausted via the exhaust section 108. The power shaft 119 may be used to drive various devices within the engine 100 and/or within the vehicle 110.
Referring now to
The compressor section 102 may include a case 120. The case 120 may be hollow and cylindrical in some embodiments. The case 120 may also include a shroud 150 with a shroud surface 152 (e.g., an inner diameter surface of the shroud 150). The shroud surface 152 may define a downstream direction.
The compressor section 102 may also include a rotor 122. The rotor 122 may include a disk 124. The disk 124 may be supported on the shaft 119 (
An inner radial end 130 of the blade 126 may be fixedly attached to the outer diameter of the disk 124. The blade 126 radially terminates at an outer radial edge or blade tip 132. The blade tip 132 is radially spaced apart from the inner radial end 130. The blade 126 further includes a leading edge 134, which extends radially between the inner radial end 130 and the blade tip 132. Furthermore, the blade 126 includes a trailing edge 136, which extends radially between the inner radial end 130 and the blade tip 132, and which is spaced downstream of the leading edge 134 relative to the longitudinal axis 103. The blade tip 132 extends between the leading edge 134 and the trailing edge 136 and extends generally along the longitudinal axis 103. As shown in
Moreover, the shroud 150 may include a casing treatment 154. The casing treatment 154 may be a feature included on the shroud surface 152. As will be discussed, the casing treatment 154 may include one or more grooves 156 that are recessed radially into the shroud surface 152. The casing treatment 154 is configured to resist a reverse axial fluid flow (i.e., fluid flow in the upstream direction) during near-stall operating conditions of the compressor section 102. In other words, the casing treatment 154 increases the stall margin of the compressor section 102 and/or reduces a deficit in the axial fluid flow, especially proximate the leading edge 134.
Referring now to
The leading edge 134 and the trailing edge 136 are also shown projected onto the plane of the cross section of
The blade tip 132 may be curved in some embodiments between the forward end 164 and the aft end 166, as represented in the axial cross-section of
The blade tip 132 may also, in some embodiments, be configured for a frustoconically shaped shroud surface 152. The blade tip 132 may be curved (i.e., nonlinear) with dimensions that correspond to those of the shroud surface 152. The blade tip 132 may be crowned and may bow outward between the forward end 164 and the aft end 166 so as to define the crown area 160.
Furthermore, the shroud 150 may be an annular component with the shroud surface 152 defined on an inner diameter thereof. The shroud surface 152 may be centered about the axis 103. The shroud 150 may define a shroud radius 168 measured normal to the axis 103, from the axis 103 to the shroud surface 152. As illustrated in
A clearance region 176 is defined between the blade tip 132 and the radially opposing region of the shroud surface 152. Clearance dimensions (measured radially between the shroud surface 152 and the blade tip 132) may vary along the longitudinal axis 103 from the leading edge 134 to the trailing edge 136. A crown clearance 172 is defined between the crown area 160 and the shroud surface 152 and may represent the smallest clearance. A leading clearance 170 is defined between the forward end 164 and the shroud surface 152, a trailing clearance 174 is defined between the aft end 166 and the shroud surface 152, and either may represent the largest clearance dimension between the blade tip 132 and the shroud surface 152. In additional embodiments, the maximum and minimum tip clearances may occur at any position between the forward end 164 and the aft end 166. Also, the minimum clearance of the clearance region 176 may be located approximately at a mid-chord position (i.e., half way between the forward end 164 and the aft end 166); however, this minimum clearance region may be disposed at any position between the forward end 164 and the aft end 166.
Accordingly, as shown in
Rotation of the rotor 122 about the axis 103 generates aft axial fluid flow through the clearance region 176 in the downstream direction (i.e., in a direction from compressor inlet toward compressor outlet or, in other words, from left to right as shown in
As mentioned above, the shroud 150 may include a casing treatment 154. In some embodiments, the casing treatment 154 includes a grooved section 210 with a plurality of grooves that are recessed radially into the shroud surface 152. In some embodiments, the grooved section 210 may include a first groove 211, a second groove 212, a third groove 213, and a fourth groove 214. The grooves 211-214 may be substantially similar to each other except as noted. It will be appreciated that
One or more of the grooves 211-214 may have a cross-sectional profile resembling a triangle, wedge, sawtooth, and/or serration. In some embodiments, the grooves 211-214 may substantially resemble a right triangle. Also, in some embodiments, the grooves 211-214 may be annular and may extend continuously about the axis 103. Thus, these may be considered circumferential grooves 211-214 that are consistent and continuous about the axis 103.
The grooves 211-214 may be spaced axially apart evenly along the shroud surface 152, with the first groove 211 disposed in the forward-most position and the fourth groove 214 disposed in the aft-most position. At least one of the grooves 211-214 may be axially disposed to radially oppose the blade tip 132. For example, as shown in
The first groove 211 will be discussed in detail with reference to
The leading portion 220 may include a forward surface 224 that faces substantially in the downstream direction. As shown in the axial cross-section of
The leading portion 220 may also include a forward transition 226. The forward transition 226 may be convexly contoured (i.e., blended) between the shroud surface 152 disposed immediately upstream of the groove 211 and the forward surface 224. In some embodiments, the forward transition 226 may define a radius 250. The radius 250 may be substantially constant in some embodiments. However, in other embodiments, the radius 250 may be nonconstant.
The trailing portion 222 may include a taper surface 228 that tapers inward radially as the taper surface 228 extends in downstream direction. As shown in the axial cross-section of
The trailing portion 222 may further include a trailing transition 230. The trailing transition 230 may be convexly contoured (i.e., blended) between the taper surface 228 and the shroud surface 152 disposed immediately downstream of the groove 211. As shown, the trailing transition 230 may have a nonconstant radius; however, in other embodiments the trailing transition 230 may have a constant radius.
As shown in the cross-section of
The trailing transition 230 may be significantly more gradual than the forward transition 226. Stated differently, the forward transition 226 may be significantly more abrupt than the trailing transition 230. Accordingly, benefit from the casing treatment 154 may be provided for increasing the stall margin, and yet the compressor section 102 may be highly robust if there is rubbing between the shroud 150 and the blade tip 132.
Referring now to
Dimensions of the groove 211 may also be expressed in relation to the imaginary sixth and seventh intersections 246, 247. For example, the groove 211 may have a groove depth dimension 260 measured radially from the sixth intersection 246 to the third intersection 243 (i.e., measured radially from the shroud surface 152 to the third intersection 243). The depth dimension 260 may be between approximately three percent (3%) and twenty percent (20%) of the blade tip chord length 162. In some embodiments, the depth dimension 260 may be between approximately five percent (5%) and fifteen percent (15%) of the blade tip chord length 162. Additionally, in some embodiments, the depth dimension 260 may be approximately eight percent (8%) of the blade tip chord length 162.
Moreover, the groove 211 may have a groove length dimension 262 measured axially from the sixth intersection 246 to the seventh intersection 247. The groove length dimension 262 may be between three percent (3%) and twenty percent (20%) of the blade tip chord length 162. In some embodiments, the length dimension 262 may be between approximately six percent (6%) and eighteen percent (18%) of the blade tip chord length 162. Additionally, in some embodiments, the length dimension 262 may be approximately nine percent (9%) of the blade tip chord length 162.
Furthermore, the groove 211 may have a first taper length dimension 264 measured parallel to the taper surface 228 from the third intersection 243 to the seventh intersection 247. The first taper length dimension 264 may be between four percent (4%) and twenty-nine percent (29%) of the blade tip chord length 162. In some embodiments, the first taper length dimension 264 may be between approximately seven percent (7%) and twenty-four percent (24%) of the blade tip chord length 162. Also, in some embodiments, the first taper length dimension 264 may be approximately twelve percent (12%) of the blade tip chord length 162.
Additionally, the groove 211 may have a second taper length dimension 266 measured parallel to the taper surface 228 from the third intersection 243 to the fourth intersection 244. The difference between the first taper length dimension 264 and the second taper length dimension 266 may be referred to as a third taper length dimension 268. The third taper length dimension 268 may be between approximately five percent (5%) and fifty-five percent (55%) of the first taper length dimension 264. In some embodiments, the third taper length dimension 268 may be between approximately twenty percent (20%) and forty percent (40%) of the first taper length dimension 264. Also, in some embodiments, the third taper length dimension 268 may be approximately thirty percent (30%) of the first taper length dimension 264.
A first axial distance 270 measured parallel to the axis 103 between the seventh intersection 247 and the fifth intersection 245 may be between approximately five percent (5%) and fifty-five percent (55%) of the first taper length dimension 264. Also, the first axial distance 270 may be between approximately twenty percent (20%) and forty percent (40%) of the first taper length dimension 264. Also, in some embodiments, the first axial distance 270 may be approximately thirty percent (30%) of the first taper length dimension 264.
Furthermore, a second axial distance 272 measured parallel to the axis 103 between the fifth intersection 245 and the adjacent first intersection 241′ of the neighboring second groove 212 may be greater than zero percent (0%) of the groove length dimension 262. Also, the second axial distance 272 may be greater than five percent (5%) of the groove length dimension 262. In some embodiments, the second axial distance 272 may be approximately ten percent (10%) of the groove length dimension 262.
Moreover, a third axial distance 274 measured parallel to the axis 103 between the first intersection 241 and the sixth intersection 246 may be between approximately five percent (5%) and fifty-five percent (55%) of the first taper length dimension 264. The third axial distance 274 may be approximately six percent (6%) and thirteen percent (13%) of the first taper length dimension 264. In some embodiments, the third axial distance 274 may be approximately ten percent (10%) of the first taper length dimension 264.
Also, a radial distance 276 measured normal to the axis 103 between the sixth intersection 246 and the second intersection 242 may be between approximately five percent (5%) and fifty-five percent (55%) of the first taper length dimension 264. The radial distance 276 may be approximately six percent (6%) and thirteen percent (13%) of the first taper length dimension 264. In some embodiments, the radial distance 276 may be approximately ten percent (10%) of the first taper length dimension 264.
One or more dimensions of the grooves 211-214 may be determined according to the dimensions of the gap clearance region 176. For example, the forward and/or trailing transitions 226, 230 may be larger if the crown clearance 172 is smaller. This is because, with a smaller crown clearance 172, there is less likelihood of reverse axial fluid flow; therefore, the transitions 226, 230 may be larger to better distribute forces in the event of rubbing. In contrast, the forward and/or trailing transitions 226, 230 may be smaller if the crown clearance 172 is larger. This is because, with a larger crown clearance 172, there may be more likelihood of reverse axial fluid flow, and the transitions 226, 230 may be smaller to increase stall margin.
The shroud 150 may be manufactured in various ways within the scope of the present disclosure. For example, the shroud 150 may be formed initially without the grooves 211-214, and then material may be removed from the shroud 150 (e.g., with one or more cutting tools) to form the grooves 211-214. In this embodiment, a lathe or lathe-like machine may be used for forming the grooves 211-214. Also, in this embodiment, the angle 232 may be formed according to the fillet radius of the cutting tool. The forward and trailing transitions 226, 230, in contrast, may be formed by controlling relative movement of the shroud 150 and cutting tool (e.g., with computerized machine controls). Additionally, in some embodiments, a template may be used for forming at least two of the grooves 211-214 concurrently.
In additional embodiments, the shroud 150 may be formed with the grooves 211-214 included therein. The shroud surface 152 and the grooves 211-214 may be formed concurrently in a single manufacturing process. For example, the shroud 150 and grooves 211-214 may be formed using an additive manufacturing process, such as 3-D printing. In these embodiments, the shroud 150 may be formed layer-by-layer along the axis 103, beginning at the forward end and ending at the aft end. As such, the forward transition 226 and forward surface 224 may be formed before the taper surface 228 and the trailing transition 230, thereby ensuring that there is sufficient mechanical support for these features during the manufacturing process.
Furthermore, in the illustrated embodiments, the casing treatment 154 may be integral to the shroud 150 and formed directly within the material of the shroud 150. However, in other embodiments, the grooves 211-214 may be formed on an arcuate insert pierce, which is then attached to an inner surface of a supporting piece of the shroud 150. Thus, the shroud 150 may be a unitary, monolithic, one-piece member, or the shroud 150 may be assembled from multiple pieces.
Additionally, the grooves 211-214 may be formed in abradable material of the shroud 150. As such, the abradable material may be intended to wear away, for example, in the event of contact with the blade tip 132. However, the forward and/or trailing transitions 226, 230 may distribute contact forces effectively so that a significant portion of the grooves 211-214 are likely to remain even after other portions abrade. In other embodiments, the grooves 211-214 may be formed in non-abradable material of the shroud 150. In these embodiments, the forward and/or trailing transitions 226, 230 may distribute forces effectively such that the blade tip 132 is unlikely to be damaged.
Referring now to
The forward transition 1226 is shown in
Although not specifically shown, the configuration of
Accordingly, the compressor section 102 may provide various advantages. For example, the clearance region 176 may be relatively small for increasing operating efficiency. A portion of the aft axial fluid flow generated by the compressor section 102 may flow into the grooves 211-214 of the casing treatment 154. Because the trailing transitions 230 of the grooves 211-214 are gradual (i.e., they have relatively large radii), the flow into the grooves 211-214 is directed downstream and slightly inward radially such that there is relatively little drag or resistance to the flow in the downstream direction. Also, the forward surfaces 224 of the grooves 211-214 can effectively increase resistance to reverse axial fluid flow and increase the stall margin of the compressor section 102. In addition, the shroud 150, 1150 exhibits high strength and robustness, for example, if there is contact (i.e., “rubbing”) between the blade tip 132 and the shroud 150, 1150. Specifically, the forward and trailing transitions 226, 1226, 230 are shaped to effectively distribute contact forces if there is contact with the blade tip 132. Accordingly, damage to the blade tip 132 and/or damage to the shroud 150, 1150 is less likely. The grooves 211-214 may be dimensioned according to the dimensional relationships discussed above so as to provide both the fluid flow benefits and the increased robustness.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the present disclosure in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the present disclosure. It is understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the present disclosure as set forth in the appended claims.