The present disclosure relates to compressors, and more particularly, to a compressor with a sensor module.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Compressors are used in a variety of industrial and residential applications to circulate refrigerant within a refrigeration, heat pump, HVAC, or chiller system (generically “refrigeration systems”) to provide a desired heating or cooling effect. Compressors may include an electric motor to provide torque to compress vapor refrigerant. The electric motor may be powered by an alternating current (AC) or direct current (DC) power supply. In the case of an AC power supply, single or poly-phase AC may be delivered to windings of the electric motor. For example, the compressor may include an electric motor configured to operate with three phase AC. The electric motor may include at least one set of windings corresponding to each of the three phases.
In each application, it is desirable for the compressor to provide consistent and efficient operation to ensure that the refrigeration system functions properly. Variations in the supply of electric power to the electric motor of the compressor may disrupt operation of the electric motor, the compressor, and the refrigeration system. Such variations may include, for example, excessive, or deficient, current or voltage conditions. In the case of a poly-phase AC power supply, such variations may include an unbalanced phase condition wherein the current or voltage of at least one phase of AC is excessively varied from the current or voltage of the other phases. Further, such variations may include a loss of phase condition wherein one phase of AC is interrupted while the remaining phases continue to be delivered. Excessive current or voltage conditions may cause the electric motor to overheat which may damage the electric motor or the compressor. Deficient current or voltage conditions, unbalanced phase conditions, and loss of phase conditions may disrupt operation of the electric motor, the compressor, or the refrigeration system and cause unnecessary damage.
The electric motor of a compressor may be equipped with a temperature or current sensor to detect overheating of the electric motor during electrical power disturbances. For example, a bi-metallic switch may trip and deactivate the electric motor when the electric motor is overheated or drawing excessive electrical current. Such a system, however, does not detect variations in the power supply that may not immediately or drastically increase the temperature of the electric motor. In addition, such systems may not detect a variation in electrical power until the condition has increased the temperature of the electric motor or the electric motor windings.
Further, such systems do not provide sufficient data to evaluate electrical efficiency of the electric motor overall. Variations in the supply of electric power may result in inefficient operation of the compressor, the electric motor, or the refrigeration system. Refrigeration systems generally require a significant amount of energy to operate, with energy requirements being a significant cost to retailers. As a result, it is in the best interest of retailers to closely monitor the supply of electric power to their refrigeration systems to maximize efficiency and reduce operational costs.
A sensor module for a compressor having an electric motor connected to a power supply is provided. The sensor module may comprise a first input connected to a first voltage sensor that generates a voltage signal corresponding to a voltage of said power supply, a second input connected to a first current sensor that generates a current signal corresponding to a current of said power supply, and a processor connected to the first and second inputs that calculates a power factor of the compressor based on voltage measurements from the first input and current measurements from the second input. The processor may be disposed within an electrical enclosure of the compressor and the electrical enclosure may being configured to house electrical terminals for connecting the power supply to the electric motor.
In other features, the processor may be disposed within a tamper-resistant enclosure within the electrical enclosure.
In other features, the processor may calculate an active power and an apparent power of the compressor based on the voltage measurements from the first input and current measurements from the second input and may calculate the power factor according to a ratio of the active power to the apparent power.
In other features, the processor may determine a voltage waveform based on voltage measurements from the first input and a current waveform based on current measurements from the second input and may calculate the power factor according to an angular difference between the current waveform and the voltage waveform.
In other features, the processor may calculate a power consumption of the compressor based on the voltage measurements from the first input and the current measurements from the second input.
In other features, the processor may calculate an active power of the compressor based on the voltage measurements from the first input and the current measurements from the second input and calculates the power consumption by averaging the active power over a time period.
In other features, the sensor module may further comprise a communication port for communicating information from the sensor module to a control module for the compressor, a system controller for a system associated with the compressor, a portable computing device, and/or a network device.
In other features, the information communicated may include the power factor, a calculated active power, a calculated apparent power, and/or a calculated power consumption of the compressor.
In other features, the power supply may includes first, second, and third phases, with the voltage signal generated by the first voltage sensor corresponding to the first phase, and the current signal generated by the first current sensor corresponding to the first phase. Further, the sensor module may further comprise a third input connected to a second voltage sensor that generates a voltage signal corresponding to a voltage of the second phase. A fourth input connected to a third voltage sensor may generate a voltage signal corresponding to a voltage of the third phase. The processor may be connected to the third and fourth inputs and may calculate the power factor based on voltage measurements received from the third and fourth inputs.
In other features, the processor may estimate a current of the second phase and a current of the third phase and may calculate the power factor based on the estimated currents of the second and third phases.
In other features, the processor may calculate an active power and an apparent power of the compressor based on the voltage measurements from the first input, the current measurements from the second input, the voltage measurements from the third input, the voltage measurements from the fourth input and the estimated currents of the second and third phases and may calculate the power factor according to a ratio of the active power to the apparent power.
In other features, the sensor module may further comprise a fifth input connected to a second current sensor that generates a current signal corresponding to a current of the second phase. The processor may be connected to the fifth input and may calculate the power factor based on current measurements received from the fifth input.
In other features, the processor may estimate a current of the third phase and may calculate the power factor based on the estimated current of the third phase.
In other features, the processor may calculate an active power and an apparent power of the compressor based on the voltage measurements from the first input, the current measurements from the second input, the voltage measurements from the third input, the voltage measurements from the fourth input, the current measurements from the fifth input, and the estimated current of the third phase and calculates the power factor according to a ratio of the active power to the apparent power.
In other features, the sensor module may further comprise a fifth input connected to a second current sensor that generates a current signal corresponding to a current of the second phase and a sixth input connected to a third current sensor that generates a current signal corresponding to a current of the third phase. The processor may be connected to the fifth and sixth inputs and may calculate the power factor based on current measurements received from the fifth and sixth inputs.
In other features, the processor may calculate an active power and an apparent power of the compressor based on the voltage measurements from the first input, the current measurements from the second input, the voltage measurements from the third input, the voltage measurements from the fourth input, the current measurements from the fifth input, and the current measurements from the sixth input and calculates the power factor according to a ratio of the active power to the apparent power.
In other features, a compressor having the sensor module is provided.
A method for a sensor module with a processor disposed within an electrical enclosure of a compressor having an electric motor connected to a power supply is also provided. The electrical enclosure may be configured to house electrical terminals for connecting the power supply to the electric motor. The method may comprise receiving voltage measurements of the power supply from a first voltage sensor connected to the sensor module, receiving current measurements of the power supply from a first current sensor connected to the sensor module, calculating a power factor of the compressor based on the voltage measurements and the current measurements, and generating an output based on the power factor.
In other features, calculating the power factor may comprise calculating an active power and an apparent power of the compressor based on the voltage measurements and the current measurements and calculating the power factor according to a ratio of the active power to the apparent power.
In other features, calculating the power factor may comprise determining a voltage waveform based on the voltage measurements, determining a current waveform based on the current measurements, and calculating the power factor according to an angular difference between the current waveform and the voltage waveform.
In other features, the method may further comprise calculating a power consumption of the compressor based on the voltage measurements and the current measurements.
In other features, calculating the power consumption may comprise calculating an active power of the compressor based on the voltage measurements and the current measurements and calculating the power consumption by averaging the active power over a time period.
In other features, generating the output based on the power factor may comprise communicating the power factor to a control module, a system controller, a portable computing device, and/or a network device, connected to the sensor module.
In other features, power supply may include first, second, and third phases, with the voltage measurements from the first voltage sensor corresponding to the first phase, and the current measurements from the first current sensor corresponding to the first phase. The method may further comprise receiving voltage measurements corresponding to the second phase of the power supply from a second voltage sensor connected to the sensor module, receiving voltage measurements corresponding to the third phase of the power supply from a third voltage sensor connected to the sensor module. The calculating the power factor may comprise calculating the power factor based on the voltage measurements corresponding to the second phase and the voltage measurements corresponding to the third phase.
In other features, the method may further comprise calculating a current estimate for the second phase and calculating a current estimate for the third phase. Calculating the power factor may comprise calculating the power factor based on the current estimates for the second and third phases.
In other features, calculating the power factor may comprise calculating an active power and an apparent power of the compressor based on the voltage measurements for the first, second, and third phases, the current measurements for the first phase, and the current estimates for the second and third phases and calculating the power factor according to a ratio of the active power to the apparent power.
In other features, the method may further comprise receiving current measurements corresponding to the second phase of the power supply from a second current sensor connected to the sensor module. Calculating the power factor may comprise calculating the power factor based on the current measurements corresponding to the second phase.
In other features, the method may further comprise calculating a current estimate for the third phase. Calculating the power factor may comprise calculating the power factor based on the current estimate for the third phase.
In other features, calculating the power factor may comprise calculating an active power and an apparent power of the compressor based on the voltage measurements for the first, second, and third phases, the current measurements for the first and second phases, and the current estimate for the third phase and calculating the power factor according to a ratio of the active power to the apparent power.
In other features, the method may further comprise receiving current measurements corresponding to the third phase of the power supply from a third current sensor connected to the sensor module. Calculating the power factor may comprise calculating the power factor based on the current measurements corresponding to the third phase.
In other features, calculating the power factor may comprise calculating an active power and an apparent power of the compressor based on the voltage measurements for the first, second, and third phases, and the current measurements for the first, second, and third phases and calculating the power factor according to a ratio of the active power to the apparent power.
A computer-readable medium having computer executable instructions for performing the method is provided.
Another sensor module for a compressor having an electric motor connected to a power supply is also provided. The sensor module may comprise a first input connected to a first voltage sensor that generates a voltage signal corresponding to a voltage of the power supply, a second input connected to a first current sensor that generates a current signal corresponding to a current of the power supply, and a processor connected to the first and second inputs that monitors the first and second inputs. The processor may detect an unexpected variation of electric power from the power supply and/or a mechanical malfunction based on voltage measurements from the first input and current measurements from the second input. The processor may be disposed within an electrical enclosure of the compressor, the electrical enclosure being configured to house electrical terminals for connecting the power supply to the electric motor.
In other features, the processor may be disposed within a tamper-resistant enclosure within the electrical enclosure.
In other features, the sensor module may further comprise a communication port for communicating a notification corresponding to the expected variation and/or the mechanical malfunction to a control module for the compressor, a system controller for a system associated with the compressor, a portable computing device, and/or a network device.
In other features, the processor may detect the unexpected variation of electric power including a no-power condition.
In other features, the processor may compare the voltage measurements from the first input with a predetermined voltage threshold and may determine that the no-power condition exists when the voltage measurements remain less than the predetermined voltage threshold for a predetermined time period.
In other features, the sensor module may detects the unexpected variation of electric power including a low-voltage condition.
In other features, the processor may determine a normal operating voltage of the compressor and may determine that the low-voltage condition exists when the voltage measurements from the first input are less than a predetermined percentage of the normal operating voltage.
In other features, the processor may determine the normal operating voltage based on historical data of the compressor.
In other features, the processor may determine the normal operating voltage based on an inputted normal operating voltage.
In other features, the sensor module may detect the unexpected variation of electric power including a current-overload condition.
In other features, the processor may determine a current maximum threshold, may compare the current measurements from the second input with the current maximum threshold, and may determine that the current-overload condition exists based on the comparison.
In other features, the power supply may include first, second, and third phases, with the voltage signal generated by the first voltage sensor corresponding to the first phase, and with the current signal generated by the first current sensor corresponding to the first phase. The sensor module may further comprise a third input connected to a second voltage sensor that generates a voltage signal corresponding to a voltage of the second phase and a fourth input connected to a third voltage sensor that generates a voltage signal corresponding to a voltage of the third phase. The processor may be connected to the third and fourth inputs and may detect the unexpected variation of electric power from the power supply based on voltage measurements received from the third and fourth inputs.
In other features, the unexpected variation of electric power may include a phase-loss condition.
In other features, the processor may compare voltage measurements received from the first, third, and fourth inputs and may determine that the phase-loss condition exists when voltage measurements from the first input are less than a predetermined percentage of an average of voltage measurements from the third and fourth inputs.
In other features, the unexpected variation of electric power may include a voltage-imbalance condition.
In other features, the processor may calculate an average of voltage measurements received from the first, third, and fourth inputs and may determine that the voltage-imbalance condition based on the greatest of a difference between voltage measurements from the first input and the average, a difference between voltage measurements from the third input and the average, and a difference between voltage measurements from the fourth input and the average.
In other features, the sensor module may further comprise a fifth input connected to a second current sensor that generates a current signal corresponding to a current of the second phase. The processor may be connected to the fifth input and may detect the unexpected variation of electric power from the power supply based on current measurements received from the fifth input.
In other features, the unexpected variation of electric power may include a current-delay condition.
In other features, the processor may determine that the current-delay condition exists when a current measurement from the second input is greater than a predetermined current threshold and a current measurement from the fifth input is not greater than the predetermined current threshold within a predetermined time period.
In other features, the sensor module may detect the mechanical malfunction including a welded-contactor condition.
In other features, the processor may receive run-state data corresponding to a current run-state of the compressor, may compare the voltage measurements from the first input with a voltage threshold, and may determine that the welded-contactor condition exists based on the current run-state and the comparison.
In other features, the sensor module may detect the mechanical malfunction including a locked-rotor condition.
In other features, the processor may compare the current measurements from the second input with a current threshold and may determine that the locked-rotor condition exists when the current measurements are greater than the current threshold.
In other features, the processor may generate a buffer of the current measurements from the second input, may determine a greatest current value from the buffer, may compare the current measurements with the greatest current value from the buffer, and may determine that the locked-rotor condition exists when the current measurements are greater than a predetermined percentage of the greatest current value.
In other features, the sensor module may detect the mechanical malfunction including a protection-trip condition.
In other features, the processor may compare the voltage measurements with a voltage threshold and the current measurements with a current threshold and may determine that the protection-trip condition exists when the voltage measurements are greater than the voltage threshold and the current measurements are less than the current threshold.
Another method for a sensor module with a processor disposed within an electrical enclosure of a compressor having an electric motor connected to a power supply is also provided. The electrical enclosure may be configured to house electrical terminals for connecting the power supply to the electric motor. The method may comprise receiving voltage measurements of the power supply from a first voltage sensor connected to the sensor module, receiving current measurements of the power supply from a first current sensor connected to the sensor module, detecting an unexpected variation of electric power from the power supply and/or a mechanical malfunction of the compressor based on the voltage measurements and the current measurements, and generating an output based on the detecting.
In other features, generating the output based on the detecting may comprise communicating a result of the detecting to a control module, a system controller, a portable computing device, and/or a network device, connected to the sensor module.
In other features, the detecting may include detecting the unexpected variation of electric power including a no-power condition.
In other features, detecting the no-power condition may comprise comparing the voltage measurements with a predetermined voltage threshold, and determining that the no-power condition exists when the voltage measurements remain less than the predetermined voltage threshold for a predetermined time period.
In other features, the detecting may include detecting the unexpected variation of electric power including a low-voltage condition.
In other features, detecting the low-voltage condition may comprise determining a normal operating voltage of the compressor, and determining that the low-voltage condition exists when the voltage measurements are less than a predetermined percentage of the normal operating voltage.
In other features, determining the normal operating voltage may comprise determining the normal operating voltage based on historical data of the compressor.
In other features, determining the normal operating voltage may comprise determining the normal operating voltage based on an inputted normal operating voltage.
In other features, the detecting may include detecting the unexpected variation of electric power including a current-overload condition.
In other features, detecting the current-overload condition may comprise determining a current maximum threshold, comparing the current measurements with the current maximum threshold, and determining that the current-overload condition exists based on the comparison.
In other features, the power supply may include first, second, and third phases, with the voltage measurements from the first voltage sensor corresponding to the first phase, and with the current measurements from the first current sensor corresponding to the first phase. The method may further comprise receiving voltage measurements corresponding to the second phase of the power supply from a second voltage sensor connected to the sensor module, and receiving voltage measurements corresponding to the third phase of the power supply from a third voltage sensor connected to the sensor module. Detecting the unexpected variation of electric power from the power supply may be based on the voltage measurements corresponding to the first, second, and third phases and the current measurements.
In other features, detecting the unexpected variation of electric power may include detecting a phase-loss condition.
In other features, detecting the phase-loss condition may comprise comparing voltage measurements corresponding to the first, second, and third phases, and determining that the phase-loss condition exists when voltage measurements corresponding to the first phase are less than a predetermined percentage of an average of voltage measurements corresponding to the second and third phases.
In other features, detecting the unexpected variation of electric power may include detecting a voltage-imbalance condition.
In other features, detecting the voltage-imbalance condition may comprise calculating an average of the voltage measurements corresponding to the first, second, and third phases and determining that the voltage-imbalance condition exists based on the greatest of a difference between voltage measurements corresponding to the first phase and the average, a difference between voltage measurements corresponding to the second phase and the average, and a difference between voltage measurements corresponding to the third phase and the average.
In other features, the method may further comprise receiving current measurements corresponding to the second phase of the power supply from a second current sensor connected to the sensor module. The detecting the unexpected variation of electric power from the power supply may include detecting the unexpected variation of electric power based on the current measurements corresponding to the first and second phases.
In other features, detecting the unexpected variation of electric power may include detecting a current-delay condition.
In other features, detecting the current-delay condition may comprise comparing the current measurements corresponding with the first phase and the current measurements corresponding with the second phase with a predetermined current threshold and determining that the current-delay condition exists when the current measurements corresponding to the first phase are greater than the predetermined current threshold and the current measurements corresponding with the second phase are not greater than the predetermined current threshold within a predetermined time period.
In other features, the detecting may include detecting the mechanical malfunction including a welded-contactor condition.
In other features, the method may further comprise receiving run-state data corresponding to a current run-state of the compressor, comparing the voltage measurements with a voltage threshold, and determining that the welded-contactor condition exists based on the current run-state and the comparison.
In other features, the detecting may include detecting the mechanical malfunction of the compressor including a locked-rotor condition.
In other features, the detecting the locked-rotor condition may comprise comparing the current measurements with a current threshold and determining that the locked-rotor condition exists when the current measurements are greater than the current threshold.
In other features, detecting the locked-rotor condition may comprise generating a buffer of the current measurements, determining a greatest current value from the buffer, comparing the current measurements with the current value from the buffer, and determining that the locked-rotor condition exists when the current measurements are greater than a predetermined percentage of the greatest current value.
In other features, the detecting may include detecting the mechanical malfunction including a protection-trip condition.
In other features, the detecting the protection-trip condition may comprise comparing the voltage measurements with a voltage threshold, comparing the current measurements with a current threshold, and determining that the protection-trip condition exists when the voltage measurements are greater than the voltage threshold and the current measurements are less than the current threshold.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
As used herein, the terms module, control module, and controller refer to one or more of the following: an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that execute one or more software or firmware programs, a combinational logic circuit, or other suitable components that provide the described functionality. Further, as used herein, computer-readable medium refers to any medium capable of storing data for a computer. Computer-readable medium may include, but is not limited to, memory, RAM, ROM, PROM, EPROM, EEPROM, flash memory, punch cards, dip switches, CD-ROM, floppy disk, magnetic tape, other magnetic medium, optical medium, or any other device or medium capable of storing data for a computer.
With reference to
Each compressor 12 may be equipped with a control module (CM) 30 and a sensor module (SM) 32. As described herein, SM 32 may be affixed to compressor 12 and may monitor electric power delivered to compressor 12 with one or more voltage sensors and one or more current sensors. Based on electrical power measurements, such as electric current (I) and voltage (V), SM 32 may determine apparent power, actual power, power consumption, and power factor calculations for the electric motor of compressor 12. SM 32 may communicate the electric power measurements and calculations to CM 30. SM 32 may also alert CM 30 of variations in the power supply, or of mechanical failures, based on the measurements and calculations. For example, SM 32 may alert CM 30 of an excessive current or voltage condition, a deficient current or voltage condition, a current or voltage imbalance condition, or a loss of phase or current delay condition (if poly-phase electric power is used). Based on the monitoring of the electric power supply and based on the communication with CM 30, SM 32 may detect and alert CM 30 to a welded contactor condition, or a locked rotor condition.
CM 30 may control operation of compressor 12 based on data received from SM 32, based on other compressor and refrigeration system data received from other compressor or refrigeration system sensors, and based on communication with a system controller 34. CM 30 may be a protection and control system of the type disclosed in assignee's commonly-owned U.S. patent application Ser. No. 11/059,646, Publication No. 2005/0235660, filed Feb. 16, 2005, the disclosure of which is incorporated herein by reference. Other suitable protection and control systems may be used.
In addition to the data received by CM 30 from SM 32, CM 30 may receive compressor and refrigeration system data including discharge pressure, discharge temperature, suction pressure, suction temperature, and other compressor related data from pressure and temperature sensors connected to or, embedded within, compressor 12. In addition, oil level and oil pressure data may be received by SM 32 and communicated to CM 30 and/or received by CM 30 directly. In this way, CM 30 may monitor the various operating parameters of compressor 12 and control operation of compressor 12 based on protection and control algorithms and based on communication with system controller 34. For example, CM 30 may activate and deactivate the compressor 12 according to a set-point, such as a suction pressure, suction temperature, discharge pressure, or discharge temperature set-point. In the case of a discharge pressure set-point, CM 30 may activate compressor 12 when the discharge pressure, as determined by a discharge pressure sensor, falls below the discharge pressure set-point. CM 30 may deactivate compressor 12 when the discharge pressure rises above the discharge pressure set-point.
Further, CM 30 may activate or deactivate compressor 12 based on data and/or alerts received from SM 32. For example, CM 30 may deactivate compressor 12 when alerted of an excessive current or voltage condition, a deficient current or voltage condition, a current or voltage imbalance condition, or a loss of phase or current delay condition (if poly-phase electric power is used). Further, CM 30 may activate compressor 12 when alerted of a welded contactor condition or deactivate compressor 12 when alerted of a locked rotor condition. CM 30 may communicate operating data of compressor 12, including electric power data received from SM 32, to system controller 34.
In this way, SM 32 may be specific to compressor 12 and may be located within an electrical enclosure 72 of compressor 12 for housing electrical connections to compressor 12 (shown in
System controller 34 may be used and configured to control the overall operation of the refrigeration system 10. System controller 34 is preferably an Einstein Area Controller offered by CPC, Inc. of Atlanta, Ga., or any other type of programmable controller that may be programmed to operate refrigeration system 10 and communicate with CM 30. System controller 34 may monitor refrigeration system operating conditions, such as condenser temperatures and pressures, and evaporator temperatures and pressures, as well as environmental conditions, such as ambient temperature, to determine refrigeration system load and demand. System controller 34 may communicate with CM 30 to adjust set-points based on operating conditions to maximize efficiency of refrigeration system 10. System controller 34 may evaluate efficiency based on electric power measurements and calculations made by SM 32 and communicated to system controller 34 from CM 30.
With reference to
SM 32 may be connected to three voltage sensors 54, 56, 58, for sensing voltage of each phase of electric power 50 delivered to compressor 12. In addition, SM 32 may be connected to a current sensor 60 for sensing electric current of one of the phases of electric power 50 delivered to compressor 12. Current sensor 60 may be a current transformer or current shunt resistor.
When a single current sensor 60 is used, electric current for the other phases may be estimated based on voltage measurements and based on the current measurement from current sensor 60. Because the load for each winding of the electric motor may be substantially the same as the load for each of the other windings, because the voltage for each phase is known from measurement, and because the current for one phase is known from measurement, current in the remaining phases may be estimated.
Additional current sensors may also be used and connected to SM 32. With reference to
In the case of a dual winding three phase electric motor, six electrical power terminals may be used, with one terminal for each winding resulting in two terminals for each of the three phases of electric power 50. In such case, a voltage sensor may be included for each of the six terminals, with each of the six voltage sensors being in communication with SM 32. In addition, a current sensor may be included for one or more of the six electrical connections.
With reference to
Compressor 12 may include a suction nozzle 74, a discharge nozzle 76, and an electric motor disposed within an electric motor housing 78.
Electric power 50 may be received by electrical enclosure 72. CM 30 may be connected to SM 32 through a housing 80. In this way, CM 30 and SM 32 may be located at different locations on or within compressor 12, and may communicate via a communication connection routed on, within, or through compressor 12, such as a communication connection routed through housing 80.
With reference to
Electrical enclosure 72 may include a transformer 49 for converting electric power 50 to a lower voltage for use by SM 32 and CM 30. For example, electric power 51 may be converted by transformer 49 and delivered to SM 32. SM 32 may receive low voltage electric power from transformer 49 through a power input 110 of PCB 106. Electric power may also be routed through electrical enclosure 72 to CM 30 via electrical connection 52.
Voltage sensors 54, 56, 58 may be located proximate each of electrical terminals 108. Processor 100 may be connected to voltage sensors 54, 56, 58 and may periodically receive or sample voltage measurements. Likewise, current sensor 60 may be located proximate one of electrical power leads 116. Processor 100 may be connected to current sensor 60 and may periodically receive or sample current measurements. Electrical voltage and current measurements from voltage sensors 54, 56, 58 and from current sensor 60 may be suitably scaled for the processor 100.
PCB 106 may include a communication port 118 to allow communication between processor 100 of SM 32 and CM 30. A communication link between SM 32 and CM 30 may include an optical isolator 119 to electrically separate the communication link between SM 32 and CM 30 while allowing communication. Optical isolator 119 may be located within electrical enclosure 72. Although optical isolator 119 is independently shown, optical isolator 119 may also be located on PCB 106. At least one additional communication port 120 may also be provided for communication between SM 32 and other devices. A handheld or portable device may directly access and communicate with SM 32 via communication port 120. For example, communication port 120 may allow for in-circuit programming of SM 32 a device connected to communication port 120. Additionally, communication port 120 may be connected to a network device for communication with SM 32 across a network.
Communication with SM 32 may be made via any suitable communication protocol, such as I2C, serial peripheral interface (SPI), RS232, RS485, universal serial bus (USB), or any other suitable communication protocol.
Processor 100 may access compressor configuration and operating data stored in an embedded ROM 124 disposed in a tamper resistant housing 140 within electrical enclosure 72. Embedded ROM 124 may be a compressor memory system disclosed in assignee's commonly-owned U.S. patent application Ser. No. 11/405,021, filed Apr. 14, 2006, U.S. patent application Ser. No. 11/474,865, filed Jun. 26, 2006, U.S. patent application Ser. No. 11/474,821, filed Jun. 26, 2006, U.S. patent application Ser. No. 11/474,798, filed Jun. 26, 2006, or U.S. Patent Application No. 60/674,781, filed Apr. 26, 2005, the disclosures of which are incorporated herein by reference. In addition, other suitable memory systems may be used.
Embedded ROM 124 may store configuration and operating data for compressor 12. When configuration data for compressor 12 is modified, the modified data may likewise be stored in embedded ROM 124. Configuration data for compressor 12 may be communicated to CM 30 or system controller 34. When compressor and/or SM 32 are replaced, the default configuration data for the new compressor 12 may be communicated to CM 30 and/or system controller 34 upon startup. In addition, configuration data may be downloaded remotely. For example, configuration data in embedded ROM 124 may include operating and diagnostic software that may be upgraded via a network connection. In this way, operating and diagnostic software may be upgraded efficiently over the network connection, for example, via the internet.
Relays 126, 127 may be connected to processor 100. Relay 126 may control activation or deactivation of compressor 12. When SM 32 determines that an undesirable operating condition exists, SM 32 may simply deactivate compressor 12 via relay 126. Alternatively, SM 32 may notify CM 30 of the condition so that CM 30 may deactivate the compressor 12. Relay 127 may be connected to a compressor related component. For example, relay 127 may be connected to a crank case heater. SM 32 may activate or deactivate the crank case heater as necessary, based on operating conditions or instructions from CM 30 or system controller 34. While two relays 126, 127 are shown, SM 32 may, alternatively, be configured to operate one relay, or more than two relays.
Processor 100 and PCB 106 may be mounted within a housing enclosure 130. Housing enclosure 130 may be attached to or embedded within electrical enclosure 72. Electrical enclosure 72 provides an enclosure for housing electrical terminals 108 and transformer 49. Housing enclosure 130 may be tamper-resistant such that a user of compressor 12 may be unable to inadvertently or accidentally access processor 100 and PCB 106. In this way, SM 32 may remain with compressor 12, regardless of whether compressor 12 is moved to a different location, returned to the manufacturer for repair, or used with a different CM 30.
LED's 131, 132 may be located on, or connected to, PCB 106 and controlled by processor 100. LED's 131, 132 may indicate status of SM 32 or an operating condition of compressor 12. LED's 131, 132 may be located on housing enclosure 130 or viewable through housing enclosure 130. For example, LED 131 may be red and LED 132 may be green. SM 32 may light green LED 132 to indicate normal operation. SM 32 may light red LED 131 to indicate a predetermined operating condition. SM 32 may also flash the LED's 131, 132 to indicate other predetermined operating conditions.
In
With reference to
Voltage sensors 61, 62, 63 may be located proximate each of electrical terminals 109. Processor 100 may be connected to voltage sensors 61, 62, 63 and may periodically receive or sample voltage measurements. With reference to
Processor 100 may sample current and voltage measurements from the various sensors periodically over each cycle of AC power to determine multiple instantaneous current and voltage measurements. For example, processor 100 may sample current and voltage measurements twenty times per cycle or approximately once every millisecond in the case of alternating current with a frequency of sixty mega-hertz. From these actual current and voltage measurements, processor 100 may calculate additional power related data such as true and apparent power, power consumption over time, and power factor.
Based on actual current and voltage measurements, processor 100 may determine a root mean square (RMS) value for voltage and current for each phase of electric power 50. Processor 100 may calculate an RMS voltage value by squaring each of the sampled voltage measurements, averaging the squared measurements, and calculating the square root of the average. Likewise, processor 100 may calculate an RMS current value by squaring each of the sampled current measurements, averaging the squared measurements, and calculating the square root of the average.
From RMS voltage and RMS current calculations, processor 100 may calculate apparent power (S) according to the following equation:
S=VRMS×IRMS (1),
where VRMS is the calculated RMS of voltage over at least one cycle of AC and where IRMS is the calculated RMS of current over at least one cycle of AC. Apparent power may be calculated in units of Volt-Amps (VA) or kilo-Volt-Amps (kVA)
Processor 100 may calculate apparent power for each phase of electric power 50. When current sensors 55, 57, 60, 64, 65, 66 are available for all three phases of electric power 50, actual current measurements may be used to calculate apparent power. When current sensors are not available for all three phases, current for a missing phase may be estimated by interpolation from known current and voltage measurements.
Processor 100 may calculate total apparent power (STotal) for an electric motor of compressor 12 based on apparent power calculations for each of the phases, according to the following equation:
STotal=VRMS(1)×IRMS(1)+VRMS(2)×IRMS(2)+VRMS(3)×IRMS(3) (2),
where VRMS(1), VRMS(2), and VRMS(3) are the calculated RMS voltage over a cycle of AC for the first, second, and third phase of AC, respectively, and where IRMS(1), IRMS(2), and IRMS(3) are the calculated RMS current a cycle of AC for the first, second, and third phase of AC, respectively. Apparent power is calculated in units of Volt-Amps (VA) or kilo-Volt-Amps (kVA)
Active power (P), in units of watts (W) or kilo-watts (kW) may be calculated as an integral of the product of instantaneous currents and voltages over a cycle of AC, according to the following equation:
where v(t) is instantaneous voltage at time t, in units of volts; where i(t) is instantaneous current at time t, in units of amps; and where T is the period.
Based on the actual instantaneous electrical current and voltage measurements sampled over a cycle of the AC power, processor 100 may calculate (P) as the sum of the products of instantaneous voltage and current samples for each sample interval (e.g., one millisecond), over one cycle of AC. Thus, P may be calculated by processor 100 according to the following equation:
where v(k) is the instantaneous voltage measurement for the kth sample; i(k) is the instantaneous current measurement for the kth sample; T is the period; and Δt is the sampling interval (e.g., 1 millisecond).
P may be calculated for each phase of electric power. Processor 100 may calculate a total active power (PTotal) by adding the active power for each phase, according to the following equation:
PTotal=P(1)+P(2)+P(3) (5),
Where P(1), P(2), and P(3) are the active power for the first, second, and third phase of AC, respectively.
Based on the active power calculations, processor 100 may calculate energy consumption by calculating an average of active power over time. Energy consumption may be calculated by processor 100 in units of watt-hours (WH) or kilo-watt-hours (kWH).
Further, based on the active power calculation and the apparent power calculation, processor 100 may calculate the power factor (PF) according to the following equation:
where P is active power in units of watts (W) or kilo-watts (kW); and where S is apparent power in units of volt-amps (VA) or kilo-volt-amps (kVA). Generally, PF is the ratio of the power consumed to the power drawn. Processor 100 may calculate PF for each phase of electric power. Processor 100 may also calculate a total PF as a ratio of total actual power to total apparent power, according to the following equation:
where Ptotal and STotal are calculated according to formulas 2 and 5 above.
Alternatively, processor 100 may calculate power factor by comparing the zero crossings of the voltage and current waveforms. The processor may use the angular difference between the zero crossings as an estimate of PF. Processor 100 may monitor voltage and current measurements to determine voltage and current waveforms for electric power 50. Based on the measurements, processor may determine where each waveform crosses the zero axis. By comparing the two zero crossings, processor 100 may determine an angular difference between the voltage waveform and the current waveform. The current waveform may lag the voltage waveform, and the angular difference may be used by processor 100 as an estimate of PF.
PF may be used as an indication of the efficiency of the electric motor or the compressor. Increased lag between the current waveform and the voltage waveform results in a lower power factor. A power factor near one, i.e., a unity power factor, is more desirable than a lower power factor. An electric motor with a lower power factor may require more energy to operate, thereby resulting in increased power consumption.
SM 32 may provide continually updated power factor calculations, as well as RMS voltage, RMS current, active power, apparent power, and energy consumption calculations, based on continually sampled instantaneous electrical current and voltage measurements, to CM 30 and/or system controller 34. CM 30 and system controller 34 may utilize the electrical electric power measurements and calculations communicated from SM 32 to control and evaluate efficiency of compressor 12 or refrigeration system 10.
Further, electrical measurements and calculations, including PF, may be accessed by a user through system controller 34 or CM 30. Additionally, electrical measurements and calculations may be accessed through direct communication with SM 32 via communication port 120. Electrical measurements and calculations may be stored and periodically updated in embedded ROM 124.
In this way, electrical calculations and measurements, such as RMS voltage, RMS current, active power, apparent power, power factor, and energy calculations may be accurately and efficiently made at the compressor 12 and communicated to other modules or controllers or to a user of the compressor 12 or refrigeration system 10 for purposes of evaluating electrical power usage.
In addition to communicating electrical calculations and measurements to other modules, controllers, or users, SM 32 may use the electrical calculations and measurements diagnostically to detect certain variations in operating conditions. SM 32 may alert CM 30 to certain operating conditions based on the electrical calculations and measurements.
Referring now to
In step 1302, SM 32 may receive actual electrical measurements from connected voltage and current sensors. SM 32 may receive a plurality of instantaneous voltage and current measurements over the course of a cycle of the AC electrical power. SM 32 may buffer the voltage and current measurements in RAM 102 for a predetermined time period.
In step 1304, SM 32 may calculate RMS voltage and RMS current based on the instantaneous voltage and current measurements. Based on the RMS voltage and RMS current calculations, SM 32 may calculate apparent power in step 1304. Based on the instantaneous voltage and current measurements, SM 32 may also calculate active power. Based on the apparent power calculation and the active power calculation, SM 32 may calculate the power factor. SM 32 may also calculate the power factor from the instantaneous voltage and current measurements by examining an angular difference between the zero crossings of the electrical current waveform and the voltage waveform.
In step 1306, SM 32 may receive run state data from CM 30. The run state data may include data indicating whether an electric motor of compressor 12 is currently in an activated or deactivated state. The run state data may also include timing data indicating a period of time that the electric motor has been in the current state. If the electric motor is a dual winding three phase electric motor, the run state data may also including data indicating whether one or both of the windings are activated.
In step 1308, based on the electrical measurements and calculations, and based on the data received from CM 30, SM 32 may perform and/or monitor diagnostic algorithms as described in more detail below. Some diagnostic algorithms may be executed once per each iteration of operating algorithm 1300. Some diagnostic algorithms may be executed concurrently with, and monitored by, operating algorithm 1300.
In step 1310, SM 32 may communicate the results of the electrical measurements and calculations to CM 30. SM 32 may also communicate the results of any diagnostic algorithms to CM 30. As described below, SM 32 may set operating flags corresponding to operating conditions according to diagnostic algorithms. SM 32 may communicate any operating flags to CM 30 in step 1310.
In step 1312, SM 32 may receive and respond to communications from CM 30. For example, CM 30 may request particular data from SM 32. CM 30 may also request certain data from embedded ROM 124. CM 30 may update SM 32 with operating parameters or thresholds for use in diagnostic algorithms. CM 30 may direct SM 32 to activate or deactivate any compressor related devices, such as a crank case heater, controlled by SM 32 via relay 127.
After responding to communications from CM 30 in step 1312, SM 32 may loop back to step 1302 and continue operation.
Referring now to
In step 1401, SM 32 may determine whether the current run state is set to run, based on run state data received from CM 30, as described with reference to step 1306 of
When the run state is set to run, SM 32 may proceed to step 1404 and check voltage measurements. When three phase power is used, SM 32 may check each of three voltage measurements, V1, V2, and V3. SM 32 may determine whether V1, V2, and V3 are less than a minimum voltage threshold, Vmin-14. In step 1404, when V1, V2, and V3 are greater than or equal to Vmin-14, SM 32 may determine that compressor 12 has sufficient power, and end execution of algorithm 1400 in step 1402.
In step 1404, when SM 32 determines that V1, V2, and V3 are less than Vmin-14, SM 32 may proceed to step 1406. In step 1406, SM 32 may determine whether the time since the compressor 12 was activated is greater than a time threshold, TmThr-14. For example, TmThr-14 may be set to two seconds. In this way, SM 32 may allow for any bounce of any contactor coil relays. In step 1406, when the time since compressor activation is not greater than TmThr-14, SM 32 may return to step 1401.
In step 1406, when the time since compressor activation is greater than TMThr-14, SM 32 may proceed to step 1408. In step 1408, SM 32 may set a no-power flag. By setting the no-power flag, SM 32 may indicate that compressor 12 does not have sufficient electrical power to operate. The no-power flag may be communicated to, or detected by, CM 30 and/or system controller 34. CM 30 and/or system controller 34 may adjust compressor and refrigeration system operation accordingly.
Referring now to
In step 1501, SM 32 may determine whether the current run state is set to run, based on run state data previously received from CM 30, as described with reference to step 1306 of
When the run state is not set to run, SM 32 may proceed to step 1504 and check voltage measurements. When three phase power is used, SM 32 may check each of three voltage measurements, V1, V2, and V3. SM 32 may determine whether voltages V1, V2, or V3 are greater than a maximum voltage threshold, Vmax-15. In step 1504, when V1, V2, or V3 are not greater than or equal to Vmax-15, SM 32 may determine that a welded contactor condition does not exist, and end execution of the algorithm in step 1502.
When V1, V2, or V3 are greater than Vmax-15, SM 32 may proceed to step 1506. In step 1506, SM 32 may determine whether the time since compressor 12 was deactivated is greater than a time threshold, TmThr-15. For example, TmThr-15 may be set to two seconds. By waiting for the TmThr-15, SM 32 may allow for any bounce of any contactor coil relays. In step 1506, when the time since compressor deactivation is not greater than TmThr-15, SM 32 may return to step 1501.
In step 1506, when the time since compressor deactivation is greater than TMThr-15, SM 32 may proceed to step 1508. In step 1508, SM 32 may set a welded-contactor flag. By setting the welded-contactor flag, SM 32 may indicate that compressor 12 may have at least one welded contactor. In such case, power may be delivered to compressor 12, due to the welded contactor, despite the attempt of CM 30 or SM 32 to deactivate compressor 12. The welded-contactor flag may be communicated to, or detected by, CM 30 and/or system controller 34. CM 30 and/or system controller 34 may adjust compressor and refrigeration system operation accordingly. Specifically, CM 30 may activate compressor 12 while it is in the welded-contactor state to avoid a voltage imbalance condition and prevent damage or overheating of compressor 12. Further, CM 30 or system controller 34 may notify a user that compressor 12 is being operated in a welded-contactor state.
Referring now to
In step 1601, SM 32 may buffer electrical current measurements for a predetermined buffer period. For example, SM 32 may buffer electrical current measurements for 200 ms.
In step 1602, SM 32 may determine whether I is greater than a minimum electric current threshold (Imin-16). When I is not greater than Imin-16, SM 32 may loop back to step 1601 and continue to buffer I. In step 1602, when SM 32 determines that I is greater than Imin-16, SM 32 may proceed to step 1604.
In step 1604, SM 32 may determine the greatest I value currently in the buffer (Igrtst-16). In step 1606, SM 32 may determine whether Igrtst is greater than an electric current threshold (Imax-16). SM 32 may then wait in steps 1608 and 1610 for a time threshold (TMThr-16) to expire. For example, TmThr-16 may be set to two seconds. In this way, SM 32 allows I to settle to a normal operating current if the electric motor does not have a locked rotor.
When Igrtst-16 is greater than Imax-16 in step 1606, then in step 1612, SM 32 may use Imax-16 as the current threshold. In step 1612, when I is greater than Imax-16, SM 32 may determine that a locked rotor condition exists and may proceed to step 1614 to set the locked-rotor flag. In step 1612, when I is not greater than Imax-16, SM 32 may end execution of the algorithm in step 1616.
In step 1606, when Igrtst-16 is not greater than Imax-16, SM 32 may use a predetermined percentage (X %) of Igrtst-16 as the current threshold in step 1618. In step 1618, when Imtr-16 is greater than X % of Igrtst-16, SM 32 may determine that a locked rotor condition exists and may set the locked-rotor flag in step 1614. SM 32 may end execution of the algorithm in step 1616. The locked-rotor flag may be communicated to, or detected by, CM 30 and/or system controller 34. CM 30 and/or system controller 34 may adjust compressor and refrigeration system operation accordingly.
If a locked-rotor condition is detected a predetermined number of consecutive times, SM 32 may set a locked rotor lockout flag. SM 32 may cease operation of the compressor until the lockout flag is cleared by a user. For example, SM 32 may set the locked rotor lockout flag when it detects ten consecutive locked rotor conditions.
Referring now to
In step 1701, SM 32 determines whether any voltage, V1, V2, or V3 is greater than a voltage minimum threshold (Vmin-17). When V1, V2, or V3 is not greater than Vmin-17, SM 32 may end execution of algorithm 1700 in step 1702. When V1, V2, or V3 is greater than Vmin-17, SM 32 may proceed to step 1704. In step 1704, SM 32 may determine whether I is less than a current minimum Imin-17. When I is not less than Imin-17, SM 32 may end execution of algorithm 1700 in step 1702. When I is less than Imin-17, SM 32 may proceed to step 1706 and set a protection-trip flag. In this way, when voltage is present, but electric current is not present, SM 32 may determine that an internal line break condition has occurred. The protection-trip flag may be communicated to, or detected by, CM 30 and/or system controller 34. CM 30 and/or system controller 34 may adjust compressor 12 and refrigeration system 10 operation accordingly.
Referring now to
In step 1801, SM 32 may determine the normal operating voltage of compressor (Vnml). SM 32 may determine Vnml based on historical data of previous compressor operating voltages. For example, Vnml may be calculated by averaging the voltage over the first five electrical cycles of power during the first normal run. Vnml may alternatively be predetermined and stored in ROM 104, 124, or calculated based on an average voltage over the operating life of the compressor.
In step 1802, SM 32 may monitor V1, 2, and 3 for a predetermined time period TMthr-18. For example, TmThr-18 may be set to two seconds. The time threshold may or may not be the same as the time threshold used in other diagnostic algorithms. In step 1804, SM 32 may determine whether V1, 2, and 3 are less than a predetermined percentage (X %) of Vnml for more than TMthr-18. For example, the predetermined percentage may be 75 percent. In step 1804, when V1, 2, and 3 are not less than X % of Vnml for more than TMthr-18, SM 32 loops back to step 1802. In step 1804, when V1, 2, and 3 are less than X % of Vnml for more than TMthr-18, SM 32 may proceed to step 1806.
In step 1806, SM 32 may determine whether the run state is set to run. When the run state is not set to run in step 1806, SM 32 ends execution of algorithm 1800 in step 1808. When the run state is set to run, SM 32 may determine that a low-voltage condition exists and may set a low-voltage flag in step 1810. The low-voltage flag may be communicated to, or detected by, CM 30 and/or system controller 34. CM 30 and/or system controller 34 may adjust compressor 12 and refrigeration system 10 operation accordingly.
Referring now to
In step 1901, SM 32 may monitor V1, V2, and V3. In step 1902, SM 32 may determine whether V1 is less than a predetermined percentage, X %, of the average of V2 and V3, for a time (Tm) greater than a time threshold, TmThr-19. When V1 is less than X % of the average of V2 and V3, SM 32 may set the phase-loss flag in step 1904 and end execution of algorithm 1900 in step 1906. When V1 is not less than X % of the average of V2 and V3, SM 32 may proceed to step 1908.
In step 1908, SM 32 may determine whether V2 is less than X % of the average of V1 and V3, for Tm greater than TmThr-19. When V2 is less than X %, of the average of V1 and V3, SM 32 may set the phase-loss flag in step 1904 and end execution of algorithm 1900 in step 1906. When V2 is not less than X % of the average of V1 and V3, SM may proceed to step 1910.
In step 1910, SM 32 may determine whether V3 is less than X % of the average of V1 and V2, for Tm greater than TmThr-19. When V3 is less than X %, of the average of V1 and V2, SM 32 may set the phase-loss flag in step 1904 and end execution of algorithm 1900 in step 1906. When V3 is not less than X % of the average of V1 and V2, SM 32 may loop back to step 1901. In this way, algorithm 1900 may operate concurrently with algorithm 1300. The phase-loss flag may be communicated to, or detected by, CM 30 and/or system controller 34. CM 30 and/or system controller 34 may adjust compressor 12 and refrigeration system 10 operation accordingly.
If a phase-loss condition is detected a predetermined number of consecutive times, SM 32 may set a phase-loss lockout flag. SM 32 may cease operation of the compressor until the lockout flag is cleared by a user. For example, SM 32 may set the phase-loss lockout flag when it detects ten consecutive phase-loss conditions.
Referring now to
In step 2001, SM 32 may monitor V1, V2, and V3. In step 2002, SM 32 may calculate the average (Vavg) of V1, V2, and V3. In step 2004, SM 32 may calculate the percentage of voltage imbalance (% Vimb) by determining the maximum of the absolute value of the difference between each of V1 and Vavg, V2 and Vavg, and V3 and Vavg. The maximum difference is then multiplied by Vavg/100.
In step 2006, SM 32 determines whether the run state is set to run. In step 2006, when the run state is not set to run, SM 32 may end execution of algorithm 2000 in step 2008. In step 2006, when the run state is set to run, SM 32 may proceed to step 2010.
In step 2010, SM 32 may determine whether % Vimb is greater than a voltage imbalance threshold (% VThr-20). When % Vimb is not greater than % VThr-20, SM 32 loops back to step 2001. In this way, algorithm 2000 may execute concurrently with operating algorithm 1300. When % Vimb is greater than % VThr-20, a voltage imbalance condition exists, and SM 32 may set the voltage-imbalance flag in step 2012. SM 32 may end execution of algorithm 2000 in step 2008. The voltage-imbalance flag may be communicated to, or detected by, CM 30 and/or system controller 34. CM 30 and/or system controller 34 may adjust compressor 12 and refrigeration system 10 operation accordingly.
Referring now to
In step 2101, SM 32 may determine the maximum continuous current (MCC) for the electric motor of compressor 12. MCC may be predetermined and set during the manufacture of compressor 12. MCC may be stored in ROM 104 and/or embedded ROM 124. In addition, MCC may be user configurable. MCC may vary based on the type of refrigerant used. Thus, a user of compressor 12 may modify the default MCC value to conform to actual refrigeration system conditions.
In step 2102, SM 32 may determine whether the run state is set to run. When the run state is not set to run, SM 32 ends execution of algorithm 2100 in step 2104. In step 2102, when the run state is set to run, SM 32 may proceed to step 2106. In step 2106, when run state has not been set to run for a time period greater than a first time threshold (TMThr1-21), SM 32 loops back to step 2102. In step 2106, when run state has been set to run for a time period greater than TMThr1-21, SM 32 may proceed to step 2108.
In step 2108, SM 32 monitors I. In step 2110, SM 32 may determine whether I is greater than MCC multiplied by 1.1. In other words, SM 32 may determine whether I is greater than 110% of MCC for a time greater than a second time threshold (TMThr2-21). When SM 32 determines that I is not greater than 110% of MCC for a time greater than TMThr2-21, SM 32 may loop back to step 2102. In this way, algorithm 2100 may execute concurrently with operating algorithm 1300. When SM 32 determines that I is greater than 110% of MCC for a time greater than TMThr2-21, SM 32 may determine that a current-overload condition exists and may set the current-overload flag in step 2112. SM 32 may end execution of the algorithm 2100 in step 2104. The current-overload flag may be communicated to, or detected by, CM 30 and/or system controller 34. CM 30 and/or system controller 34 may adjust compressor and refrigeration system operation accordingly.
Referring now to
When SM 32 detects current greater than a current threshold (Imin-22) from one of the two current sensors, SM 32 may determine whether current indicated by the other current sensor becomes greater than Imin-22 within a time period threshold (TmThr-22). In step 2201, SM 32 may determine whether I1 is greater than a current threshold Imin-22. When I1 is greater than Imin-22, SM 32 may proceed to step 2203 and start a time counter (Tm). SM 32 may proceed to step 2205 to determine whether I2 is greater than Imin-22. In step 2205, when I2 is greater than Imin-22, SM 32 may determine that a current-delay condition does not exist, and end execution of the algorithm in step 2210. In step 2205, when I2 is not greater than Imin-22, SM 32 may proceed to step 2207 and determine whether Tm is greater than TmThr-22. In step 2207, when TM is not greater than TMThr-22, SM 32 may loop back to step 2205 to compare I2 with Imin-22. In step 2207, when Tm is greater than TmThr-22, the time period has expired and a current-delay condition exists. SM 32 may proceed to step 2209 to set a current-delay flag. SM 32 may end execution of the algorithm 2200 in step 2210. The current-delay flag may be communicated to, or detected by, CM 30 and/or system controller 34. CM 30 and/or system controller 34 may adjust compressor and refrigeration system operation accordingly.
When I1 is not greater than Imin-22, SM 32 may proceed to step 2202 and determine whether I2 is greater than Imin-22. When I2 is not greater than Imin-22, SM 32 loops back to step 2201. When I2 is greater than Imin-22, SM 32 may proceed to step 2204 to start time Tm counter. SM 32 may proceed to step 2206 to determine whether I1 is greater than Imin-22. In step 2206, when I1 is greater than Imin-22, SM 32 may determine that a current-delay condition does not exist, and end execution of the algorithm in step 2210. In step 2206, when I1 is not greater than Imin-22, SM 32 may proceed to step 2208 and determine whether Tm is greater than TmThr-22. In step 2208, when TM is not greater than TMThr-22, SM 32 may loop back to step 2206 to compare I1 with Imin-22. In step 2208, when Tm is greater than TmThr-22, the time period has expired and a current-delay condition exists. SM 32 may proceed to step 2209 to set the current-delay flag. SM 32 may end execution of the algorithm 2200 in step 2210. As noted above, the current-delay flag may be communicated to, or detected by, CM 30 and/or system controller 34, which may adjust compressor and refrigeration system operation accordingly.
Referring now to
When SM 32 detects current greater than a current threshold (Imin-22) from one of the three current sensors, SM 32 may determine whether current indicated by the other current sensors becomes greater than Imin-22 within a predetermined time period (TmThr-22). In step 2301, SM 32 may determine whether I1 is greater than a current threshold Imin-22. When I1 is greater than Imin-22, SM 32 may proceed to step 2302 and start a time counter (Tm). SM 32 may proceed to step 2303 to determine whether I2 and I3 are greater than Imin-22. In step 2303, when I2 and I3 are greater than Imin-22, SM 32 may determine that a current-delay condition does not exist, and end execution of the algorithm in step 2304. In step 2303, when I2 and I3 are not greater than Imin-22, SM 32 may proceed to step 2305 and determine whether Tm is greater than TmThr-22. In step 2305, when TM is not greater than TMThr-22, SM 32 may loop back to step 2303 to compare I2 and I3 with Imin-22. In step 2305, when Tm is greater than TmThr-22, the time period has expired and a current-delay condition exists. SM 32 may proceed to step 2306 to set a current-delay flag. SM 32 may end execution of the algorithm 2300 in step 2304. The current-delay flag may be communicated to, or detected by, CM 30 and/or system controller 34. CM 30 and/or system controller 34 may adjust compressor and refrigeration system operation accordingly.
In step 2301, when I1 is not greater than Imin-22, SM 32 may proceed to step 2307 and determine whether I2 is greater than Imin-22. When I2 is greater than Imin-22, SM 32 may proceed to step 2308 to start Tm counter. SM 32 may proceed to step 2309 to determine whether I1 and I3 are greater than Imin-22. In step 2309, when I1 and I3 are greater than Imin-22, SM 32 may determine that a current-delay condition does not exist, and end execution of the algorithm in step 2304. In step 2309, when I1 and I3 are not greater than Imin-22, SM 32 may proceed to step 2310 and determine whether Tm is greater than TmThr-22. In step 2310, when TM is not greater than TMThr-22, SM 32 may loop back to step 2309 to compare I1 and I3 with Imin-22. In step 2310, when Tm is greater than TmThr-22, the time period has expired and a current-delay condition exists. SM 32 may proceed to step 2306 to set the current-delay flag. SM 32 may end execution of the algorithm 2300 in step 2304. As noted above, the current-delay flag may be communicated to, or detected by, CM 30 and/or system controller 34, which may adjust compressor and refrigeration system operation accordingly.
In step 2307, when I2 is not greater than Imin-22, SM 32 may proceed to step 2311 and determine whether I3 is greater than Imin-22. When I3 is not greater than Imin-22, SM 32 may loop back to step 2301. When I3 is greater than Imin-22, SM 32 may proceed to step 2312 to start Tm counter. SM 32 may proceed to step 2313 to determine whether I1 and I2 are greater than Imin-22. In step 2313, when I1 and I2 are greater than Imin-22, SM 32 may determine that a current-delay condition does not exist, and end execution of the algorithm in step 2304. In step 2313, when I1 and I2 are not greater than Imin-22, SM 32 may proceed to step 2314 and determine whether Tm is greater than TmThr-22. In step 2314, when TM is not greater than TMThr-22, SM 32 may loop back to step 2313 to compare I1 and I2 with Imin-22. In step 2314, when Tm is greater than TmThr-22, the time period has expired and a current-delay condition exists. SM 32 may proceed to step 2306 to set the current-delay flag. SM 32 may end execution of the algorithm 2300 in step 2304. As noted above, the current-delay flag may be communicated to, or detected by, CM 30 and/or system controller 34, which may adjust compressor and refrigeration system operation accordingly.
With respect to each of the diagnostic algorithms described above with reference to
In this way, SM 32 may monitor electrical current and voltage measurements, make data calculations based on the electrical current and voltage measurements, and execute diagnostic algorithms based on the measurements and based on the calculations. SM 32 may communicate the measurements, the calculations, and the results of the diagnostic algorithms to CM 30 or system controller 34. SM 32 may thereby be able to provide efficient and accurate electrical power measurements and calculations to be utilized by other modules and by users to evaluate operating conditions, power consumption, and efficiency.
This application claims the benefit of U.S. Provisional Application No. 60/984,902, filed on Nov. 2, 2007. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2054542 | Hoelle | Sep 1936 | A |
2296822 | Wolfed | Sep 1942 | A |
2631050 | Haeberlein | Mar 1953 | A |
2804839 | Hallinan | Sep 1957 | A |
2962702 | Derr et al. | Nov 1960 | A |
2978879 | Heidorn | Apr 1961 | A |
3027865 | Kautz et al. | Apr 1962 | A |
3047696 | Heidorn | Jul 1962 | A |
3082951 | Kayan | Mar 1963 | A |
3107843 | Finn | Oct 1963 | A |
3170304 | Hale | Feb 1965 | A |
3232519 | Long | Feb 1966 | A |
3278111 | Parker | Oct 1966 | A |
3400374 | Schumann | Sep 1968 | A |
3513662 | Golber | May 1970 | A |
3581281 | Martin et al. | May 1971 | A |
3585451 | Day, III | Jun 1971 | A |
3653783 | Sauder | Apr 1972 | A |
3665399 | Zehr et al. | May 1972 | A |
3697953 | Schoenwitz | Oct 1972 | A |
3707851 | McAshan, Jr. | Jan 1973 | A |
3729949 | Talbot | May 1973 | A |
3735377 | Kaufman | May 1973 | A |
3742303 | Dageford | Jun 1973 | A |
3767328 | Ladusaw | Oct 1973 | A |
3783681 | Hirt et al. | Jan 1974 | A |
3820074 | Toman | Jun 1974 | A |
3882305 | Johnstone | May 1975 | A |
3924972 | Szymaszek | Dec 1975 | A |
3927712 | Nakayama | Dec 1975 | A |
3935519 | Pfarrer et al. | Jan 1976 | A |
3950962 | Odashima | Apr 1976 | A |
3960011 | Renz et al. | Jun 1976 | A |
3978382 | Pfarrer et al. | Aug 1976 | A |
3998068 | Chirnside | Dec 1976 | A |
4006460 | Hewitt et al. | Feb 1977 | A |
4014182 | Granryd | Mar 1977 | A |
4018584 | Mullen | Apr 1977 | A |
4019172 | Srodes | Apr 1977 | A |
4024725 | Uchida et al. | May 1977 | A |
4027289 | Toman | May 1977 | A |
4034570 | Anderson et al. | Jul 1977 | A |
4038061 | Anderson et al. | Jul 1977 | A |
4046532 | Nelson | Sep 1977 | A |
RE29450 | Goldsby et al. | Oct 1977 | E |
4060716 | Pekrul et al. | Nov 1977 | A |
4066869 | Apaloo et al. | Jan 1978 | A |
4090248 | Swanson et al. | May 1978 | A |
4102150 | Kountz | Jul 1978 | A |
4102394 | Botts | Jul 1978 | A |
4104888 | Reedy et al. | Aug 1978 | A |
4105063 | Bergt | Aug 1978 | A |
4112703 | Kountz | Sep 1978 | A |
4132086 | Kountz | Jan 1979 | A |
4136730 | Kinsey | Jan 1979 | A |
4137057 | Piet et al. | Jan 1979 | A |
4137725 | Martin | Feb 1979 | A |
4142375 | Abe et al. | Mar 1979 | A |
4143707 | Lewis et al. | Mar 1979 | A |
4146085 | Wills | Mar 1979 | A |
RE29966 | Nussbaum | Apr 1979 | E |
4151725 | Kountz et al. | May 1979 | A |
4153003 | Willis | May 1979 | A |
4156350 | Elliott et al. | May 1979 | A |
4161106 | Savage et al. | Jul 1979 | A |
4165619 | Girard | Aug 1979 | A |
4171622 | Yamaguchi et al. | Oct 1979 | A |
4173871 | Brooks | Nov 1979 | A |
RE30242 | del Toro et al. | Apr 1980 | E |
4197717 | Schumacher | Apr 1980 | A |
4205381 | Games et al. | May 1980 | A |
4209994 | Mueller et al. | Jul 1980 | A |
4211089 | Mueller et al. | Jul 1980 | A |
4217761 | Cornaire et al. | Aug 1980 | A |
4220010 | Mueller et al. | Sep 1980 | A |
4227862 | Andrew et al. | Oct 1980 | A |
4232530 | Mueller | Nov 1980 | A |
4233818 | Lastinger | Nov 1980 | A |
4236379 | Mueller | Dec 1980 | A |
4244182 | Behr | Jan 1981 | A |
4246763 | Mueller et al. | Jan 1981 | A |
4248051 | Darcy et al. | Feb 1981 | A |
4251988 | Allard et al. | Feb 1981 | A |
4257795 | Shaw | Mar 1981 | A |
4259847 | Pearse, Jr. | Apr 1981 | A |
4267702 | Houk | May 1981 | A |
4270174 | Karlin et al. | May 1981 | A |
4271898 | Freeman | Jun 1981 | A |
4281358 | Plouffe et al. | Jul 1981 | A |
4284849 | Anderson et al. | Aug 1981 | A |
4286438 | Clarke | Sep 1981 | A |
4290480 | Sulkowski | Sep 1981 | A |
4296727 | Bryan | Oct 1981 | A |
4301660 | Mueller et al. | Nov 1981 | A |
4306293 | Marathe | Dec 1981 | A |
4307775 | Saunders | Dec 1981 | A |
4308725 | Chiyoda | Jan 1982 | A |
4311188 | Kojima et al. | Jan 1982 | A |
4319461 | Shaw | Mar 1982 | A |
4321529 | Simmonds et al. | Mar 1982 | A |
4325223 | Cantley | Apr 1982 | A |
4328678 | Kono et al. | May 1982 | A |
4328680 | Stamp, Jr. et al. | May 1982 | A |
4333316 | Stamp, Jr. et al. | Jun 1982 | A |
4333317 | Sawyer | Jun 1982 | A |
4336001 | Andrew et al. | Jun 1982 | A |
4338790 | Saunders et al. | Jul 1982 | A |
4338791 | Stamp, Jr. et al. | Jul 1982 | A |
4345162 | Hammer et al. | Aug 1982 | A |
4346755 | Alley et al. | Aug 1982 | A |
4350021 | Lundstrom | Sep 1982 | A |
4350023 | Kuwabara et al. | Sep 1982 | A |
4351163 | Johannsen | Sep 1982 | A |
4356703 | Vogel | Nov 1982 | A |
4361273 | Levine et al. | Nov 1982 | A |
4365983 | Abraham et al. | Dec 1982 | A |
4370098 | McClain et al. | Jan 1983 | A |
4372119 | Gillbrand et al. | Feb 1983 | A |
4381549 | Stamp, Jr. et al. | Apr 1983 | A |
4382367 | Roberts | May 1983 | A |
4384462 | Overman et al. | May 1983 | A |
4387368 | Day et al. | Jun 1983 | A |
4387578 | Paddock | Jun 1983 | A |
4390058 | Otake et al. | Jun 1983 | A |
4390321 | Langlois et al. | Jun 1983 | A |
4390922 | Pelliccia | Jun 1983 | A |
4395886 | Mayer | Aug 1983 | A |
4395887 | Sweetman | Aug 1983 | A |
4399548 | Castleberry | Aug 1983 | A |
4402054 | Osborne et al. | Aug 1983 | A |
4406133 | Saunders et al. | Sep 1983 | A |
4407138 | Mueller | Oct 1983 | A |
4408660 | Sutoh et al. | Oct 1983 | A |
4412788 | Shaw et al. | Nov 1983 | A |
4415896 | Allgood | Nov 1983 | A |
4418388 | Allgor et al. | Nov 1983 | A |
4420947 | Yoshino | Dec 1983 | A |
4425010 | Bryant et al. | Jan 1984 | A |
4429578 | Darrel et al. | Feb 1984 | A |
4432232 | Brantley et al. | Feb 1984 | A |
4434390 | Elms | Feb 1984 | A |
4441329 | Dawley | Apr 1984 | A |
4448038 | Barbier | May 1984 | A |
4449375 | Briccetti | May 1984 | A |
4451929 | Yoshida | May 1984 | A |
4460123 | Beverly | Jul 1984 | A |
4463571 | Wiggs | Aug 1984 | A |
4463574 | Spethmann et al. | Aug 1984 | A |
4463576 | Burnett et al. | Aug 1984 | A |
4465229 | Kompelien | Aug 1984 | A |
4467230 | Rovinsky | Aug 1984 | A |
4467385 | Bandoli et al. | Aug 1984 | A |
4467613 | Behr et al. | Aug 1984 | A |
4470092 | Lombardi | Sep 1984 | A |
4470266 | Briccetti et al. | Sep 1984 | A |
4474024 | Eplett et al. | Oct 1984 | A |
4479389 | Anderson, III et al. | Oct 1984 | A |
4484452 | Houser, Jr. | Nov 1984 | A |
4489551 | Watanabe et al. | Dec 1984 | A |
4490986 | Paddock | Jan 1985 | A |
4494383 | Nagatomo et al. | Jan 1985 | A |
4495779 | Tanaka et al. | Jan 1985 | A |
4496296 | Arai et al. | Jan 1985 | A |
4497031 | Froehling et al. | Jan 1985 | A |
4498310 | Imanishi et al. | Feb 1985 | A |
4499739 | Matsuoka et al. | Feb 1985 | A |
4502084 | Hannett | Feb 1985 | A |
4502833 | Hibino et al. | Mar 1985 | A |
4502842 | Currier et al. | Mar 1985 | A |
4502843 | Martin | Mar 1985 | A |
4505125 | Baglione | Mar 1985 | A |
4506518 | Yoshikawa et al. | Mar 1985 | A |
4507934 | Tanaka et al. | Apr 1985 | A |
4510547 | Rudich, Jr. | Apr 1985 | A |
4510576 | MacArthur et al. | Apr 1985 | A |
4512161 | Logan et al. | Apr 1985 | A |
4516407 | Watabe | May 1985 | A |
4517468 | Kemper et al. | May 1985 | A |
4520674 | Canada et al. | Jun 1985 | A |
4523435 | Lord | Jun 1985 | A |
4523436 | Schedel et al. | Jun 1985 | A |
4527247 | Kaiser et al. | Jul 1985 | A |
4527399 | Lord | Jul 1985 | A |
4535607 | Mount | Aug 1985 | A |
4538420 | Nelson | Sep 1985 | A |
4538422 | Mount et al. | Sep 1985 | A |
4539820 | Zinsmeyer | Sep 1985 | A |
4540040 | Fukumoto et al. | Sep 1985 | A |
4545210 | Lord | Oct 1985 | A |
4545214 | Kinoshita | Oct 1985 | A |
4548549 | Murphy et al. | Oct 1985 | A |
4549403 | Lord et al. | Oct 1985 | A |
4549404 | Lord | Oct 1985 | A |
4550770 | Nussdorfer et al. | Nov 1985 | A |
4553400 | Branz | Nov 1985 | A |
4555057 | Foster | Nov 1985 | A |
4555910 | Sturges | Dec 1985 | A |
4557317 | Harmon, Jr. | Dec 1985 | A |
4558181 | Blanchard et al. | Dec 1985 | A |
4561260 | Nishi et al. | Dec 1985 | A |
4563624 | Yu | Jan 1986 | A |
4563877 | Harnish | Jan 1986 | A |
4563878 | Baglione | Jan 1986 | A |
4567733 | Mecozzi | Feb 1986 | A |
4568909 | Whynacht | Feb 1986 | A |
4574871 | Parkinson et al. | Mar 1986 | A |
4575318 | Blain | Mar 1986 | A |
4577977 | Pejsa | Mar 1986 | A |
4580947 | Shibata et al. | Apr 1986 | A |
4583373 | Shaw | Apr 1986 | A |
4589060 | Zinsmeyer | May 1986 | A |
4593367 | Slack et al. | Jun 1986 | A |
4598764 | Beckey | Jul 1986 | A |
4602484 | Bendikson | Jul 1986 | A |
4603556 | Suefuji et al. | Aug 1986 | A |
4604036 | Sutou et al. | Aug 1986 | A |
4611470 | Enstrom | Sep 1986 | A |
4612775 | Branz et al. | Sep 1986 | A |
4614089 | Dorsey | Sep 1986 | A |
4617804 | Fukushima et al. | Oct 1986 | A |
4620286 | Smith et al. | Oct 1986 | A |
4620424 | Tanaka et al. | Nov 1986 | A |
4621502 | Ibrahim et al. | Nov 1986 | A |
4627245 | Levine | Dec 1986 | A |
4627483 | Harshbarger, III et al. | Dec 1986 | A |
4627484 | Harshbarger, Jr. et al. | Dec 1986 | A |
4630572 | Evans | Dec 1986 | A |
4630670 | Wellman et al. | Dec 1986 | A |
4642034 | Terauchi | Feb 1987 | A |
4642782 | Kemper et al. | Feb 1987 | A |
4644479 | Kemper et al. | Feb 1987 | A |
4646532 | Nose | Mar 1987 | A |
4648044 | Hardy et al. | Mar 1987 | A |
4649515 | Thompson et al. | Mar 1987 | A |
4649710 | Inoue et al. | Mar 1987 | A |
4653280 | Hansen et al. | Mar 1987 | A |
4653285 | Pohl | Mar 1987 | A |
4655688 | Bohn et al. | Apr 1987 | A |
4660386 | Hansen et al. | Apr 1987 | A |
4662184 | Pohl et al. | May 1987 | A |
4674292 | Ohya et al. | Jun 1987 | A |
4677830 | Sumikawa et al. | Jul 1987 | A |
4680940 | Vaughn | Jul 1987 | A |
4682473 | Rogers, III | Jul 1987 | A |
4684060 | Adams et al. | Aug 1987 | A |
4685615 | Hart | Aug 1987 | A |
4686835 | Alsenz | Aug 1987 | A |
4689967 | Han et al. | Sep 1987 | A |
4697431 | Alsenz | Oct 1987 | A |
4698978 | Jones | Oct 1987 | A |
4698981 | Kaneko et al. | Oct 1987 | A |
4701824 | Beggs et al. | Oct 1987 | A |
4703325 | Chamberlin et al. | Oct 1987 | A |
4706152 | DeFilippis et al. | Nov 1987 | A |
4706469 | Oguni et al. | Nov 1987 | A |
4712648 | Mattes et al. | Dec 1987 | A |
4713717 | Pejouhy et al. | Dec 1987 | A |
4715190 | Han et al. | Dec 1987 | A |
4715792 | Nishizawa et al. | Dec 1987 | A |
4716582 | Blanchard et al. | Dec 1987 | A |
4716957 | Thompson et al. | Jan 1988 | A |
4720980 | Howland | Jan 1988 | A |
4735054 | Beckey | Apr 1988 | A |
4735060 | Alsenz | Apr 1988 | A |
4744223 | Umezu | May 1988 | A |
4745765 | Pettitt | May 1988 | A |
4745766 | Bahr | May 1988 | A |
4745767 | Ohya et al. | May 1988 | A |
4750332 | Jenski et al. | Jun 1988 | A |
4750672 | Beckey et al. | Jun 1988 | A |
4751501 | Gut | Jun 1988 | A |
4751825 | Voorhis et al. | Jun 1988 | A |
4754410 | Leech et al. | Jun 1988 | A |
4755957 | White et al. | Jul 1988 | A |
4765150 | Persem | Aug 1988 | A |
4768346 | Mathur | Sep 1988 | A |
4768348 | Noguchi | Sep 1988 | A |
4783752 | Kaplan et al. | Nov 1988 | A |
4787213 | Gras et al. | Nov 1988 | A |
4790142 | Beckey | Dec 1988 | A |
4796142 | Libert | Jan 1989 | A |
4796466 | Farmer | Jan 1989 | A |
4798055 | Murray et al. | Jan 1989 | A |
4805118 | Rishel | Feb 1989 | A |
4807445 | Matsuoka et al. | Feb 1989 | A |
4829779 | Munson et al. | May 1989 | A |
4831560 | Zaleski | May 1989 | A |
4831832 | Alsenz | May 1989 | A |
4831833 | Duenes et al. | May 1989 | A |
4835706 | Asahi | May 1989 | A |
4835980 | Oyanagi et al. | Jun 1989 | A |
4838037 | Wood | Jun 1989 | A |
4841734 | Torrence | Jun 1989 | A |
4843575 | Crane | Jun 1989 | A |
4845956 | Berntsen et al. | Jul 1989 | A |
4848099 | Beckey et al. | Jul 1989 | A |
4848100 | Barthel et al. | Jul 1989 | A |
4850198 | Helt et al. | Jul 1989 | A |
4850204 | Bos et al. | Jul 1989 | A |
4852363 | Kampf et al. | Aug 1989 | A |
4853693 | Eaton-Williams | Aug 1989 | A |
4856286 | Sulfstede et al. | Aug 1989 | A |
4858676 | Bolfik et al. | Aug 1989 | A |
4866635 | Kahn et al. | Sep 1989 | A |
4866944 | Yamazaki | Sep 1989 | A |
4869073 | Kawai et al. | Sep 1989 | A |
4873836 | Thompson | Oct 1989 | A |
4875589 | Lacey et al. | Oct 1989 | A |
4878355 | Beckey et al. | Nov 1989 | A |
4881184 | Abegg, III et al. | Nov 1989 | A |
4882747 | Williams | Nov 1989 | A |
4882908 | White | Nov 1989 | A |
4884412 | Sellers et al. | Dec 1989 | A |
4885707 | Nichol et al. | Dec 1989 | A |
4885914 | Pearman | Dec 1989 | A |
4887436 | Enomoto et al. | Dec 1989 | A |
4887857 | VanOmmeren | Dec 1989 | A |
4889280 | Grald et al. | Dec 1989 | A |
4893480 | Matsui et al. | Jan 1990 | A |
4899551 | Weintraub | Feb 1990 | A |
4903500 | Hanson | Feb 1990 | A |
4903759 | Lapeyrouse | Feb 1990 | A |
4904993 | Sato | Feb 1990 | A |
4909041 | Jones | Mar 1990 | A |
4909076 | Busch et al. | Mar 1990 | A |
4910966 | Levine et al. | Mar 1990 | A |
4913625 | Gerlowski | Apr 1990 | A |
4916633 | Tychonievich et al. | Apr 1990 | A |
4916909 | Mathur et al. | Apr 1990 | A |
4916912 | Levine et al. | Apr 1990 | A |
4918690 | Markkula, Jr. et al. | Apr 1990 | A |
4918932 | Gustafson et al. | Apr 1990 | A |
4924404 | Reinke, Jr. | May 1990 | A |
4924418 | Bachman et al. | May 1990 | A |
4928750 | Nurczyk | May 1990 | A |
4932588 | Fedter et al. | Jun 1990 | A |
4939909 | Tsuchiyama et al. | Jul 1990 | A |
4943003 | Shimizu et al. | Jul 1990 | A |
4944160 | Malone et al. | Jul 1990 | A |
4945491 | Rishel | Jul 1990 | A |
4948040 | Kobayashi et al. | Aug 1990 | A |
4949550 | Hanson | Aug 1990 | A |
4953784 | Yasufuku et al. | Sep 1990 | A |
4959970 | Meckler | Oct 1990 | A |
4964060 | Hartsog | Oct 1990 | A |
4964125 | Kim | Oct 1990 | A |
4966006 | Thuesen et al. | Oct 1990 | A |
4967567 | Proctor et al. | Nov 1990 | A |
4974427 | Diab | Dec 1990 | A |
4974665 | Zillner, Jr. | Dec 1990 | A |
4975024 | Heckel | Dec 1990 | A |
4977751 | Hanson | Dec 1990 | A |
4985857 | Bajpai et al. | Jan 1991 | A |
4987748 | Meckler | Jan 1991 | A |
4990057 | Rollins | Feb 1991 | A |
4990893 | Kiluk | Feb 1991 | A |
4991770 | Bird et al. | Feb 1991 | A |
5000009 | Clanin | Mar 1991 | A |
5005365 | Lynch | Apr 1991 | A |
5009074 | Goubeaux et al. | Apr 1991 | A |
5009075 | Okoren | Apr 1991 | A |
5009076 | Winslow | Apr 1991 | A |
5018357 | Livingstone et al. | May 1991 | A |
5018665 | Sulmone | May 1991 | A |
RE33620 | Persem | Jun 1991 | E |
5022234 | Goubeaux et al. | Jun 1991 | A |
5039009 | Baldwin et al. | Aug 1991 | A |
5042264 | Dudley | Aug 1991 | A |
5051720 | Kittirutsunetorn | Sep 1991 | A |
5056036 | Van Bork | Oct 1991 | A |
5056329 | Wilkinson | Oct 1991 | A |
5058388 | Shaw et al. | Oct 1991 | A |
5062278 | Sugiyama | Nov 1991 | A |
5065593 | Dudley et al. | Nov 1991 | A |
5067099 | McCown et al. | Nov 1991 | A |
RE33775 | Behr et al. | Dec 1991 | E |
5070468 | Niinomi et al. | Dec 1991 | A |
5071065 | Aalto et al. | Dec 1991 | A |
5073091 | Burgess et al. | Dec 1991 | A |
5073862 | Carlson | Dec 1991 | A |
5076067 | Prenger et al. | Dec 1991 | A |
5076494 | Ripka | Dec 1991 | A |
5077983 | Dudley | Jan 1992 | A |
5083438 | McMullin | Jan 1992 | A |
5086385 | Launey et al. | Feb 1992 | A |
5088297 | Maruyama et al. | Feb 1992 | A |
5094086 | Shyu | Mar 1992 | A |
5095712 | Narreau | Mar 1992 | A |
5095715 | Dudley | Mar 1992 | A |
5099654 | Baruschke et al. | Mar 1992 | A |
5103391 | Barrett | Apr 1992 | A |
5107500 | Wakamoto et al. | Apr 1992 | A |
5109222 | Welty | Apr 1992 | A |
5109676 | Waters et al. | May 1992 | A |
5109700 | Hicho | May 1992 | A |
5109916 | Thompson | May 1992 | A |
5115406 | Zatezalo et al. | May 1992 | A |
5115643 | Hayata et al. | May 1992 | A |
5115644 | Alsenz | May 1992 | A |
5115967 | Wedekind | May 1992 | A |
5118260 | Fraser, Jr. | Jun 1992 | A |
5119466 | Suzuki | Jun 1992 | A |
5119637 | Bard et al. | Jun 1992 | A |
5121610 | Atkinson et al. | Jun 1992 | A |
5123017 | Simpkins et al. | Jun 1992 | A |
5123252 | Hanson | Jun 1992 | A |
5123253 | Hanson et al. | Jun 1992 | A |
5123255 | Ohizumi | Jun 1992 | A |
5125067 | Erdman | Jun 1992 | A |
5127232 | Paige et al. | Jul 1992 | A |
5131237 | Valbjorn | Jul 1992 | A |
5141407 | Ramsey et al. | Aug 1992 | A |
5142877 | Shimizu | Sep 1992 | A |
5150584 | Tomasov et al. | Sep 1992 | A |
5156539 | Anderson et al. | Oct 1992 | A |
5167494 | Inagaki et al. | Dec 1992 | A |
5170935 | Federspiel et al. | Dec 1992 | A |
5170936 | Kubo et al. | Dec 1992 | A |
5181389 | Hanson et al. | Jan 1993 | A |
5186014 | Runk | Feb 1993 | A |
5197666 | Wedekind | Mar 1993 | A |
5199855 | Nakajima et al. | Apr 1993 | A |
5200872 | D'Entremont et al. | Apr 1993 | A |
5200987 | Gray | Apr 1993 | A |
5201862 | Pettitt | Apr 1993 | A |
5203178 | Shyu | Apr 1993 | A |
5203179 | Powell | Apr 1993 | A |
5209076 | Kauffman et al. | May 1993 | A |
5209400 | Winslow et al. | May 1993 | A |
5219041 | Greve | Jun 1993 | A |
5224354 | Ito et al. | Jul 1993 | A |
5224835 | Oltman | Jul 1993 | A |
5226472 | Benevelli et al. | Jul 1993 | A |
5228300 | Shim | Jul 1993 | A |
5228304 | Ryan | Jul 1993 | A |
5228307 | Koce | Jul 1993 | A |
5230223 | Hullar et al. | Jul 1993 | A |
5231844 | Park | Aug 1993 | A |
5233841 | Jyrek | Aug 1993 | A |
5235526 | Saffell | Aug 1993 | A |
5237830 | Grant | Aug 1993 | A |
5241664 | Ohba et al. | Aug 1993 | A |
5241833 | Ohkoshi | Sep 1993 | A |
5243827 | Hagita et al. | Sep 1993 | A |
5243829 | Bessler | Sep 1993 | A |
5245833 | Mei et al. | Sep 1993 | A |
5248244 | Ho et al. | Sep 1993 | A |
5251453 | Stanke et al. | Oct 1993 | A |
5251454 | Yoon | Oct 1993 | A |
5255977 | Eimer et al. | Oct 1993 | A |
5257506 | DeWolf et al. | Nov 1993 | A |
5265434 | Alsenz | Nov 1993 | A |
5269458 | Sol | Dec 1993 | A |
5271556 | Helt et al. | Dec 1993 | A |
5274571 | Hesse et al. | Dec 1993 | A |
5276630 | Baldwin et al. | Jan 1994 | A |
5279458 | DeWolf et al. | Jan 1994 | A |
5282728 | Swain | Feb 1994 | A |
5284026 | Powell | Feb 1994 | A |
5289362 | Liebl et al. | Feb 1994 | A |
5290154 | Kotlarek et al. | Mar 1994 | A |
5291752 | Alvarez et al. | Mar 1994 | A |
5299504 | Abele | Apr 1994 | A |
5303112 | Zulaski et al. | Apr 1994 | A |
5303560 | Hanson et al. | Apr 1994 | A |
5311451 | Barrett | May 1994 | A |
5311562 | Palusamy et al. | May 1994 | A |
5316448 | Ziegler et al. | May 1994 | A |
5320506 | Fogt | Jun 1994 | A |
5333460 | Lewis et al. | Aug 1994 | A |
5335507 | Powell | Aug 1994 | A |
5336058 | Yokoyama | Aug 1994 | A |
5347476 | McBean, Sr. | Sep 1994 | A |
5351037 | Martell et al. | Sep 1994 | A |
5362206 | Westerman et al. | Nov 1994 | A |
5362211 | Iizuka et al. | Nov 1994 | A |
5368446 | Rode | Nov 1994 | A |
5369958 | Kasai et al. | Dec 1994 | A |
5381669 | Bahel et al. | Jan 1995 | A |
5381692 | Winslow et al. | Jan 1995 | A |
5388176 | Dykstra et al. | Feb 1995 | A |
5395042 | Riley et al. | Mar 1995 | A |
5410230 | Bessler et al. | Apr 1995 | A |
5414792 | Shorey | May 1995 | A |
5415008 | Bessler | May 1995 | A |
5416781 | Ruiz | May 1995 | A |
5423190 | Friedland | Jun 1995 | A |
5423192 | Young et al. | Jun 1995 | A |
5426952 | Bessler | Jun 1995 | A |
5431026 | Jaster | Jul 1995 | A |
5432500 | Scripps | Jul 1995 | A |
5435145 | Jaster | Jul 1995 | A |
5440890 | Bahel et al. | Aug 1995 | A |
5440891 | Hindmon, Jr. et al. | Aug 1995 | A |
5440895 | Bahel et al. | Aug 1995 | A |
5446677 | Jensen et al. | Aug 1995 | A |
5450359 | Sharma et al. | Sep 1995 | A |
5452291 | Eisenhandler et al. | Sep 1995 | A |
5454229 | Hanson et al. | Oct 1995 | A |
5457965 | Blair et al. | Oct 1995 | A |
5460006 | Torimitsu | Oct 1995 | A |
5467011 | Hunt | Nov 1995 | A |
5467264 | Rauch et al. | Nov 1995 | A |
5469045 | Dove et al. | Nov 1995 | A |
5475986 | Bahel et al. | Dec 1995 | A |
5478212 | Sakai et al. | Dec 1995 | A |
5481481 | Frey et al. | Jan 1996 | A |
5481884 | Scoccia | Jan 1996 | A |
5491978 | Young et al. | Feb 1996 | A |
5495722 | Manson et al. | Mar 1996 | A |
5499512 | Jurewicz et al. | Mar 1996 | A |
5509786 | Mizutani et al. | Apr 1996 | A |
5511387 | Tinsler | Apr 1996 | A |
5512883 | Lane, Jr. | Apr 1996 | A |
5515267 | Alsenz | May 1996 | A |
5515692 | Sterber et al. | May 1996 | A |
5519301 | Yoshida et al. | May 1996 | A |
5528908 | Bahel et al. | Jun 1996 | A |
5533347 | Ott et al. | Jul 1996 | A |
5535136 | Standifer | Jul 1996 | A |
5535597 | An | Jul 1996 | A |
5546015 | Okabe | Aug 1996 | A |
5546073 | Duff et al. | Aug 1996 | A |
5546756 | Ali | Aug 1996 | A |
5546757 | Whipple, III | Aug 1996 | A |
5548966 | Tinsler | Aug 1996 | A |
5555195 | Jensen et al. | Sep 1996 | A |
5562426 | Watanabe et al. | Oct 1996 | A |
5563490 | Kawaguchi et al. | Oct 1996 | A |
5564280 | Schilling et al. | Oct 1996 | A |
5566084 | Cmar | Oct 1996 | A |
5570085 | Bertsch | Oct 1996 | A |
5570258 | Manning | Oct 1996 | A |
5572643 | Judson | Nov 1996 | A |
5577905 | Momber et al. | Nov 1996 | A |
5579648 | Hanson et al. | Dec 1996 | A |
5581229 | Hunt | Dec 1996 | A |
5586445 | Bessler | Dec 1996 | A |
5586446 | Torimitsu | Dec 1996 | A |
5590830 | Kettler et al. | Jan 1997 | A |
5592058 | Archer et al. | Jan 1997 | A |
5592824 | Sogabe et al. | Jan 1997 | A |
5596507 | Jones et al. | Jan 1997 | A |
5600960 | Schwedler et al. | Feb 1997 | A |
5602749 | Vosburgh | Feb 1997 | A |
5602757 | Haseley et al. | Feb 1997 | A |
5602761 | Spoerre et al. | Feb 1997 | A |
5610339 | Haseley et al. | Mar 1997 | A |
5611674 | Bass et al. | Mar 1997 | A |
5613841 | Bass et al. | Mar 1997 | A |
5616829 | Balaschak et al. | Apr 1997 | A |
5623834 | Bahel et al. | Apr 1997 | A |
5628201 | Bahel et al. | May 1997 | A |
5630325 | Bahel et al. | May 1997 | A |
5635896 | Tinsley et al. | Jun 1997 | A |
5641270 | Sgourakes et al. | Jun 1997 | A |
5643482 | Sandelman et al. | Jul 1997 | A |
5650936 | Loucks et al. | Jul 1997 | A |
5655379 | Jaster et al. | Aug 1997 | A |
5655380 | Calton | Aug 1997 | A |
5682949 | Ratcliffe et al. | Nov 1997 | A |
5684463 | Diercks et al. | Nov 1997 | A |
5689963 | Bahel et al. | Nov 1997 | A |
5691692 | Herbstritt | Nov 1997 | A |
5694010 | Oomura et al. | Dec 1997 | A |
5696501 | Ouellette et al. | Dec 1997 | A |
5699670 | Jurewicz et al. | Dec 1997 | A |
5706007 | Fragnito et al. | Jan 1998 | A |
5707210 | Ramsey et al. | Jan 1998 | A |
5711785 | Maxwell | Jan 1998 | A |
5713724 | Centers et al. | Feb 1998 | A |
5714931 | Petite et al. | Feb 1998 | A |
5715704 | Cholkeri et al. | Feb 1998 | A |
5718822 | Richter | Feb 1998 | A |
5724571 | Woods | Mar 1998 | A |
5729474 | Hildebrand et al. | Mar 1998 | A |
5737931 | Ueno et al. | Apr 1998 | A |
5741120 | Bass et al. | Apr 1998 | A |
5743109 | Schulak | Apr 1998 | A |
5745114 | King et al. | Apr 1998 | A |
5749238 | Schmidt | May 1998 | A |
5751916 | Kon et al. | May 1998 | A |
5752385 | Nelson | May 1998 | A |
5754450 | Solomon et al. | May 1998 | A |
5754732 | Vlahu | May 1998 | A |
5757664 | Rogers et al. | May 1998 | A |
5757892 | Blanchard et al. | May 1998 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
5764509 | Gross et al. | Jun 1998 | A |
5772214 | Stark | Jun 1998 | A |
5772403 | Allison et al. | Jun 1998 | A |
5784232 | Farr | Jul 1998 | A |
5790898 | Kishima et al. | Aug 1998 | A |
5795381 | Holder | Aug 1998 | A |
5798941 | McLeister | Aug 1998 | A |
5805856 | Hanson | Sep 1998 | A |
5807336 | Russo et al. | Sep 1998 | A |
5808441 | Nehring | Sep 1998 | A |
5810908 | Gray et al. | Sep 1998 | A |
5812061 | Simons | Sep 1998 | A |
5825597 | Young | Oct 1998 | A |
5827963 | Selegatto et al. | Oct 1998 | A |
5839094 | French | Nov 1998 | A |
5839291 | Chang | Nov 1998 | A |
5841654 | Verissimo et al. | Nov 1998 | A |
5860286 | Tulpule | Jan 1999 | A |
5861807 | Leyden et al. | Jan 1999 | A |
5867998 | Guertin | Feb 1999 | A |
5869960 | Brand | Feb 1999 | A |
5873257 | Peterson | Feb 1999 | A |
5875430 | Koether | Feb 1999 | A |
5875638 | Tinsler | Mar 1999 | A |
5884494 | Okoren et al. | Mar 1999 | A |
5887786 | Sandelman | Mar 1999 | A |
5900801 | Heagle et al. | May 1999 | A |
5904049 | Jaster et al. | May 1999 | A |
5918200 | Tsutsui et al. | Jun 1999 | A |
5924295 | Park | Jul 1999 | A |
5924486 | Ehlers et al. | Jul 1999 | A |
5926103 | Petite | Jul 1999 | A |
5926531 | Petite | Jul 1999 | A |
5930773 | Crooks et al. | Jul 1999 | A |
5934087 | Watanabe et al. | Aug 1999 | A |
5939974 | Heagle et al. | Aug 1999 | A |
5946922 | Viard et al. | Sep 1999 | A |
5947693 | Yang | Sep 1999 | A |
5947701 | Hugenroth | Sep 1999 | A |
5949677 | Ho | Sep 1999 | A |
5953490 | Wiklund et al. | Sep 1999 | A |
5956658 | McMahon | Sep 1999 | A |
5971712 | Kann | Oct 1999 | A |
5975854 | Culp, III et al. | Nov 1999 | A |
5984645 | Cummings | Nov 1999 | A |
5986571 | Flick | Nov 1999 | A |
5988986 | Brinken et al. | Nov 1999 | A |
5995347 | Rudd et al. | Nov 1999 | A |
5995351 | Katsumata et al. | Nov 1999 | A |
6006142 | Seem et al. | Dec 1999 | A |
6006171 | Vines et al. | Dec 1999 | A |
6013108 | Karolys et al. | Jan 2000 | A |
6017192 | Clack et al. | Jan 2000 | A |
6020702 | Farr | Feb 2000 | A |
6023420 | McCormick et al. | Feb 2000 | A |
6026651 | Sandelman | Feb 2000 | A |
6028522 | Petite | Feb 2000 | A |
6035661 | Sunaga et al. | Mar 2000 | A |
6038871 | Gutierrez et al. | Mar 2000 | A |
6041605 | Heinrichs | Mar 2000 | A |
6041609 | Hornsleth et al. | Mar 2000 | A |
6041856 | Thrasher et al. | Mar 2000 | A |
6042344 | Lifson | Mar 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6047557 | Pham et al. | Apr 2000 | A |
6050098 | Meyer et al. | Apr 2000 | A |
6050780 | Hasegawa et al. | Apr 2000 | A |
6052731 | Holdsworth et al. | Apr 2000 | A |
6057771 | Lakra | May 2000 | A |
6065946 | Lathrop | May 2000 | A |
6068447 | Foege | May 2000 | A |
6070110 | Shah et al. | May 2000 | A |
6075530 | Lucas et al. | Jun 2000 | A |
6077051 | Centers et al. | Jun 2000 | A |
6081750 | Hoffberg et al. | Jun 2000 | A |
6082495 | Steinbarger et al. | Jul 2000 | A |
6082971 | Gunn et al. | Jul 2000 | A |
6085530 | Barito | Jul 2000 | A |
6088659 | Kelley et al. | Jul 2000 | A |
6088688 | Crooks et al. | Jul 2000 | A |
6092370 | Tremoulet, Jr. et al. | Jul 2000 | A |
6092378 | Das et al. | Jul 2000 | A |
6092992 | Imblum et al. | Jul 2000 | A |
6095674 | Verissimo et al. | Aug 2000 | A |
6098893 | Berglund et al. | Aug 2000 | A |
6102665 | Centers et al. | Aug 2000 | A |
6110260 | Kubokawa | Aug 2000 | A |
6119949 | Lindstrom | Sep 2000 | A |
6122603 | Budike, Jr. | Sep 2000 | A |
6125642 | Seener et al. | Oct 2000 | A |
6128583 | Dowling | Oct 2000 | A |
6128953 | Mizukoshi | Oct 2000 | A |
6129527 | Donahoe et al. | Oct 2000 | A |
6138461 | Park et al. | Oct 2000 | A |
6142741 | Nishihata et al. | Nov 2000 | A |
6144888 | Lucas et al. | Nov 2000 | A |
6145328 | Choi | Nov 2000 | A |
6147601 | Sandelman et al. | Nov 2000 | A |
6152375 | Robison | Nov 2000 | A |
6152376 | Sandelman et al. | Nov 2000 | A |
6153942 | Roseman et al. | Nov 2000 | A |
6154488 | Hunt | Nov 2000 | A |
6157310 | Milne et al. | Dec 2000 | A |
6158230 | Katsuki | Dec 2000 | A |
6160477 | Sandelman et al. | Dec 2000 | A |
6169979 | Johnson | Jan 2001 | B1 |
6172476 | Tolbert, Jr. et al. | Jan 2001 | B1 |
6174136 | Kilayko et al. | Jan 2001 | B1 |
6176686 | Wallis et al. | Jan 2001 | B1 |
6177884 | Hunt et al. | Jan 2001 | B1 |
6178362 | Woolard et al. | Jan 2001 | B1 |
6179214 | Key et al. | Jan 2001 | B1 |
6190442 | Redner | Feb 2001 | B1 |
6191545 | Kawabata et al. | Feb 2001 | B1 |
6192282 | Smith et al. | Feb 2001 | B1 |
6199018 | Quist et al. | Mar 2001 | B1 |
6211782 | Sandelman et al. | Apr 2001 | B1 |
6213731 | Doepker et al. | Apr 2001 | B1 |
6215405 | Handley et al. | Apr 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6218953 | Petite | Apr 2001 | B1 |
6223543 | Sandelman | May 2001 | B1 |
6223544 | Seem | May 2001 | B1 |
6228155 | Tai | May 2001 | B1 |
6230501 | Bailey, Sr. et al. | May 2001 | B1 |
6233327 | Petite | May 2001 | B1 |
6234019 | Caldeira | May 2001 | B1 |
6240733 | Brandon et al. | Jun 2001 | B1 |
6240736 | Fujita et al. | Jun 2001 | B1 |
6244061 | Takagi et al. | Jun 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6260004 | Hays et al. | Jul 2001 | B1 |
6266968 | Redlich | Jul 2001 | B1 |
6268664 | Rolls et al. | Jul 2001 | B1 |
6272868 | Grabon et al. | Aug 2001 | B1 |
6276901 | Farr et al. | Aug 2001 | B1 |
6279332 | Yeo et al. | Aug 2001 | B1 |
6290043 | Ginder et al. | Sep 2001 | B1 |
6293114 | Kamemoto | Sep 2001 | B1 |
6293767 | Bass | Sep 2001 | B1 |
6302654 | Millet et al. | Oct 2001 | B1 |
6304934 | Pimenta et al. | Oct 2001 | B1 |
6324854 | Jayanth | Dec 2001 | B1 |
6327541 | Pitchford et al. | Dec 2001 | B1 |
6332327 | Street et al. | Dec 2001 | B1 |
6334093 | More | Dec 2001 | B1 |
6349883 | Simmons et al. | Feb 2002 | B1 |
6359410 | Randolph | Mar 2002 | B1 |
6360551 | Renders | Mar 2002 | B1 |
6366889 | Zaloom | Apr 2002 | B1 |
6375439 | Missio | Apr 2002 | B1 |
6378315 | Gelber et al. | Apr 2002 | B1 |
6381971 | Honda | May 2002 | B2 |
6385510 | Hoog et al. | May 2002 | B1 |
6389823 | Loprete et al. | May 2002 | B1 |
6390779 | Cunkelman | May 2002 | B1 |
6391102 | Bodden et al. | May 2002 | B1 |
6393848 | Roh et al. | May 2002 | B2 |
6397606 | Roh et al. | Jun 2002 | B1 |
6397612 | Kernkamp et al. | Jun 2002 | B1 |
6406265 | Hahn et al. | Jun 2002 | B1 |
6406266 | Hugenroth et al. | Jun 2002 | B1 |
6408228 | Seem et al. | Jun 2002 | B1 |
6408258 | Richer | Jun 2002 | B1 |
6412293 | Pham et al. | Jul 2002 | B1 |
6414594 | Guerlain | Jul 2002 | B1 |
6430268 | Petite | Aug 2002 | B1 |
6433791 | Selli et al. | Aug 2002 | B2 |
6437691 | Sandelman et al. | Aug 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6438981 | Whiteside | Aug 2002 | B1 |
6442953 | Trigiani et al. | Sep 2002 | B1 |
6449972 | Pham et al. | Sep 2002 | B2 |
6450771 | Centers et al. | Sep 2002 | B1 |
6451210 | Sivavec et al. | Sep 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
6454177 | Sasao et al. | Sep 2002 | B1 |
6454538 | Witham et al. | Sep 2002 | B1 |
6456928 | Johnson | Sep 2002 | B1 |
6457319 | Ota et al. | Oct 2002 | B1 |
6457948 | Pham | Oct 2002 | B1 |
6460731 | Estelle et al. | Oct 2002 | B2 |
6462654 | Sandelman et al. | Oct 2002 | B1 |
6463747 | Temple | Oct 2002 | B1 |
6466971 | Humpleman et al. | Oct 2002 | B1 |
6467280 | Pham et al. | Oct 2002 | B2 |
6471486 | Centers et al. | Oct 2002 | B1 |
6474084 | Gauthier et al. | Nov 2002 | B2 |
6484520 | Kawaguchi et al. | Nov 2002 | B2 |
6487457 | Hull et al. | Nov 2002 | B1 |
6490506 | March | Dec 2002 | B1 |
6492923 | Inoue et al. | Dec 2002 | B1 |
6497554 | Yang et al. | Dec 2002 | B2 |
6501240 | Ueda et al. | Dec 2002 | B2 |
6501629 | Marriott | Dec 2002 | B1 |
6502409 | Gatling et al. | Jan 2003 | B1 |
6505087 | Lucas et al. | Jan 2003 | B1 |
6505475 | Zugibe et al. | Jan 2003 | B1 |
6510350 | Steen, III et al. | Jan 2003 | B1 |
6522974 | Sitton | Feb 2003 | B2 |
6523130 | Hickman et al. | Feb 2003 | B1 |
6526766 | Hiraoka et al. | Mar 2003 | B1 |
6529590 | Centers | Mar 2003 | B1 |
6529839 | Uggerud et al. | Mar 2003 | B1 |
6533552 | Centers et al. | Mar 2003 | B2 |
6535123 | Sandelman et al. | Mar 2003 | B2 |
6535859 | Yablonowski et al. | Mar 2003 | B1 |
6537034 | Park et al. | Mar 2003 | B2 |
6542062 | Herrick | Apr 2003 | B1 |
6549135 | Singh et al. | Apr 2003 | B2 |
6551069 | Narney, II et al. | Apr 2003 | B2 |
6553774 | Ishio et al. | Apr 2003 | B1 |
6558126 | Hahn et al. | May 2003 | B1 |
6560976 | Jayanth | May 2003 | B2 |
6571280 | Hubacher | May 2003 | B1 |
6571566 | Temple et al. | Jun 2003 | B1 |
6574561 | Alexander et al. | Jun 2003 | B2 |
6577959 | Chajec et al. | Jun 2003 | B1 |
6577962 | Afshari | Jun 2003 | B1 |
6578373 | Barbier | Jun 2003 | B1 |
6583720 | Quigley | Jun 2003 | B1 |
6591620 | Kikuchi et al. | Jul 2003 | B2 |
6595475 | Svabek et al. | Jul 2003 | B2 |
6595757 | Shen | Jul 2003 | B2 |
6598056 | Hull et al. | Jul 2003 | B1 |
6601397 | Pham et al. | Aug 2003 | B2 |
6604093 | Etzion et al. | Aug 2003 | B1 |
6609070 | Lueck | Aug 2003 | B1 |
6609078 | Starling et al. | Aug 2003 | B2 |
6615594 | Jayanth et al. | Sep 2003 | B2 |
6616415 | Renken et al. | Sep 2003 | B1 |
6618578 | Petite | Sep 2003 | B1 |
6618709 | Sneeringer | Sep 2003 | B1 |
6621443 | Selli et al. | Sep 2003 | B1 |
6622925 | Carner et al. | Sep 2003 | B2 |
6622926 | Sartain et al. | Sep 2003 | B1 |
6628764 | Petite | Sep 2003 | B1 |
6629420 | Renders | Oct 2003 | B2 |
6631298 | Pagnano et al. | Oct 2003 | B1 |
6636893 | Fong | Oct 2003 | B1 |
6643567 | Kolk et al. | Nov 2003 | B2 |
6644848 | Clayton et al. | Nov 2003 | B1 |
6647735 | Street et al. | Nov 2003 | B2 |
6658373 | Rossi et al. | Dec 2003 | B2 |
6662584 | Whiteside | Dec 2003 | B1 |
6662653 | Scaliante et al. | Dec 2003 | B1 |
6671586 | Davis et al. | Dec 2003 | B2 |
6675591 | Singh et al. | Jan 2004 | B2 |
6679072 | Pham et al. | Jan 2004 | B2 |
6684349 | Gullo et al. | Jan 2004 | B2 |
6685438 | Yoo et al. | Feb 2004 | B2 |
6698218 | Goth et al. | Mar 2004 | B2 |
6701725 | Rossi et al. | Mar 2004 | B2 |
6708083 | Orthlieb et al. | Mar 2004 | B2 |
6708508 | Demuth et al. | Mar 2004 | B2 |
6709244 | Pham | Mar 2004 | B2 |
6711470 | Hartenstein et al. | Mar 2004 | B1 |
6711911 | Grabon et al. | Mar 2004 | B1 |
6717513 | Sandelman et al. | Apr 2004 | B1 |
6721770 | Morton et al. | Apr 2004 | B1 |
6725182 | Pagnano et al. | Apr 2004 | B2 |
6732538 | Trigiani et al. | May 2004 | B2 |
6745107 | Miller | Jun 2004 | B1 |
6747557 | Petite et al. | Jun 2004 | B1 |
6758050 | Jayanth et al. | Jul 2004 | B2 |
6758051 | Jayanth et al. | Jul 2004 | B2 |
6760207 | Wyatt et al. | Jul 2004 | B2 |
6772096 | Murakami et al. | Aug 2004 | B2 |
6772598 | Rinehart | Aug 2004 | B1 |
6775995 | Bahel et al. | Aug 2004 | B1 |
6784807 | Petite et al. | Aug 2004 | B2 |
6785592 | Smith et al. | Aug 2004 | B1 |
6786473 | Alles | Sep 2004 | B1 |
6799951 | Lifson et al. | Oct 2004 | B2 |
6804993 | Selli | Oct 2004 | B2 |
6811380 | Kim | Nov 2004 | B2 |
6816811 | Seem | Nov 2004 | B2 |
6823680 | Jayanth | Nov 2004 | B2 |
6829542 | Reynolds et al. | Dec 2004 | B1 |
6832120 | Frank et al. | Dec 2004 | B1 |
6832898 | Yoshida et al. | Dec 2004 | B2 |
6836737 | Petite et al. | Dec 2004 | B2 |
6837922 | Gorin | Jan 2005 | B2 |
6839790 | Barros De Almeida et al. | Jan 2005 | B2 |
6854345 | Alves et al. | Feb 2005 | B2 |
6862498 | Davis et al. | Mar 2005 | B2 |
6868678 | Mei et al. | Mar 2005 | B2 |
6868686 | Ueda et al. | Mar 2005 | B2 |
6869272 | Odachi et al. | Mar 2005 | B2 |
6870486 | Souza et al. | Mar 2005 | B2 |
6885949 | Selli | Apr 2005 | B2 |
6889173 | Singh | May 2005 | B2 |
6891838 | Petite et al. | May 2005 | B1 |
6892546 | Singh et al. | May 2005 | B2 |
6897772 | Scheffler et al. | May 2005 | B1 |
6900738 | Crichlow | May 2005 | B2 |
6901066 | Helgeson | May 2005 | B1 |
6904385 | Budike, Jr. | Jun 2005 | B1 |
6914533 | Petite | Jul 2005 | B2 |
6914893 | Petite | Jul 2005 | B2 |
6922155 | Evans et al. | Jul 2005 | B1 |
6931445 | Davis | Aug 2005 | B2 |
6934862 | Sharood et al. | Aug 2005 | B2 |
6952658 | Greulich et al. | Oct 2005 | B2 |
6956344 | Robertson et al. | Oct 2005 | B2 |
6964558 | Hahn et al. | Nov 2005 | B2 |
6966759 | Hahn et al. | Nov 2005 | B2 |
6968295 | Carr | Nov 2005 | B1 |
6973410 | Seigel | Dec 2005 | B2 |
6973793 | Douglas et al. | Dec 2005 | B2 |
6973794 | Street et al. | Dec 2005 | B2 |
6976366 | Starling et al. | Dec 2005 | B2 |
6978225 | Retlich et al. | Dec 2005 | B2 |
6981384 | Dobmeier et al. | Jan 2006 | B2 |
6983321 | Trinon et al. | Jan 2006 | B2 |
6983889 | Alles | Jan 2006 | B2 |
6986469 | Gauthier et al. | Jan 2006 | B2 |
6987450 | Marino et al. | Jan 2006 | B2 |
6990821 | Singh et al. | Jan 2006 | B2 |
6996441 | Tobias | Feb 2006 | B1 |
6997390 | Alles | Feb 2006 | B2 |
6998963 | Flen et al. | Feb 2006 | B2 |
6999996 | Sunderland | Feb 2006 | B2 |
7000422 | Street et al. | Feb 2006 | B2 |
7003378 | Poth | Feb 2006 | B2 |
7009510 | Douglass et al. | Mar 2006 | B1 |
7010925 | Sienel et al. | Mar 2006 | B2 |
7019667 | Petite et al. | Mar 2006 | B2 |
7024665 | Ferraz et al. | Apr 2006 | B2 |
7024870 | Singh et al. | Apr 2006 | B2 |
7030752 | Tyroler | Apr 2006 | B2 |
7031880 | Seem et al. | Apr 2006 | B1 |
7035693 | Cassiolato et al. | Apr 2006 | B2 |
7039532 | Hunter | May 2006 | B2 |
7042350 | Patrick et al. | May 2006 | B2 |
7043339 | Maeda et al. | May 2006 | B2 |
7043459 | Peevey | May 2006 | B2 |
7047753 | Street et al. | May 2006 | B2 |
7053766 | Fisler et al. | May 2006 | B2 |
7053767 | Petite et al. | May 2006 | B2 |
7054271 | Brownrigg et al. | May 2006 | B2 |
7062580 | Donaires | Jun 2006 | B2 |
7062830 | Alles | Jun 2006 | B2 |
7063537 | Selli et al. | Jun 2006 | B2 |
7072797 | Gorinevsky | Jul 2006 | B2 |
7075327 | Dimino et al. | Jul 2006 | B2 |
7079810 | Petite et al. | Jul 2006 | B2 |
7079967 | Rossi et al. | Jul 2006 | B2 |
7082380 | Wiebe et al. | Jul 2006 | B2 |
7089125 | Sonderegger | Aug 2006 | B2 |
7091847 | Capowski et al. | Aug 2006 | B2 |
7092767 | Pagnano et al. | Aug 2006 | B2 |
7092794 | Hill et al. | Aug 2006 | B1 |
7096153 | Guralnik et al. | Aug 2006 | B2 |
7102490 | Flen et al. | Sep 2006 | B2 |
7103511 | Petite | Sep 2006 | B2 |
7110843 | Pagnano et al. | Sep 2006 | B2 |
7110898 | Montijo et al. | Sep 2006 | B2 |
7113376 | Nomura et al. | Sep 2006 | B2 |
7114343 | Kates | Oct 2006 | B2 |
7123020 | Hill et al. | Oct 2006 | B2 |
7123458 | Mohr et al. | Oct 2006 | B2 |
7126465 | Faltesek | Oct 2006 | B2 |
7130170 | Wakefield et al. | Oct 2006 | B2 |
7130832 | Bannai et al. | Oct 2006 | B2 |
7134295 | Maekawa | Nov 2006 | B2 |
7137550 | Petite | Nov 2006 | B1 |
7142125 | Larson et al. | Nov 2006 | B2 |
7145438 | Flen et al. | Dec 2006 | B2 |
7145462 | Dewing et al. | Dec 2006 | B2 |
7159408 | Sadegh et al. | Jan 2007 | B2 |
7162884 | Alles | Jan 2007 | B2 |
7163158 | Rossi et al. | Jan 2007 | B2 |
7171372 | Daniel et al. | Jan 2007 | B2 |
7174728 | Jayanth | Feb 2007 | B2 |
7180412 | Bonicatto et al. | Feb 2007 | B2 |
7184861 | Petite | Feb 2007 | B2 |
7188482 | Sadegh et al. | Mar 2007 | B2 |
7188779 | Alles | Mar 2007 | B2 |
7201006 | Kates | Apr 2007 | B2 |
7207496 | Alles | Apr 2007 | B2 |
7209840 | Petite et al. | Apr 2007 | B2 |
7212887 | Shah et al | May 2007 | B2 |
7222493 | Jayanth et al. | May 2007 | B2 |
7224740 | Hunt | May 2007 | B2 |
7225193 | Mets et al. | May 2007 | B2 |
7227450 | Garvy et al. | Jun 2007 | B2 |
7228691 | Street et al. | Jun 2007 | B2 |
7230528 | Kates | Jun 2007 | B2 |
7234313 | Bell et al. | Jun 2007 | B2 |
7236765 | Bonicatto et al. | Jun 2007 | B2 |
7244294 | Kates | Jul 2007 | B2 |
7246014 | Forth et al. | Jul 2007 | B2 |
7255285 | Troost et al. | Aug 2007 | B2 |
7257501 | Zhan et al. | Aug 2007 | B2 |
7260505 | Felke et al. | Aug 2007 | B2 |
7261762 | Kang et al. | Aug 2007 | B2 |
7263073 | Petite et al. | Aug 2007 | B2 |
7263446 | Morin et al. | Aug 2007 | B2 |
7266812 | Pagnano | Sep 2007 | B2 |
7270278 | Street et al. | Sep 2007 | B2 |
7274995 | Zhan et al. | Sep 2007 | B2 |
7275377 | Kates | Oct 2007 | B2 |
7286945 | Zhan et al. | Oct 2007 | B2 |
7290398 | Wallace et al. | Nov 2007 | B2 |
7295128 | Petite | Nov 2007 | B2 |
7295896 | Norbeck | Nov 2007 | B2 |
7317952 | Bhandiwad et al. | Jan 2008 | B2 |
7328192 | Stengard et al. | Feb 2008 | B1 |
7330886 | Childers et al. | Feb 2008 | B2 |
7331187 | Kates | Feb 2008 | B2 |
7336168 | Kates | Feb 2008 | B2 |
7337191 | Haeberle et al. | Feb 2008 | B2 |
7343750 | Lifson et al. | Mar 2008 | B2 |
7343751 | Kates | Mar 2008 | B2 |
7346463 | Petite et al. | Mar 2008 | B2 |
7346472 | Moskowitz et al. | Mar 2008 | B1 |
7349824 | Seigel | Mar 2008 | B2 |
7350112 | Fox et al. | Mar 2008 | B2 |
7351274 | Helt et al. | Apr 2008 | B2 |
7363200 | Lu | Apr 2008 | B2 |
7376712 | Granatelli et al. | May 2008 | B1 |
7377118 | Esslinger | May 2008 | B2 |
7383030 | Brown et al. | Jun 2008 | B2 |
7383158 | Krocker et al. | Jun 2008 | B2 |
7392661 | Alles | Jul 2008 | B2 |
7397907 | Petite | Jul 2008 | B2 |
7400240 | Shrode et al. | Jul 2008 | B2 |
7412842 | Pham | Aug 2008 | B2 |
7414525 | Costea et al. | Aug 2008 | B2 |
7421351 | Navratil | Sep 2008 | B2 |
7421374 | Zhan et al. | Sep 2008 | B2 |
7421850 | Street et al. | Sep 2008 | B2 |
7424343 | Kates | Sep 2008 | B2 |
7424345 | Norbeck | Sep 2008 | B2 |
7424527 | Petite | Sep 2008 | B2 |
7432824 | Flen et al. | Oct 2008 | B2 |
7433854 | Joseph et al. | Oct 2008 | B2 |
7434742 | Mueller et al. | Oct 2008 | B2 |
7437150 | Morelli et al. | Oct 2008 | B1 |
7440560 | Barry | Oct 2008 | B1 |
7440767 | Ballay et al. | Oct 2008 | B2 |
7443313 | Davis et al. | Oct 2008 | B2 |
7445665 | Hsieh et al. | Nov 2008 | B2 |
7447603 | Bruno | Nov 2008 | B2 |
7447609 | Guralnik et al. | Nov 2008 | B2 |
7451606 | Harrod | Nov 2008 | B2 |
7454439 | Gansner et al. | Nov 2008 | B1 |
7458223 | Pham | Dec 2008 | B2 |
7468661 | Petite et al. | Dec 2008 | B2 |
7469546 | Kates | Dec 2008 | B2 |
7474992 | Ariyur | Jan 2009 | B2 |
7480501 | Petite | Jan 2009 | B2 |
7483810 | Jackson et al. | Jan 2009 | B2 |
7484376 | Pham | Feb 2009 | B2 |
7490477 | Singh et al. | Feb 2009 | B2 |
7491034 | Jayanth | Feb 2009 | B2 |
7503182 | Bahel et al. | Mar 2009 | B2 |
7510126 | Rossi et al. | Mar 2009 | B2 |
7523619 | Kojima et al. | Apr 2009 | B2 |
7528711 | Kates | May 2009 | B2 |
7533070 | Guralnik et al. | May 2009 | B2 |
7537172 | Rossi et al. | May 2009 | B2 |
7552030 | Guralnik et al. | Jun 2009 | B2 |
7555364 | Poth et al. | Jun 2009 | B2 |
7574333 | Lu | Aug 2009 | B2 |
7580812 | Ariyur et al. | Aug 2009 | B2 |
7594407 | Singh et al. | Sep 2009 | B2 |
7596959 | Singh et al. | Oct 2009 | B2 |
7606683 | Bahel et al. | Oct 2009 | B2 |
7631508 | Braun et al. | Dec 2009 | B2 |
7636901 | Munson et al. | Dec 2009 | B2 |
7644591 | Singh et al. | Jan 2010 | B2 |
7648077 | Rossi et al. | Jan 2010 | B2 |
7648342 | Jayanth | Jan 2010 | B2 |
7650425 | Davis et al. | Jan 2010 | B2 |
7660700 | Moskowitz et al. | Feb 2010 | B2 |
7660774 | Mukherjee et al. | Feb 2010 | B2 |
7664613 | Hansen | Feb 2010 | B2 |
7665315 | Singh et al. | Feb 2010 | B2 |
7686872 | Kang | Mar 2010 | B2 |
7693809 | Gray | Apr 2010 | B2 |
7697492 | Petite | Apr 2010 | B2 |
7703694 | Mueller et al. | Apr 2010 | B2 |
7704052 | Iimura et al. | Apr 2010 | B2 |
7706320 | Davis et al. | Apr 2010 | B2 |
7724131 | Chen | May 2010 | B2 |
7726583 | Maekawa | Jun 2010 | B2 |
7734451 | MacArthur et al. | Jun 2010 | B2 |
7738999 | Petite | Jun 2010 | B2 |
7739378 | Petite | Jun 2010 | B2 |
7742393 | Bonicatto et al. | Jun 2010 | B2 |
7752853 | Singh et al. | Jul 2010 | B2 |
7752854 | Singh et al. | Jul 2010 | B2 |
7756086 | Petite et al. | Jul 2010 | B2 |
7791468 | Bonicatto et al. | Sep 2010 | B2 |
7844366 | Singh | Nov 2010 | B2 |
7845179 | Singh et al. | Dec 2010 | B2 |
7848827 | Chen | Dec 2010 | B2 |
7848900 | Steinberg et al. | Dec 2010 | B2 |
7877218 | Bonicatto et al. | Jan 2011 | B2 |
7885959 | Horowitz et al. | Feb 2011 | B2 |
7885961 | Horowitz et al. | Feb 2011 | B2 |
7905098 | Pham | Mar 2011 | B2 |
7908116 | Steinberg et al. | Mar 2011 | B2 |
7908117 | Steinberg et al. | Mar 2011 | B2 |
7922914 | Verdegan et al. | Apr 2011 | B1 |
7937623 | Ramacher et al. | May 2011 | B2 |
7941294 | Shahi et al. | May 2011 | B2 |
7949494 | Moskowitz et al. | May 2011 | B2 |
7949615 | Ehlers et al. | May 2011 | B2 |
7963454 | Sullivan et al. | Jun 2011 | B2 |
7966152 | Stluka et al. | Jun 2011 | B2 |
7967218 | Alles | Jun 2011 | B2 |
7978059 | Petite et al. | Jul 2011 | B2 |
7987679 | Tanaka et al. | Aug 2011 | B2 |
7996045 | Bauer et al. | Aug 2011 | B1 |
7999668 | Cawthorne et al. | Aug 2011 | B2 |
8000314 | Brownrigg et al. | Aug 2011 | B2 |
8002199 | Habegger | Aug 2011 | B2 |
8005640 | Chiefetz et al. | Aug 2011 | B2 |
8010237 | Cheung et al. | Aug 2011 | B2 |
8013732 | Petite et al. | Sep 2011 | B2 |
8019567 | Steinberg et al. | Sep 2011 | B2 |
8029608 | Breslin | Oct 2011 | B1 |
8031650 | Petite et al. | Oct 2011 | B2 |
8034170 | Kates | Oct 2011 | B2 |
8036844 | Ling et al. | Oct 2011 | B2 |
8040231 | Kuruvila et al. | Oct 2011 | B2 |
8041539 | Guralnik et al. | Oct 2011 | B2 |
8046107 | Zugibe et al. | Oct 2011 | B2 |
8061417 | Gray | Nov 2011 | B2 |
8064412 | Petite | Nov 2011 | B2 |
8065886 | Singh et al. | Nov 2011 | B2 |
8068997 | Ling et al. | Nov 2011 | B2 |
8090477 | Steinberg | Jan 2012 | B1 |
8090559 | Parthasarathy et al. | Jan 2012 | B2 |
8090824 | Tran et al. | Jan 2012 | B2 |
8095337 | Kolbet et al. | Jan 2012 | B2 |
8108200 | Anne et al. | Jan 2012 | B2 |
8125230 | Bharadwaj et al. | Feb 2012 | B2 |
8131497 | Steinberg et al. | Mar 2012 | B2 |
8131506 | Steinberg et al. | Mar 2012 | B2 |
8134330 | Alles | Mar 2012 | B2 |
8150720 | Singh et al. | Apr 2012 | B2 |
8156208 | Bornhoevd et al. | Apr 2012 | B2 |
8170968 | Colclough et al. | May 2012 | B2 |
8171136 | Petite | May 2012 | B2 |
8175846 | Khalak et al. | May 2012 | B2 |
8180492 | Steinberg | May 2012 | B2 |
8182579 | Woo et al. | May 2012 | B2 |
8214175 | Moskowitz et al. | Jul 2012 | B2 |
8239922 | Sullivan et al. | Aug 2012 | B2 |
8258763 | Nakamura et al. | Sep 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8328524 | Iimura et al. | Dec 2012 | B2 |
8380556 | Singh et al. | Feb 2013 | B2 |
20010005320 | Ueda et al. | Jun 2001 | A1 |
20010054291 | Roh et al. | Dec 2001 | A1 |
20010054293 | Gustafson et al. | Dec 2001 | A1 |
20020000092 | Sharood et al. | Jan 2002 | A1 |
20020013679 | Petite | Jan 2002 | A1 |
20020016639 | Smith et al. | Feb 2002 | A1 |
20020017057 | Weder | Feb 2002 | A1 |
20020018724 | Millet et al. | Feb 2002 | A1 |
20020020175 | Street et al. | Feb 2002 | A1 |
20020029575 | Okamoto | Mar 2002 | A1 |
20020031101 | Petite et al. | Mar 2002 | A1 |
20020035495 | Spira et al. | Mar 2002 | A1 |
20020040280 | Morgan | Apr 2002 | A1 |
20020064463 | Park et al. | May 2002 | A1 |
20020067999 | Suitou et al. | Jun 2002 | A1 |
20020082747 | Kramer | Jun 2002 | A1 |
20020082924 | Koether | Jun 2002 | A1 |
20020095269 | Natalini et al. | Jul 2002 | A1 |
20020103655 | Boies et al. | Aug 2002 | A1 |
20020113877 | Welch | Aug 2002 | A1 |
20020117992 | Hirono et al. | Aug 2002 | A1 |
20020118106 | Brenn | Aug 2002 | A1 |
20020127120 | Hahn et al. | Sep 2002 | A1 |
20020143482 | Karanam et al. | Oct 2002 | A1 |
20020152298 | Kikta et al. | Oct 2002 | A1 |
20020157408 | Egawa et al. | Oct 2002 | A1 |
20020161545 | Starling et al. | Oct 2002 | A1 |
20020163436 | Singh et al. | Nov 2002 | A1 |
20020170299 | Jayanth et al. | Nov 2002 | A1 |
20020173929 | Seigel | Nov 2002 | A1 |
20020187057 | Loprete et al. | Dec 2002 | A1 |
20020189267 | Singh et al. | Dec 2002 | A1 |
20020193890 | Pouchak | Dec 2002 | A1 |
20020198629 | Ellis | Dec 2002 | A1 |
20030004660 | Hunter | Jan 2003 | A1 |
20030004765 | Wiegand | Jan 2003 | A1 |
20030005710 | Singh et al. | Jan 2003 | A1 |
20030006884 | Hunt | Jan 2003 | A1 |
20030014218 | Trigiani et al. | Jan 2003 | A1 |
20030019221 | Rossi et al. | Jan 2003 | A1 |
20030036810 | Petite | Feb 2003 | A1 |
20030037555 | Street et al. | Feb 2003 | A1 |
20030050737 | Osann | Mar 2003 | A1 |
20030050824 | Suermondt et al. | Mar 2003 | A1 |
20030051490 | Jayanth | Mar 2003 | A1 |
20030055603 | Rossi et al. | Mar 2003 | A1 |
20030063983 | Ancel et al. | Apr 2003 | A1 |
20030070438 | Kikuchi et al. | Apr 2003 | A1 |
20030070544 | Mulvaney et al. | Apr 2003 | A1 |
20030074285 | Hoffman et al. | Apr 2003 | A1 |
20030077179 | Collins et al. | Apr 2003 | A1 |
20030078677 | Hull et al. | Apr 2003 | A1 |
20030078742 | VanderZee et al. | Apr 2003 | A1 |
20030089493 | Takano et al. | May 2003 | A1 |
20030108430 | Yoshida et al. | Jun 2003 | A1 |
20030115890 | Jayanth et al. | Jun 2003 | A1 |
20030135786 | Vollmar et al. | Jul 2003 | A1 |
20030137396 | Durej et al. | Jul 2003 | A1 |
20030150924 | Peter | Aug 2003 | A1 |
20030150926 | Rosen | Aug 2003 | A1 |
20030150927 | Rosen | Aug 2003 | A1 |
20030171851 | Brickfield et al. | Sep 2003 | A1 |
20030183085 | Alexander | Oct 2003 | A1 |
20030191606 | Fujiyama et al. | Oct 2003 | A1 |
20030199247 | Striemer | Oct 2003 | A1 |
20030205143 | Cheng | Nov 2003 | A1 |
20030213851 | Burd et al. | Nov 2003 | A1 |
20030216837 | Reich et al. | Nov 2003 | A1 |
20030216888 | Ridolfo | Nov 2003 | A1 |
20030233172 | Granqvist et al. | Dec 2003 | A1 |
20040016241 | Street et al. | Jan 2004 | A1 |
20040016244 | Street et al. | Jan 2004 | A1 |
20040016251 | Street et al. | Jan 2004 | A1 |
20040016253 | Street et al. | Jan 2004 | A1 |
20040019584 | Greening et al. | Jan 2004 | A1 |
20040024495 | Sunderland | Feb 2004 | A1 |
20040026522 | Keen et al. | Feb 2004 | A1 |
20040037706 | Hahn et al. | Feb 2004 | A1 |
20040042904 | Kim | Mar 2004 | A1 |
20040047406 | Hunt | Mar 2004 | A1 |
20040049715 | Jaw | Mar 2004 | A1 |
20040059691 | Higgins | Mar 2004 | A1 |
20040068390 | Saunders | Apr 2004 | A1 |
20040078695 | Bowers et al. | Apr 2004 | A1 |
20040079093 | Gauthier et al. | Apr 2004 | A1 |
20040093879 | Street et al. | May 2004 | A1 |
20040095237 | Chen et al. | May 2004 | A1 |
20040111186 | Rossi et al. | Jun 2004 | A1 |
20040117166 | Cassiolato | Jun 2004 | A1 |
20040133314 | Ehlers et al. | Jul 2004 | A1 |
20040133367 | Hart | Jul 2004 | A1 |
20040140772 | Gullo et al. | Jul 2004 | A1 |
20040140812 | Scallante et al. | Jul 2004 | A1 |
20040153437 | Buchan | Aug 2004 | A1 |
20040159113 | Singh et al. | Aug 2004 | A1 |
20040183687 | Petite et al. | Sep 2004 | A1 |
20040184627 | Kost et al. | Sep 2004 | A1 |
20040184928 | Millet et al. | Sep 2004 | A1 |
20040184929 | Millet et al. | Sep 2004 | A1 |
20040184930 | Millet et al. | Sep 2004 | A1 |
20040184931 | Millet et al. | Sep 2004 | A1 |
20040187502 | Jayanth et al. | Sep 2004 | A1 |
20040191073 | Iimura et al. | Sep 2004 | A1 |
20040210419 | Wiebe et al. | Oct 2004 | A1 |
20040213384 | Alles et al. | Oct 2004 | A1 |
20040230582 | Pagnano et al. | Nov 2004 | A1 |
20040230899 | Pagnano et al. | Nov 2004 | A1 |
20040239266 | Lee et al. | Dec 2004 | A1 |
20040261431 | Singh et al. | Dec 2004 | A1 |
20050043923 | Forster et al. | Feb 2005 | A1 |
20050053471 | Hong et al. | Mar 2005 | A1 |
20050056031 | Jeong | Mar 2005 | A1 |
20050073532 | Scott et al. | Apr 2005 | A1 |
20050086341 | Enga et al. | Apr 2005 | A1 |
20050100449 | Hahn et al. | May 2005 | A1 |
20050103036 | Maekawa | May 2005 | A1 |
20050125439 | Nourbakhsh et al. | Jun 2005 | A1 |
20050126190 | Lifson et al. | Jun 2005 | A1 |
20050131624 | Gaessler et al. | Jun 2005 | A1 |
20050149570 | Sasaki et al. | Jul 2005 | A1 |
20050154495 | Shah | Jul 2005 | A1 |
20050159924 | Shah et al. | Jul 2005 | A1 |
20050166610 | Jayanth | Aug 2005 | A1 |
20050169636 | Aronson et al. | Aug 2005 | A1 |
20050195775 | Petite et al. | Sep 2005 | A1 |
20050198063 | Thomas et al. | Sep 2005 | A1 |
20050201397 | Petite | Sep 2005 | A1 |
20050204756 | Dobmeier et al. | Sep 2005 | A1 |
20050214148 | Ogawa et al. | Sep 2005 | A1 |
20050222715 | Ruhnke et al. | Oct 2005 | A1 |
20050228607 | Simons | Oct 2005 | A1 |
20050229612 | Hrejsa et al. | Oct 2005 | A1 |
20050229777 | Brown et al. | Oct 2005 | A1 |
20050232781 | Herbert et al. | Oct 2005 | A1 |
20050235660 | Pham | Oct 2005 | A1 |
20050235661 | Pham | Oct 2005 | A1 |
20050235663 | Pham | Oct 2005 | A1 |
20050247194 | Kang et al. | Nov 2005 | A1 |
20050251293 | Seigel | Nov 2005 | A1 |
20050252220 | Street et al. | Nov 2005 | A1 |
20050262856 | Street et al. | Dec 2005 | A1 |
20050262923 | Kates | Dec 2005 | A1 |
20060010898 | Suharno et al. | Jan 2006 | A1 |
20060015777 | Loda | Jan 2006 | A1 |
20060020426 | Singh | Jan 2006 | A1 |
20060021362 | Sadegh et al. | Feb 2006 | A1 |
20060032245 | Kates | Feb 2006 | A1 |
20060032246 | Kates | Feb 2006 | A1 |
20060032247 | Kates | Feb 2006 | A1 |
20060032248 | Kates | Feb 2006 | A1 |
20060032379 | Kates | Feb 2006 | A1 |
20060036349 | Kates | Feb 2006 | A1 |
20060041335 | Rossi et al. | Feb 2006 | A9 |
20060071089 | Kates | Apr 2006 | A1 |
20060074917 | Chand et al. | Apr 2006 | A1 |
20060097063 | Zeevi | May 2006 | A1 |
20060098576 | Brownrigg et al. | May 2006 | A1 |
20060117773 | Street et al. | Jun 2006 | A1 |
20060123807 | Sullivan et al. | Jun 2006 | A1 |
20060129339 | Bruno | Jun 2006 | A1 |
20060130500 | Gauthier et al. | Jun 2006 | A1 |
20060137368 | Kang et al. | Jun 2006 | A1 |
20060138866 | Bergmann et al. | Jun 2006 | A1 |
20060140209 | Cassiolato et al. | Jun 2006 | A1 |
20060151037 | Lepola et al. | Jul 2006 | A1 |
20060179854 | Esslinger | Aug 2006 | A1 |
20060185373 | Butler et al. | Aug 2006 | A1 |
20060196196 | Kates | Sep 2006 | A1 |
20060196197 | Kates | Sep 2006 | A1 |
20060201168 | Kates | Sep 2006 | A1 |
20060222507 | Jayanth | Oct 2006 | A1 |
20060235650 | Vinberg et al. | Oct 2006 | A1 |
20060238388 | Jayanth | Oct 2006 | A1 |
20060242200 | Horowitz et al. | Oct 2006 | A1 |
20060244641 | Jayanth et al. | Nov 2006 | A1 |
20060256488 | Benzing et al. | Nov 2006 | A1 |
20060259276 | Rossi et al. | Nov 2006 | A1 |
20060271589 | Horowitz et al. | Nov 2006 | A1 |
20060271623 | Horowitz et al. | Nov 2006 | A1 |
20060280627 | Jayanth | Dec 2006 | A1 |
20070002505 | Watanabe et al. | Jan 2007 | A1 |
20070006124 | Ahmed et al. | Jan 2007 | A1 |
20070027735 | Rokos | Feb 2007 | A1 |
20070067512 | Donaires et al. | Mar 2007 | A1 |
20070089434 | Singh et al. | Apr 2007 | A1 |
20070089435 | Singh et al. | Apr 2007 | A1 |
20070089438 | Singh et al. | Apr 2007 | A1 |
20070089439 | Singh et al. | Apr 2007 | A1 |
20070089440 | Singh et al. | Apr 2007 | A1 |
20070101750 | Pham et al. | May 2007 | A1 |
20070159978 | Anglin et al. | Jul 2007 | A1 |
20070186569 | Street et al. | Aug 2007 | A1 |
20070204635 | Tanaka et al. | Sep 2007 | A1 |
20070204921 | Alles | Sep 2007 | A1 |
20070205296 | Bell et al. | Sep 2007 | A1 |
20070229305 | Bonicatto et al. | Oct 2007 | A1 |
20070239894 | Thind et al. | Oct 2007 | A1 |
20080015797 | Kates | Jan 2008 | A1 |
20080016888 | Kates | Jan 2008 | A1 |
20080051945 | Kates | Feb 2008 | A1 |
20080058970 | Perumalsamy et al. | Mar 2008 | A1 |
20080078289 | Sergi et al. | Apr 2008 | A1 |
20080109185 | Cheung et al. | May 2008 | A1 |
20080114569 | Seigel | May 2008 | A1 |
20080121729 | Gray | May 2008 | A1 |
20080186898 | Petite | Aug 2008 | A1 |
20080209925 | Pham | Sep 2008 | A1 |
20080216494 | Pham et al. | Sep 2008 | A1 |
20080216495 | Kates | Sep 2008 | A1 |
20080223051 | Kates | Sep 2008 | A1 |
20080234869 | Yonezawa et al. | Sep 2008 | A1 |
20080319688 | Kim | Dec 2008 | A1 |
20090007777 | Cohen et al. | Jan 2009 | A1 |
20090030555 | Gray | Jan 2009 | A1 |
20090037142 | Kates | Feb 2009 | A1 |
20090038010 | Ma et al. | Feb 2009 | A1 |
20090055465 | DePue et al. | Feb 2009 | A1 |
20090057424 | Sullivan et al. | Mar 2009 | A1 |
20090057428 | Geadelmann et al. | Mar 2009 | A1 |
20090068947 | Petite | Mar 2009 | A1 |
20090071175 | Pham | Mar 2009 | A1 |
20090072985 | Patel et al. | Mar 2009 | A1 |
20090093916 | Parsonnet et al. | Apr 2009 | A1 |
20090096605 | Petite et al. | Apr 2009 | A1 |
20090099699 | Steinberg et al. | Apr 2009 | A1 |
20090106601 | Ngai et al. | Apr 2009 | A1 |
20090112672 | Flamig et al. | Apr 2009 | A1 |
20090125151 | Steinberg et al. | May 2009 | A1 |
20090140880 | Flen et al. | Jun 2009 | A1 |
20090151374 | Kasahara | Jun 2009 | A1 |
20090187281 | Kates | Jul 2009 | A1 |
20090215424 | Petite | Aug 2009 | A1 |
20090229469 | Campbell et al. | Sep 2009 | A1 |
20090296832 | Hunt | Dec 2009 | A1 |
20090324428 | Tolbert, Jr. et al. | Dec 2009 | A1 |
20100006042 | Pitonyak et al. | Jan 2010 | A1 |
20100011962 | Totsugi | Jan 2010 | A1 |
20100017465 | Brownrigg et al. | Jan 2010 | A1 |
20100039984 | Brownrigg | Feb 2010 | A1 |
20100044449 | Tessier | Feb 2010 | A1 |
20100070084 | Steinberg et al. | Mar 2010 | A1 |
20100070234 | Steinberg et al. | Mar 2010 | A1 |
20100070666 | Brindle | Mar 2010 | A1 |
20100078493 | Alles | Apr 2010 | A1 |
20100081357 | Alles | Apr 2010 | A1 |
20100081372 | Alles | Apr 2010 | A1 |
20100102136 | Hadzidedic et al. | Apr 2010 | A1 |
20100168924 | Tessier et al. | Jul 2010 | A1 |
20100169030 | Parlos | Jul 2010 | A1 |
20100179703 | Singh et al. | Jul 2010 | A1 |
20100191487 | Rada et al. | Jul 2010 | A1 |
20100194582 | Petite | Aug 2010 | A1 |
20100214709 | Hall et al. | Aug 2010 | A1 |
20100217550 | Crabtree et al. | Aug 2010 | A1 |
20100250054 | Petite | Sep 2010 | A1 |
20100257410 | Cottrell et al. | Oct 2010 | A1 |
20100262299 | Cheung et al. | Oct 2010 | A1 |
20100265909 | Petite et al. | Oct 2010 | A1 |
20100280667 | Steinberg | Nov 2010 | A1 |
20100282857 | Steinberg | Nov 2010 | A1 |
20100287489 | Alles | Nov 2010 | A1 |
20100305718 | Clark et al. | Dec 2010 | A1 |
20100308119 | Steinberg et al. | Dec 2010 | A1 |
20100312881 | Davis et al. | Dec 2010 | A1 |
20100318227 | Steinberg et al. | Dec 2010 | A1 |
20100330985 | Addy | Dec 2010 | A1 |
20110004350 | Cheifetz et al. | Jan 2011 | A1 |
20110022429 | Yates et al. | Jan 2011 | A1 |
20110023045 | Yates et al. | Jan 2011 | A1 |
20110023945 | Hayashi et al. | Feb 2011 | A1 |
20110040785 | Steenberg et al. | Feb 2011 | A1 |
20110042541 | Spencer et al. | Feb 2011 | A1 |
20110045454 | McManus et al. | Feb 2011 | A1 |
20110054842 | Kates | Mar 2011 | A1 |
20110071960 | Singh | Mar 2011 | A1 |
20110077896 | Steinberg et al. | Mar 2011 | A1 |
20110083450 | Turner et al. | Apr 2011 | A1 |
20110102159 | Olson et al. | May 2011 | A1 |
20110103460 | Bonicatto | May 2011 | A1 |
20110106471 | Curtis et al. | May 2011 | A1 |
20110118905 | Mylaraswamy et al. | May 2011 | A1 |
20110121952 | Bonicatto et al. | May 2011 | A1 |
20110144932 | Alles | Jun 2011 | A1 |
20110166828 | Steinberg et al. | Jul 2011 | A1 |
20110181438 | Millstein et al. | Jul 2011 | A1 |
20110184563 | Foslien et al. | Jul 2011 | A1 |
20110185895 | Freen | Aug 2011 | A1 |
20110190910 | Lombard et al. | Aug 2011 | A1 |
20110212700 | Petite | Sep 2011 | A1 |
20110218957 | Coon et al. | Sep 2011 | A1 |
20110264324 | Petite et al. | Oct 2011 | A1 |
20110264409 | Jayanth et al. | Oct 2011 | A1 |
20110290893 | Steinberg | Dec 2011 | A1 |
20110307103 | Cheung et al. | Dec 2011 | A1 |
20110309953 | Petite et al. | Dec 2011 | A1 |
20110310929 | Petite et al. | Dec 2011 | A1 |
20110315019 | Lyon et al. | Dec 2011 | A1 |
20110320050 | Petite et al. | Dec 2011 | A1 |
20120005590 | Lombard et al. | Jan 2012 | A1 |
20120054242 | Ferrara et al. | Mar 2012 | A1 |
20120065783 | Fadell et al. | Mar 2012 | A1 |
20120065935 | Steinberg et al. | Mar 2012 | A1 |
20120066168 | Fadell et al. | Mar 2012 | A1 |
20120075092 | Petite et al. | Mar 2012 | A1 |
20120092154 | Petite | Apr 2012 | A1 |
20120125559 | Fadell et al. | May 2012 | A1 |
20120125592 | Fadell et al. | May 2012 | A1 |
20120126019 | Warren et al. | May 2012 | A1 |
20120126020 | Filson et al. | May 2012 | A1 |
20120126021 | Warren et al. | May 2012 | A1 |
20120128025 | Huppi et al. | May 2012 | A1 |
20120130546 | Matas et al. | May 2012 | A1 |
20120130547 | Fadell et al. | May 2012 | A1 |
20120130548 | Fadell et al. | May 2012 | A1 |
20120130679 | Fadell et al. | May 2012 | A1 |
20120131504 | Fadell et al. | May 2012 | A1 |
20120143528 | Kates | Jun 2012 | A1 |
20120186774 | Matsuoka et al. | Jul 2012 | A1 |
20120191257 | Corcoran et al. | Jul 2012 | A1 |
20120199660 | Warren et al. | Aug 2012 | A1 |
20120203379 | Sloo et al. | Aug 2012 | A1 |
20120221150 | Arensmeier | Aug 2012 | A1 |
20120229521 | Hales, IV et al. | Sep 2012 | A1 |
20120232969 | Fadell et al. | Sep 2012 | A1 |
20120233478 | Mucignat et al. | Sep 2012 | A1 |
20120239207 | Fadell et al. | Sep 2012 | A1 |
20120239221 | Mighdoll et al. | Sep 2012 | A1 |
20120245968 | Beaulieu et al. | Sep 2012 | A1 |
20120248210 | Warren et al. | Oct 2012 | A1 |
20120248211 | Warren et al. | Oct 2012 | A1 |
20120260804 | Kates | Oct 2012 | A1 |
20120265491 | Drummy | Oct 2012 | A1 |
20120265586 | Mammone | Oct 2012 | A1 |
20120271673 | Riley | Oct 2012 | A1 |
20120291629 | Tylutki et al. | Nov 2012 | A1 |
20120318135 | Hoglund et al. | Dec 2012 | A1 |
20120318137 | Ragland et al. | Dec 2012 | A1 |
20130066479 | Shetty et al. | Mar 2013 | A1 |
20130182285 | Matsuhara et al. | Jul 2013 | A1 |
20130287063 | Kates | Oct 2013 | A1 |
20140000290 | Kates | Jan 2014 | A1 |
20140000291 | Kates | Jan 2014 | A1 |
20140000292 | Kates | Jan 2014 | A1 |
20140000293 | Kates | Jan 2014 | A1 |
20140000294 | Kates | Jan 2014 | A1 |
20140012422 | Kates | Jan 2014 | A1 |
20140074730 | Arensmeier et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
1147440 | May 1983 | CA |
2567264 | Jul 2007 | CA |
173493 | Nov 1934 | CH |
1169619 | Jan 1998 | CN |
1356472 | Jul 2002 | CN |
1356472A | Jul 2002 | CN |
842351 | Jun 1952 | DE |
764179 | Apr 1953 | DE |
1144461 | Feb 1963 | DE |
1403516 | Oct 1968 | DE |
1403467 | Oct 1969 | DE |
3133502 | Jun 1982 | DE |
3422398 | Dec 1985 | DE |
3118638 | Jul 1995 | DE |
297 23 145 | Apr 1998 | DE |
0060172 | Sep 1982 | EP |
0085246 | Aug 1983 | EP |
0124603 | Nov 1984 | EP |
0254253 | Jan 1988 | EP |
0346152 | Dec 1989 | EP |
0351833 | Jan 1990 | EP |
0 355 255 | Feb 1990 | EP |
0398436 | Nov 1990 | EP |
0410330 | Jan 1991 | EP |
0419857 | Apr 1991 | EP |
0432085 | Jun 1991 | EP |
0453302 | Oct 1991 | EP |
0479421 | Apr 1992 | EP |
0557023 | Aug 1993 | EP |
0579374 | Jan 1994 | EP |
0351272 | May 1994 | EP |
0660213 | Jun 1995 | EP |
0747598 | Dec 1996 | EP |
0877462 | Nov 1998 | EP |
0982497 | Mar 2000 | EP |
1008816 | Jun 2000 | EP |
1 087 184 | Mar 2001 | EP |
1087142 | Mar 2001 | EP |
1138949 | Oct 2001 | EP |
1139037 | Oct 2001 | EP |
1187021 | Mar 2002 | EP |
1209427 | May 2002 | EP |
1241417 | Sep 2002 | EP |
1245912 | Oct 2002 | EP |
1245913 | Oct 2002 | EP |
1393034 | Mar 2004 | EP |
1435002 | Jul 2004 | EP |
2180270 | Apr 2010 | EP |
2 472 862 | Mar 1981 | FR |
2582430 | Nov 1986 | FR |
2589561 | May 1987 | FR |
2628558 | Sep 1989 | FR |
2660739 | Oct 1991 | FR |
2 062 919 | May 1981 | GB |
2062919 | May 1981 | GB |
2064818 | Jun 1981 | GB |
2116635 | Sep 1983 | GB |
2229295 | Sep 1990 | GB |
56010639 | Feb 1981 | JP |
59145392 | Aug 1984 | JP |
61046485 | Mar 1986 | JP |
62116844 | May 1987 | JP |
63061783 | Mar 1988 | JP |
63302238 | Dec 1988 | JP |
01014554 | Jan 1989 | JP |
02110242 | Apr 1990 | JP |
02 294580 | May 1990 | JP |
04080578 | Mar 1992 | JP |
06 058273 | Jan 1994 | JP |
08087229 | Apr 1996 | JP |
08284842 | Oct 1996 | JP |
H08261541 | Oct 1996 | JP |
2000350490 | Dec 2000 | JP |
2002-155868 | May 2002 | JP |
2003018883 | Jan 2003 | JP |
2003-176788 | Jun 2003 | JP |
2004-316504 | Nov 2004 | JP |
2005241089 | Sep 2005 | JP |
2005345096 | Dec 2005 | JP |
2006-046219 | Feb 2006 | JP |
2006046519 | Feb 2006 | JP |
2006274807 | Oct 2006 | JP |
2009002651 | Jan 2009 | JP |
2010048433 | Mar 2010 | JP |
10-1998-0036844 | Aug 1998 | KR |
10-2000-0025265 | May 2000 | KR |
10-2002-0041977 | Jun 2002 | KR |
10-2004-0021281 | Mar 2004 | KR |
10-2006-0020353 | Mar 2006 | KR |
8601262 | Feb 1986 | WO |
8703988 | Jul 1987 | WO |
8705097 | Aug 1987 | WO |
8802527 | Apr 1988 | WO |
8806703 | Sep 1988 | WO |
WO 97 18636 | May 1997 | WO |
9748161 | Dec 1997 | WO |
WO 99 17066 | Apr 1999 | WO |
9965681 | Dec 1999 | WO |
0021047 | Apr 2000 | WO |
WO 0169147 | Sep 2001 | WO |
0214968 | Feb 2002 | WO |
WO 02075227 | Sep 2002 | WO |
02090840 | Nov 2002 | WO |
02090913 | Nov 2002 | WO |
02090914 | Nov 2002 | WO |
03031996 | Apr 2003 | WO |
03090000 | Oct 2003 | WO |
2004049088 | Jun 2004 | WO |
2005022049 | Mar 2005 | WO |
2005073686 | Aug 2005 | WO |
WO 2005108882 | Nov 2005 | WO |
2006023075 | Mar 2006 | WO |
WO 2006025880 | Mar 2006 | WO |
2006091521 | Aug 2006 | WO |
2008144864 | Dec 2008 | WO |
WO 2009058356 | May 2009 | WO |
2010138831 | Dec 2010 | WO |
2011069170 | Jun 2011 | WO |
2012092625 | Jul 2012 | WO |
2012118550 | Sep 2012 | WO |
Entry |
---|
“Product Performance Introduction of York Company,” cited in First Office Action from the Patent Office of the People's Republic of China dated Jun. 29, 2007 regarding Application No. 200510005907.8, including translation by CCPIT Patent and Trademark Law Office. |
Ultrasite 32 User's Guide, Computer Process Controls, Sep. 28, 1999. |
Ultrasite User's Guide BEC Supplement, Computer Process Controls, Oct. 6, 1997. |
Ultrasite User's Guide BCU Supplement, Computer Process Controls, Sep. 4, 1997. |
Ultrasite User's Guide RMCC Supplement, Computer Process Controls, Jun. 9, 1997. |
Building Environmental Control (BEC) Installation and Operation Manual, Computer Process Controls, Jan. 5, 1998. |
Building Control Unit (BCU) Installation and Operation Manual, Computer Process Controls, Jan. 28, 1998. |
The International Search Report regarding International Application No. PCT/US2007/019563. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2007/019563. |
Einstein RX-300 Refrigeration Controller Installation and Operation Manual, Computer Process Controls, Apr. 1, 1998. |
Translation of Claims and Abstract of KR Patent Laying-Open No. 2000-0000261; 4 pages. |
“Small-type Freezing and Air Conditioning Operation,” Chinese State Economy and Trading Committee, China Meteorological Press, Mar. 2003 (cited in First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009). |
“Manual for Freezing and Air Conditioning Technology,” Fan Jili, Liaoning Science and Technology Press, Sep. 1995 (cited in First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009). |
Second Office Action regarding Chinese Patent Application No. 200780030810X, dated Aug. 4, 2010. English translation provided by Unitalen Attorneys at Law. |
European Search Report regarding Application No. 04022784.5-2315 / 1500821, dated Aug. 14, 2012. |
Fourth Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Applicaiton No. 200510005907.8, dated Dec. 8, 2011. Translation provided by Unitalen Attorneys at Law. |
Notification of First Office Action from the State Intellectual Property Office of People's Repulic of China regarding Chinese Patent Application No. 200880122964.6, dated Nov. 5, 2012. Translation provided by Unitalen Attorneys at Law. |
Examiners Report No. 1 regarding Australian Patent Application No. 2013202431, dated Nov. 25, 2014. |
Final Office Action for Application No. 13/770,123 dated Dec. 22, 2014. |
International Search Report and Written Opinion for related PCT Application No. PCT/US20141028859, dated Aug. 22, 2014. |
International Search Report and Written Opinion of the ISA regarding International Application No. PCT/ US2014/032927, ISA/KR dated Aug. 21, 2014. |
Non Final Office Action for U.S. Appl. No. 13/407,180, dated Dec. 2, 2014. |
Non-Final Office Action regrding U.S. Appl. No. 13/932,611, dated Jan. 30, 2015. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 13/737,566, dated Sep. 24, 2014. |
Notice of Allowance for U.S. Appl. No. 13/835,742 dated Dec. 24, 2014. |
Notice of Allowance for U.S. Appl. No. 13/835,810 date Jan. 2, 2015. |
Notice of Allowance for U.S. Appl. No. 13/836,043 dated Feb. 4, 2015. |
Notice of Allowance for U.S. Appl. No. 13/836,453 dated Dec. 24, 2014. |
Notice of Allowance for related U.S. Appl. No. 13/836,043, dated Oct. 9, 2014. |
Notice of Allowance for related U.S. Appl. No. 13/836,244, dated Oct. 30, 2014. |
Office Action for U.S. Appl. No. 13/269,188 dated Feb. 10, 2015. |
Office Action for U.S. Appl. No. 13/767,479 dated Feb. 6, 2015. |
Office Action for U.S. Appl. No. 13/835,621 dated Dec. 29, 2014. |
Office Action for Canadian Application No. 2,828,740 dated Jan. 12, 2015. |
Office Action for related U.S. Appl. No. 13/269,188, dated Oct. 6, 2014. |
Office Action for related U.S. Appl. No. 13/767,479, dated Oct. 21, 2014. |
Patent Examination Report for Austrialian Application No. 2012223466 dated Jan. 6, 2015. |
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 201110349785.X, dated Jul. 25, 2014. Translation provided by Unitalen Attorneys at Law. |
Third Chinese Office Action regarding Application No. 201110349785.X, dated Jan. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
Final Office Action and Interview Summary regarding U.S. Appl. No. 13/407,180, mailed Mar. 13, 2015. |
Naiad et al., “EER & SEER As Predictors of Seasonal Energy Performance ”, Oct. 2004, Southern California Edison, http://www.doe2.com/download/Deer/Seer%2BProgThermostats/EER-SEER—CASE—ProjectSummary—Oct2004—V6a.pdf. |
Interview Summary regarding —13/269,188, mailed Mar. 18, 2015. |
Notice of Allowance regarding —13/767,479, dated Mar. 31, 2015. |
Notice of Allowance regarding —13/835,621, dated Mar. 10, 2015. |
Office Action from —13/369,067 dated Apr. 3, 2015. |
Office Action regarding —13/770,479, mailed Mar. 16, 2015. |
Office Action regarding —13/770,123, mailed Apr. 2, 2015. |
Naiad et al., “EER & SEER As Predictors of Seasonal Energy Performance ”, Oct. 2004, Southern California Edison, http://www.doe2.com/download/Deer/Seer%2BProgThermostats/EERSEER—CASE—ProjectSummary—Oct2004—V6a.pdf. |
Interview Summary regarding U.S. Appl. No. 13/269,188, mailed Mar. 18, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/835,621, dated Mar. 10, 2015. |
Office Action regarding U.S. Appl. No. 13/770,479, mailed Mar. 16, 2015. |
Office Action regarding U.S. Appl. No. 13/770,123, mailed Apr. 2, 2015. |
Advisory Action regarding U.S. Appl. No. 13/269,188, dated Apr. 13, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/835,742, mailed Apr. 17, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/836,453, mailed Apr. 15, 2015. |
U.S. Office Action regarding U.S. Appl. No. 13/269,188, dated May 8, 2015. |
U.S. Office Action regarding U.S. Appl. No. 14/212,632, dated May 15, 2015. |
First Chinese Office Action regarding Application No. 2013800053002, dated Apr. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
Advisory Action and Interview Summary regarding U.S. Appl. No. 13/407,180, dated May 27, 2015. |
Interview Summary regarding U.S. Appl. No. 13/407,180, dated Jun. 11, 2015. |
Interview Summary regarding U.S. Appl. No. 13/770,479, dated Jun. 16, 2015. |
Extended European Search Report regarding European Application No. 08845689.8-1608/2207964, dated Jun. 19, 2015. |
Extended European Search Report regarding European Application No. 08848538.8-1608/2220372, dated Jun. 19, 2015. |
Final Office Action from related U.S. Appl. No. 13/767,479 dated Mar. 14, 2014; 6 pages. |
Final Office Action from related U.S. Appl. No. 13/836,043 dated Mar. 12, 2014; 5 pages. |
Final Office Action mailed Dec. 7, 2010 for U.S. Appl. No. 12/054,011. |
Final Office Action regarding U.S. Appl. No. 11/497,579, dated May 14, 2010. |
Final Office Action regarding U.S. Appl. No. 11/497,644, dated Dec. 22, 2010. |
Final Office Action regarding U.S. Appl. No. 11/850,846, mailed Jan. 17, 2014. |
Final Office Action regarding U.S. Appl. No. 13/770,123, dated Nov. 15, 2013. |
Final Office Action regarding U.S. Appl. No. 13/932,611, mailed May 28, 2014. |
Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jul. 21, 2011. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Oct. 22, 2008. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Apr. 26, 2004. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated May 31, 2005. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Jun. 18, 2003. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Jul. 23, 2007. |
Final Office Action regarding U.S. Appl. No. 10/061,964, dated Mar. 8, 2004. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated Nov. 13, 2007. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated Apr. 27, 2009. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated May 2, 2006. |
Final Office Action regarding U.S. Appl. No. 11/098,575, dated Jun. 17, 2010. |
Final Office Action regarding U.S. Appl. No. 11/214,179, dated May 29, 2009. |
Final Office Action regarding U.S. Appl. No. 11/256,641, dated Feb. 2, 2009. |
Final Office Action regarding U.S. Appl. No. 11/337,918, dated Feb. 17, 2011. |
Final Office action regarding U.S. Appl. No. 11/337,918, dated Feb. 4, 2010. |
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jul. 7, 2011. |
First Examination Communication regarding European Application No. EP02729051.9, dated Dec. 23, 2005. |
First Examination Report regarding Australian Patent Application No. 2010319488, dated Jan. 10, 2013. |
First Examination Report regarding Australian Patent Application No. 2012241185, dated Sep. 27, 2013. |
First Office Action from the Patent Office of the People's Republic of China dated Jun. 8, 2007, Application No. 200480027753.6 and Translation provided by CCPIT. |
First Office Action from the Patent Office of the People's Republic of China regarding Application No. 200510005907.8, dated Jun. 29, 2007. |
First Office Action from the State Intellectual Property Office of the People's Republic of China regarding Chinese Patent Application No. 200890100287.3, issued Oct. 25, 2010. Translation provided by Unitalen Attorneys at Law. |
First Office Action issued by the Chinese Patent Office for Application No. 200480015875.3, dated Sep. 5, 2008. |
First Office Action issued by the Chinese Patent Office on May 30, 2008 regarding Application No. 200580013451.8. |
First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009. |
First Office Action received from the Chinese Patent Office dated Feb. 2, 2007 regarding Application No. 200480011463.2, translated by CCPIT Patent and Trademark Law Office. |
First Office Action regarding Canadian Patent Application No. 2,777,349, dated Jul. 19, 2013. |
First Office Action regarding Chinese Application No. 200880106319.5, dated May 25, 2011. English translation provided by Unitalen Attorneys at Law. |
First Office Action regarding Chinese Patent Application No. 200780032977.X, dated Sep. 27, 2010. English translation provided by Unitalen Attorneys at Law. |
First Office Action regarding Chinese Patent Application No. 200910211779.0, dated May 3, 2012. English translation provided by Unitalen Attorneys at Law. |
First Office Action regarding Chinese Patent Application No. 201010117657.8, dated Dec. 29, 2010. English translation provided by Unitalen Attorneys at Law. |
First Office Action regarding Chinese Patent Application No. 201110349785.X, dated Nov. 21, 2013, and Search Report. English translation provided by Unitalen Attorneys at Law. |
First Official Report regarding Australian Patent Application No. 2007214381, dated Dec. 12, 2008. |
Flow & Level Measurement: Mass Flowmeters, http://www.omega.com/literature/transactions/volume4/T9904-10-MASS.html, 2001, 19 pages. |
Fourth Office Action regarding Chinese Patent Application No. 200910211779.0, dated Jan. 6, 2014. English translation provided by Unitalen Attorneys at Law. |
Frequently Asked Questions, http://www.lipaedge.com/faq.asp, Copyright © 2001, 5 pages. |
Home Comfort Zones, Smart Controller™ MyTemp™ Room by Room Temperature Control and Energy Management, User Manual, Aug. 2007. |
Honeywell, A7075A1000 HVAC Service Assistant, 2001. |
Honeywell, Advanced Portable A/C Diagnostics, The HVAC Service Assistant, 2003. |
Honeywell, Excel 5000® System, Excel Building Supervisor—Integrated, 74-2034, Copyright © 1994, Rev. 11-94, 12 pages. |
Honeywell, Excel 5000® System, Excel Building Supervisor, 74-2033-1, Copyright © 1996, Rev. 6-96, 12 pages. |
Honeywell, HVAC Service Assistant, TRGpro PalmTM OS Interface and HVAC Service Assistant A7075A1000, 2002. |
Hvac Service Assistant, ACRx Efficiency and Capacity Estimating Technology, Field Diagnostics, 2004. |
International Preliminary Examination Report regarding PCT/US02/13456, dated Sep. 15, 2003. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/009618, dated Mar. 24, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/012362, dated May 4, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/012364, dated May 4, 2010. |
International Preliminary Report on Patentability regarding Application No. PCT/US2010/056315, mailed May 24, 2012. |
International Preliminary Report on Patentability regarding International Application No. PCT/US2007/019563 dated Mar. 10, 2009. |
International Search Report and Written Opinion of the International Searching Authority regarding International Application No. PCT/US06/33702, dated Sep. 26, 2007. |
International Search Report for International Application No. PCT/US07/019563, dated Jan. 15, 2008, 3 Pages. |
International Search Report for International Application No. PCT/US2005/11154, dated Oct. 19, 2005. |
International Search Report for International Application No. PCT/US2007/016135 dated Oct. 22, 2007. |
International Search Report for International Application No. PCT/US2008/009618, dated Dec. 8, 2008. |
International Search Report for International Application No. PCT/US2008/012362, dated Feb. 12, 2009. |
International Search Report for International Application No. PCT/US2008/012364 dated Mar. 13, 2009. |
International Search Report for PCT/US02/13459; ISA/US; date mailed Sep. 19, 2002. |
International Search Report for PCT/US2012/026973, Sep. 3, 2012, 5 pages. |
International Search Report for PCT/US2013/061389, Jan. 22, 2014, 7 pages. |
International Search Report from PCT /US2008/060900, Aug. 4, 2008, 6 pages. |
International Search Report from related PCT Application No. PCT/US2014/028074 mailed Jun. 19, 2014. |
International Search Report regarding Application No. PCT/US2010/036601, mailed Dec. 29, 2010. |
International Search Report regarding Application No. PCT/US2010/056315, mailed Jun. 28, 2011. |
International Search Report regarding Application No. PCT/US2013/021161, mailed May 8, 2013. |
International Search Report, Int'l. App. No. PCT/US 06/05917, dated Sep. 26, 2007. |
International Search Report, International Application No. PCT/US02/13456, dated Aug. 22, 2002, 2 Pages. |
International Search Report, International Application No. PCT/US04/13384; Dated Aug. 1, 2004; 1 Page. |
International Search Report, International Application No. PCT/US2004/027654, dated Aug. 25, 2004, 4 Pages. cited by other. |
International Search Report, International Application No. PCT/US2006/040964, dated Feb. 15, 2007, 2 Pages. |
International Search Report; International Application No. PCT/IB96/01435; May 23, 1997; 1 Page. |
International Search Report; International Application No. PCT/US98/18710; Jan. 26, 1999; 1 Page. |
Interview Summary from related U.S. Appl. No. 12/054,011 dated Jan. 30, 2012. |
Interview Summary regarding U.S. Appl. No. 11/497,644, dated May 4, 2010. |
Interview Summary regarding U.S. Appl. No. 11/098,582, dated Apr. 27, 2010. |
Interview Summary regarding U.S. Appl. No. 11/214,179, dated Jan. 30, 2009. |
Interview Summary regarding U.S. Appl. No. 11/497,579, dated Jul. 15, 2010. |
Issue Notification regarding U.S. Appl. No. 11/214,179, dated Mar. 14, 2012. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Appendix C, pp. 1060-1063, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 4, pp. 176-201, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 5, pp. 239-245, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 6, p. 322, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section IV, Chapter 9, pp. 494-504, Copyright 2004. |
K. A. Manske et al.; Evaporative Condenser Control in Industrial Refrigeration Systems; University of Wisconsin—Madison, Mechanical Engineering Department; International Journal of Refrigeration, vol. 24, No. 7; pp. 676 -691; 2001, 21 pages. |
Li et al., “Development, Evaluation, and Demonstration of a Virtual Refrigerant Charge Sensor,” Jan. 2009, HVAC&R Research, Oct. 27, 2008, 21 pages. |
Liao et al., A Correlation of Optimal Heat Rejection Pressures in Transcritical Carbon Dioxide Cycles, Applied Thermal Engineering 20 (2000), Jul. 25, 1999, 831-841. |
LIPA Launches Free, First-in-Nation Internet-Based Air Conditioner Control Program to Help LIPA and Its Customers Conserve Electricity & Save Money, Apr. 19, 2001, http://www.lipower.org/newscmter/pr/2001/aprill9—0l.html, 3 pages. |
Low-Cost Multi-Service Home Gateway Creates New Business Opportunities, Coactive Networks, Copyright 1998-1999, 7 pages. |
Nickles, Donald, “Broadband Communications Over Power Transmission Lines,” A Guest Lecture From the Dr. Shreekanth Mandaynam Engineering Frontiers Lecture Series, May 5, 2004, 21 pages. |
Non Final Office Action for related U.S. Appl. No. 13/369,067 dated Aug. 12, 2014. |
Non Final Office Action for related U.S. Appl. No. 13/835,621 dated Aug. 8, 2014. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Aug. 14, 2012; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Oct. 4, 2013; 11 pages. |
“A Practical Example of a Building's Automatic Control,” cited in First Office Action from the Patent Office of the People's Republic of China dated Jun. 29, 2007, regarding Application No. 200510005907.8, including translation by CCPIT Patent and Trademark Law Office. |
“Air Conditioning Equipment and Diagnostic Primer,” Field Diagnostic Services, Inc., Sep. 9, 2002. |
About CABA: CABA eBulletin, http://www.caba.org/aboutus/ebulletin/issue17/domosys.html, 2 pages, Sep. 22, 2004. |
Advanced Utility Metering: Period of Performance, Subcontractor Report, National Renewable Energy Laboratory, Sep. 2003, 59 pages. |
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 11/098,575, dated Nov. 16, 2009. |
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 11/098,575, dated Sep. 28, 2009. |
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 09/977,552, dated Nov. 10, 2005. |
Advisory Action from related U.S. Appl. No. 13/784,890 dated Mar. 14, 2014. |
Advisory Action regarding U.S. Appl. No. 11/214,179, dated Aug. 28, 2009. |
BChydro, “Power Factor” Guides to Energy Management: The GEM Series, Oct. 1999. |
Case Studies: Automated Meter Reading and Load Shed System, http://groupalpha.corn/CaseStudies2.html, Aug. 23, 2004, 1 page. |
Communication from European Patent Office concerning Substantive Examination regarding European Patent Application No. 06790063.9, dated Jun. 6, 2011. |
Cost Cutting Techniques Used by the Unscrupulous, http://www.kellyshvac.com/howto.html, Oct. 7, 2004, 3 pages. |
Election/Restriction Requirement regarding U.S. Appl. No. 09/977,552, dated Jan. 25, 2007. |
European Search Report for Application No. EP 01 30 1752, dated Mar. 26, 2002. |
European Search Report for Application No. EP 02 25 1531, dated Sep. 30, 2002. |
European Search Report for Application No. EP 04 81 5853, dated Jul. 17, 2007. |
European Search Report for Application No. EP 06 02 6263, dated Jul. 17, 2007. |
European Search Report for Application No. EP 12 182 243.1, dated Oct. 29, 2012. |
European Search Report for EP 01 30 7547; Feb. 20, 2002; 1 Page. |
European Search Report for EP 02 25 0266; May 17, 2002; 3 Pages. |
European Search Report for EP 02 72 9050, Jun. 17, 2004, 2 pages. |
European Search Report for EP 82306809.3; Apr. 28, 1983; 1 Page. |
European Search Report for EP 91 30 3518; Jul. 22, 1991; 1 Page. |
European Search Report for EP 93 30 4470; Oct. 26, 1993; 1 Page. |
European Search Report for EP 94 30 3484; Apr. 3, 1997; 1 Page. |
European Search Report for EP 96 30 4219; Dec. 1, 1998; 2 Pages. |
European Search Report for EP 98 30 3525; May 28, 1999; 2 Pages. |
European Search Report for EP 99 30 6052; Dec. 28, 1999; 3 Pages. |
European Search Report regarding Application No. 07811712.4-1608/2069638 PCT/US2007019563, dated Jan. 7, 2014. |
European Search Report regarding Application No. EP02729051, dated Feb. 17, 2005. |
Examination Report received from Australian Government IP Australia dated Oct. 29, 2009 regarding patent application No. 2008202088. |
Examiner Interview regarding U.S. Appl. No. 11/256,641, dated Sep. 16, 2008. |
Examiner Interview Summary regarding U.S. Appl. No. 11/394,380, dated Jul. 29, 2010. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Dec. 8, 2008. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Mar. 2, 2007. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Mar. 25, 2008. |
Examiner's Answer from related U.S. Appl. No. 13/784,890 dated Jul. 3, 2014. |
Examiner's Answer regarding U.S. Appl. No. 09/977,552, dated Dec. 17, 2009. |
Examiner's First Report on Australian Patent Application No. 2002259066, dated Mar. 1, 2006. |
Examiner's First Report on Australian Patent Application No. 2007292917 dated Jan. 10, 2012. |
Examiner's First Report on Australian Patent Application No. 2008319275, dated Jan. 31, 2011. |
Examiner's Report No. 2 regarding Australian Patent Application No. 2008325240, dated Mar. 5, 2012. |
Examiner-Initiated Interview Summary regarding U.S. Appl. No. 11/214,179, dated Dec. 11, 2009. |
Extended European Search Report regarding Application No. 07796879.0-1602/2041501 PCT/US2007016135, dated Jul. 14, 2014. |
Extended European Search Report regarding Application No. 12182243.1-2311, dated Oct. 29, 2012. |
Final Office Action for U.S. Appl. No. 11/850,846, mailed Aug. 13, 2012. |
Final Office Action for U.S. Appl. No. 12/054,011, dated Jun. 30, 2011. |
Final Office Action from related U.S. Appl. No. 13/269,188 dated May 23, 2013; 11 pages. |
Final Office Action from related U.S. Appl. No. 13/369,067 dated May 1, 2014; 19 pages. |
Written Opinion of International Searching Authority for International Application No. PCT/US2008/009618, dated Dec. 8, 2008. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/012364 dated Mar. 12, 2009. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2010/036601, mailed Dec. 29, 2010. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/021161, mailed May 8, 2013. |
Written Opinion of the International Searching Authority, Int'l. App. No. PCT/US 06/05917, dated Sep. 26, 2007. |
Written Opinion regarding PCT/US02/13459, dated Apr. 23, 2003. |
Office Action regarding U.S. Appl. No. 11/256,641, dated Apr. 29, 2008. |
Office Action regarding U.S. Appl. No. 11/337,918, dated Mar. 25, 2008. |
Office Action regarding U.S. Appl. No. 11/337,918, dated Aug. 17, 2009. |
Office Action regarding U.S. Appl. No. 11/337/918, dated Oct. 28, 2008. |
Office Action regarding U.S. Appl. No. 11/776,879, dated Sep. 17, 2010. |
Office Action regarding U.S. Appl. No. 11/850,846, dated Aug. 13, 2010. |
Office Action regarding U.S. Appl. No. 12/261,643, dated Feb. 15, 2012. |
Office Action regarding U.S. Appl. No. 12/261,677, dated Aug. 4, 2011. |
Office Action regarding U.S. Appl. No. 13/303,286, dated Mar. 26, 2012. |
Office Action regarding U.S. Appl. No. 13/737,566, dated Dec. 20, 2013. |
Official Action regarding Australian Patent Application No. 2008325240, dated Jan. 19, 2011. |
Palani, M. et al, Monitoring the Performance of a Residential Central Air Conditioner under Degraded Conditions on a Test Bench, ESL-TR-92105-05, May 1992. |
Palani, M. et al, The Effect of Reducted Evaporator Air Flow on the Performance of a Residential Central Air Conditioner, ESL-HH-92-05-04, Energy Systems Laboratory, Mechanical Engineering Department, Texas A&M University, Eighth Symposium on Improving Building System in Hot and Humid Climates, May 13-14, 1992. |
Pin, C. et al., “Predictive Models as Means to Quantify the Interactions of Spoilage Organisms,” International Journal of Food Microbiology, vol. 41, No. 1, 1998, pp. 59-72, XP-002285119. |
Record of Oral Hearing regarding U.S. Appl. No. 09/977,552, dated Nov. 29, 2012. |
Refrigeration Monitor and Case Control Installation and Operation Manual, Computer Process Controls, Aug. 12, 1999. |
Reh, F. John, “Cost Benefit Analysis”, http://management.about.com/cs/money/a/CostBenefit.htm, Dec. 8, 2003. |
Response to Rule 312 Communication regarding U.S. Appl. No. 09/977,552, dated Oct. 31, 2003. |
Restriction from related U.S. Appl. No. 13/269,188 dated Apr. 9, 2013; 5 pages. |
Restriction Requirement regarding U.S. Appl. No. 10/940,877, dated Jul. 25, 2005. |
Restriction Requirement regarding U.S. Appl. No. 11/214,179, dated Feb. 2, 2010. |
Second Examination Communication regarding European Application No. EP02729051.9, dated Jul. 3, 2006. |
Second Office action issued by the Chinese Patent Office dated Jun. 19, 2009 regarding Application No. 200510005907.8, translation provided by CCPIT Patent and Trademark Law Office. |
Second Office Action issued by the Chinese Patent Office for Application No. 200480015875.3, dated Feb. 27, 2009. |
Second Office Action issued by the Chinese Patent Office on Mar. 6, 2009 regarding Application No. 200580013451.8. |
Second Office Action received from the Chinese Patent Office dated Jun. 26, 2009 regarding Application No. 200480011463.2, translated by CCPIT Patent and Trademark Law Office. |
Second Office Action regarding Chinese Patent Application No. 200890100287.3, dated Jan. 27, 2011. English translation provided by Unitalen Attorneys at Law. |
Second Office Action regarding Chinese Patent Application No. 200910211779.0, dated Feb. 4, 2013. English translation provided by Unitalen Attorneys at Law. |
Second Official Report regarding Australian Patent Application No. 2007214381, dated Oct. 30, 2009. |
Supplementary European Search Report for EP 02 73 1544, Jun. 18, 2004, 2 Pages. |
Supplementary European Search Report regarding Application No. EP 07 81 1712, dated Jan. 7, 2014. |
Supplementary European Search Report regarding Application No. PCT/US2006/005917, dated Nov. 23, 2009. |
Supplementary European Search Report regarding European Application No. EP06790063, dated Jun. 15, 2010. |
Tamarkin, Tom D., “Automatic Meter Reading,” Public Power magazine, vol. 50, No. 5, Sep.-Oct. 1992, http://www.energycite.com/news/amr.html, 6 pages. |
Texas Instruments, Inc. Mechanical Data for “PT (S-PQFP-G48) Plastic Quad Flatpack,” Revised Dec. 1996, 2 pages. |
Texas Instruments, Inc., Product catalog for “TRF690 1 Single-Chip RF Transceiver,” Copyright 2001-2003, Revised Oct. 2003, 27 pages. |
The Honeywell HVAC Service Assistant, A Tool for Reducing Electrical Power Demand and Energy Consumption, Field Diagnostics, 2003. |
The LS2000 Energy Management System, User Guide, http://www.surfnetworks.com/htmlmanuals/lonWorksEnergyManagement-LS2000-Load-Shed -System-by-Surf-Networks,Inc.html, Sep. 2004, 20 pages. |
Third Office Action issued by the Chinese Patent Office on Jun. 19, 2009 regarding Application No. 200580013451.8, translated by CCPIT Patent and Trademark Law Office. |
Third Office Action regarding Chinese Application No. 2005100059078 from the State Intellectual Property Office of People's Republic of China, dated Aug. 24, 2011. Translation provided by Unitalen Attorneys at Law. |
Third Office Action regarding Chinese Patent Application No. 200910211779.0, dated Sep. 4, 2013. English translation provided by Unitalen Attorneys at Law. |
Torcellini, P., et al., “Evaluation of the Energy Performance and Design Process of the Thermal Test Facility at the National Renewable Energy Laboratory”, dated Feb. 2005. |
Trane EarthWise™ CenTra Vac™ Water-Cooled Liquid Chillers 165-3950 Tons 50 and 60 Hz; CTV PRC007-En; Oct. 2002; 56 pages. |
Udelhoven, Darrell, “Air Conditioner EER, SEER Ratings, BTUH Capacity Ratings, & Evaporator Heat Load,” http://www.udarrell.com/air-conditioner-capacity-seer.html, Apr. 3, 2003, 15 pages. |
Udelhoven, Darrell, “Air Conditioning System Sizing for Optimal Efficiency,” http:/ /www.udarrell.com/ airconditioning-sizing.html, Oct. 6, 2003, 7 pages. |
Udelhoven, Darrell, “Optimizing Air Conditioning Efficiency TuneUp Optimizing the Condensor Output, Seer, Air, HVAC Industry,” http://www.udarrell.com/air-conditioning-efficiency.html, Jul. 19, 2002, 13 pages. |
UltraSite User's Guide, Computer Process Controls, Apr. 1, 1996. |
Vandenbrink et al.,“Design of a Refrigeration Cycle Evaporator Unit,” Apr. 18, 2003. |
Watt, James; Development of Empirical Temperature and Humidity-Based Degraded-Condition Indicators for Low-Tonnage Air Conditioners; ESL-TH-97112-03; Dec. 1997. |
Written Opinion from related PCT Application No. PCT/US2014/028074 mailed Jun. 19, 2014. |
Notice of Allowance dated Feb. 12, 2007 from U.S. Appl. No. 11/130,871. |
Notice of Allowance dated Jul. 13, 2006 from Related U.S. Appl. No. 11/130,601. |
Notice of Allowance dated Jul. 25, 2007 from U.S. Appl. No. 10/916,223. |
Notice of Allowance dated Jun. 11, 2007 from Related U.S. Appl. No. 10/916,222. |
Notice of Allowance dated May 2, 2007 from U.S. Appl. No. 11/130,569. |
Notice of Allowance dated May 29, 2007 from U.S. Appl. No. 11/130,569. |
Notice of Allowance dated Nov. 3, 2008 from Related U.S. Appl. No. 11/417,701. |
Notice of Allowance dated Oct. 26, 2007 from Related U.S. Appl. No. 10/916,223. |
Notice of Allowance for related U.S. Appl. No. 13/835,810 dated Aug. 5, 2014. |
Notice of Allowance for U.S. Appl. No. 10/698,048, dated Sep. 1, 2005. |
Notice of Allowance from related U.S. Appl. No. 13/835,742 dated Jan. 31, 2014; 7 pages. |
Notice of Allowance from related U.S. Appl. No. 13/835,742 dated Jun. 2, 2014; 8 pages. |
Notice of Allowance from related U.S. Appl. No. 13/835,810 dated Mar. 20, 2014; 9 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Jan. 14, 2014; 8 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Apr. 21, 2014; 8 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Aug. 4, 2014. |
Notice of Allowance from related U.S. Appl. No. 13/836,244 dated Jul. 2, 2014; 8 pages. |
Notice of Allowance regarding U.S. Appl. No. 10/061,964, dated Jul. 19, 2004. |
Notice of Allowance regarding U.S. Appl. No. 10/940,877, dated Sep. 4, 2009. |
Notice of Allowance regarding U.S. Appl. No. 11/776,879, dated Jul. 9, 2012. |
Notice of Allowance regarding U.S. Appl. No. 12/261,677, dated Dec. 15, 2011. |
Notice of Allowance regarding U.S. Appl. No. 12/685,424, dated Apr. 25, 2011. |
Notice of Allowance regarding U.S. Appl. No. 13/303,286, dated Jul. 19, 2012. |
Notice of Grounds for Refusal regarding Korean Patent Application No. 10-2009-7000850, mailed Oct. 4, 2013. English translation provided by Y.S. Chang & Associates. |
Notice of Panel Decision from Pre-Appeal Brief Review regarding U.S. Appl. No. 09/977,552, dated Aug. 4, 2009. |
Office Action Communication regarding U.S. Appl. No. 09/977,552, dated Apr. 18, 2007. |
Office Action dated Apr. 19, 2006 from Related U.S. Appl. No. 10/916,223. |
Office Action dated Aug. 17, 2007 from Related U.S. Appl. No. 11/417,609. |
Office Action dated Aug. 17, 2007 from Related U.S. Appl. No. 11/417,701. |
Office Action dated Aug. 21, 2007 from Related U.S. Appl. No. 11/417,557. |
Office Action dated Feb. 1, 2007 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Feb. 13, 2009 from Related U.S. Appl. No. 12/033,765. |
Office Action dated Feb. 13, 2009 from Related U.S. Appl. No. 12/050,821. |
Office Action dated Feb. 15, 2008 from Related U.S. Appl. No. 11/417,557. |
Office Action dated Feb. 3, 2009 from Related U.S. Appl. No. 11/866,295. |
Office Action dated Jan. 18, 2006 from Related U.S. Appl. No. 11/130,601. |
Office Action dated Jan. 18, 2006 from Related U.S. Appl. No. 11/130,871. |
Office Action dated Jan. 23, 2007 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Jan. 6, 2006 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Jan. 6, 2006 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Jul. 1, 2008 from Related U.S. Appl. No. 11/927,425. |
Office Action dated Jul. 11, 2006 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Jul. 11, 2006 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Jul. 11, 2007 from Related U.S. Appl. No. 11/417,609. |
Office Action dated Jul. 11, 2007 from Related U.S. Appl. No. 11/417,701. |
Office Action dated Jul. 16, 2008 from Related U.S. Appl. No. 11/417,701. |
Office Action dated Jul. 24, 2008 from Related U.S. Appl. No. 11/417,557. |
Office Action dated Jul. 27, 2006 from Related U.S. Appl. No. 11/130,871. |
Office Action dated Jun. 17, 2009 from Related U.S. Appl. No. 12/033,765. |
Office Action dated Jun. 19, 2009 from Related U.S. Appl. No. 11/866,295. |
Office Action dated Jun. 22, 2009 from Related U.S. Appl. No. 12/050,821. |
Office Action dated Jun. 27, 2007 from Related U.S. Appl. No. 11/417,557. |
Office Action dated Mar. 30, 2006 from Related U.S. Appl. No. 11/130,569. |
Office Action dated May 4, 2005 from Related U.S. Appl. No. 10/916,223. |
Office Action dated May 6, 2009 from Related U.S. Appl. No. 11/830,729. |
Office Action dated Nov. 14, 2006 from Related U.S. Appl. No. 11/130,569. |
Office Action dated Nov. 16, 2006 from Related U.S. Appl. No. 10/916,223. |
Office Action dated Nov. 8, 2005 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,601. |
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,871. |
Office Action dated Oct. 27, 2005 from Related U.S. Appl. No. 10/916,223. |
Office Action dated Sep. 18, 2007 from Related U.S. Appl. No. 11/130,562. |
Office Action for U.S. Appl. No. 11/394,380, dated Jan. 6, 2009. |
Office Action for U.S. Appl. No. 11/497,579, dated Oct. 27, 2009. |
Office Action for U.S. Appl. No. 11/497,644, dated Dec. 19, 2008. |
Office Action for U.S. Appl. No. 11/497,644, dated Jul. 10, 2009. |
Office Action regarding U.S. Appl. No. 10/286,419, dated Jun. 10, 2004. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Jan. 29, 2009. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Jul. 13, 2009. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Sep. 9, 2008. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Oct. 2, 2006. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Oct. 2, 2007. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Dec. 15, 2008. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Feb. 17, 2010. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Apr. 12, 2007. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Jun. 5, 2008. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Jul. 20, 2009. |
Office Action regarding U.S. Appl. No. 11/394,380, dated Sep. 25, 2009. |
Office Action regarding U.S. Appl. No. 11/497,644, dated Jan. 29, 2010. |
Office Action regarding U.S. Appl. No. 11/497,644, dated Jun. 14, 2010. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Jan. 11, 2008. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Jan. 14, 2003. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Oct. 18, 2004. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Dec. 3, 2003. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Jul. 12, 2006. |
Office Action regarding U.S. Appl. No. 10/061,964, dated Oct. 3, 2003. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Feb. 4, 2005. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Jun. 29, 2005. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Sep. 7, 2004. |
Office Action regarding U.S. Appl. No. 10/698,048, dated Mar. 21, 2005. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Oct. 27, 2006. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Nov. 14, 2005. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Dec. 8, 2008. |
Office Action regarding U.S. Appl. No. 10/940,877, dated May 21, 2007. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Jun. 5, 2008. |
Office Action regarding U.S. Appl. No. 11/098,582 dated Mar. 3, 2010. |
Office Action regarding U.S. Appl. No. 11/098,582, dated Jul. 7, 2008. |
Office Action regarding U.S. Appl. No. 11/098,582, dated Aug. 4, 2009. |
Office Action regarding U.S. Appl. No. 11/098,582, dated Sep. 21, 2007. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Feb. 20, 2014; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Jul. 17, 2014; 10 pages. |
Non Final Office Action from related U.S. Appl. No. 13/369,067 dated Jan. 16, 2014; 16 pages. |
Non Final Office Action from related U.S. Appl. No. 13/767,479 dated Oct. 24, 2013; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/767,479 dated Jul. 23, 2014; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,621 dated Oct. 30, 2013; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,621 dated Apr. 2, 2014; 11 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,742 dated Oct. 7, 2013; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,810 dated Nov. 15, 2013; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,043 dated Oct. 23, 2013; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,043 dated Jul. 11, 2014; 5 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,244 dated Oct. 15, 2013; 11 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,244 dated Feb. 20, 2014; 10 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,453 dated Aug. 20, 2013; 8 pages. |
Non-Final Office Action for U.S. Appl. No. 11/098,575 dated Jan. 27, 2010. |
Non-Final Office Action for U.S. Appl. No. 11/776,879, dated Mar. 16, 2012. |
Non-Final Office Action for U.S. Appl. No. 12/054,011, dated Oct. 20, 2011. |
Non-Final Office Action for U.S. Appl. No. 12/054,011, dated Apr. 10, 2012. |
Non-Final Office Action for U.S. Appl. No. 12/685,375, mailed Aug. 6, 2012. |
Non-Final Office Action for U.S. Appl. No. 13/030,549, dated Nov. 5, 2012. |
Non-Final Office Action in U.S. Appl. No. 11/850,846, mailed May 24, 2013. |
Non-Final Office Action in U.S. Appl. No. 13/784,890, mailed Jun. 11, 2013. |
Non-Final Office Action in U.S. Appl. No. 12/685,375, mailed Jan. 19, 2012. |
Non-Final Office Action mailed Mar. 3, 2011 for U.S. Appl. No. 12/054,011. |
Non-Final Office Action mailed Aug. 13, 2010 for U.S. Appl. No. 12/054,011. |
Non-Final office Action regarding U.S. Appl. No. 11/850,846, dated Apr. 24, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 13/770,123, dated Jul. 3, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 13/932,611, mailed Nov. 25, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jan. 24, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Nov. 5, 2008. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jun. 8, 2010. |
Non-Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jan. 27, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 12/261,643, dated Mar. 12, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 12/943,626, dated Dec. 20, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 12/955,355, dated Sep. 11, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 13/176,021, dated May 8, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 13/435,543, dated Jun. 21, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 13/770,123, dated Jun. 11, 2014. |
Non-Final Office Action regarding U.S. Appl. No. 13/770,479, dated Jan. 16, 2014. |
Notice of Allowance and Fee(s) Due regarding U.S. Appl. No. 12/789,562, dated Oct. 26, 2012. |
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/098,582, dated Feb. 24, 2009. |
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/098,582, dated Sep. 24, 2010. |
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/256,641, dated May 19, 2009. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/943,626, dated Jun. 19, 2014. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 13/737,566, dated Jun. 18, 2014. |
Notice of Allowance and Fees Due, Interview Summary and Notice of Allowability regarding U.S. Appl. No. 11/214,179, dated Nov. 23, 2011. |
Notice of Allowance and Notice of Allowability regarding U.S. Appl. No. 10/286,419, dated Dec. 2, 2004. |
Notice of Allowance and Notice of Allowability regarding U.S. Appl. No. 10/675,137, dated Dec. 16, 2005. |
Notice of Allowance dated Dec. 21, 2007 from Related U.S. Appl. No. 11/417,609. |
Notice of Allowance dated Dec. 3, 2007 from Related U.S. Appl. No. 11/130,562. |
Number | Date | Country | |
---|---|---|---|
20090119036 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
60984902 | Nov 2007 | US |