The invention relates to compressors. More particularly, the invention relates to sound and vibration suppression in screw-type compressors.
In positive displacement compressors, discrete volumes of gas are: trapped at a suction pressure; compressed; and discharged at a discharge pressure. The trapping and discharge each may produce pressure pulsations and related noise generation. Accordingly, a well developed field exists in compressor sound suppression.
One class of absorptive mufflers involves passing the refrigerant flow discharged from the compressor working elements through an annular space between inner and outer annular layers of sound-absorptive material (e.g., fiber batting or foam). US Patent Application Pub. No. 2004/0065504 A1 discloses a basic such muffler and then improved versions having integral helmholtz resonators formed within the inner layer. The disclosure of this '504 publication is incorporated by reference herein as if set forth at length.
Accordingly, one aspect of the invention involves a compressor having first and second enmeshed rotors rotating about first and second axes. The first rotor is supported by a bearing system carried by a bearing case. The bearing case has at least a first port to a discharge plenum. A first sound-absorbing material is positioned within the first port.
Another aspect of the invention involves a compressor having first and second enmeshed rotors rotating about first and second axes. The first rotor is supported by a bearing system carried by a bearing case. The bearing case has at least a first port to a discharge plenum. The compressor includes a muffler system comprising: a sound-absorbing centerbody at least partially within the discharge plenum; and a sound-absorbing outer element at least partially surrounding the centerbody and defining a generally annular flow path portion between the centerbody and outer element. The outer element has an inboard surface at least partially downstream convergent along a first longitudinal span. The centerbody has an outboard surface at least partially downstream divergent along said first longitudinal span.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference numbers and designations in the various drawings indicate like elements.
In the exemplary embodiment, the suction plenum 40 is located within an upstream end of the rotor case 34 and the discharge plenum is located generally within an upstream portion discharge/muffler case 46 separated from the rotor case by a bearing case 48 and having a generally downstream-convergent interior surface upstream portion 49. In the exemplary embodiment, a bearing cover/retainer plate (not shown) may be mounted to a downstream end of the bearing case 48 to retain the bearing stacks. The case 46 has a generally cylindrical downstream portion containing a main muffler 52 and having an interior surface portion 51. Downstream of the muffler 52 is an oil separator unit 60 having a case 62 containing a separator mesh 64. An oil return conduit 66 extends from the housing 62 to return oil stopped by the mesh 64 to a lubrication system (not shown). An outlet plenum 68 having an outlet port 69 is downstream of the mesh 64.
The exemplary main muffler 52 includes annular inner and outer elements 70 and 72 separated by a generally annular space 74 (e.g., interrupted by support webs for retaining/positioning the inner element 70). These elements may be formed of sound absorption material (e.g., fiberglass batting encased in a nylon and steel mesh) In the exemplary embodiment, the inner element 70 is retained and separated from the space 74 by an inner foraminate sleeve 76 (e.g., nylon or wire mesh or perforated/expanded metal sheeting) and the outer element 72 is similarly separated and retained by an outer foraminate sleeve 78. In the exemplary embodiment, the outer element 72 is encased within an outer sleeve 80 (e.g., similarly formed to the sleeves 76 and 78) telescopically received within the housing 46. The sleeves 80 and 78 are joined at upstream and downstream ends by annular plates 82 and 84. In the exemplary embodiment, the upstream end of the sleeve 76 is closed by a circular plate 86 and the downstream end closed by an annular plate 90. In the exemplary embodiment, a non-foraminate central core 94 (e.g., steel pipe) extends through the inner element 70 and protrudes beyond a downstream end thereof. At the upstream end of the main muffler, radially-extending connectors 96 join the circular plate 86 to the annular plate 82. At the downstream end, radially-extending connectors 98 connect the annular plates 84 and 90 to hold the inner and outer elements concentrically spaced apart to maintain the annular space 74.
In operation, compressed gas flow exits the compression pockets of the screw rotors 26, 28, 30 and flows into the discharge plenum 42. Upon exiting the compressor discharge plenum, the gas flows down the annular space 74. Upon exiting the muffler, the gas flow, which typically has entrained oil droplets, flows through the oil separating mesh 64. The mesh 64 captures any oil entrained in the gas and returns it to the oil management system by means of the conduit 66. The gas leaves the oil separating mesh and enters the plenum 68 and exits the outlet 69 toward the condenser (not shown).
As so far described, the compressor may be of an existing configuration although the principles of the invention may be applied to different configurations.
According to one aspect of the present invention, a centerbody 120 is positioned in the flowpath between the rotors and the muffler 52.
The centerbody and outer muffler section 150 may be integrated with the main muffler 52 during assembly as a combined muffler system.
According to another aspect of the invention, the ports 200 and 202 contain port mufflers 204 and 206. Each exemplary port muffler 204; 206 has a transverse cross-section extending from a first end protuberance 208 generally tapering toward a second end 210. Each port muffler has a generally convex outboard surface 212 abutting a generally concave outboard surface 214 of the associated port. Each port muffler has a generally concave inboard surface 216 facing an open portion of the associated port through which the refrigerant flows from the associated compression pocket.
In the exemplary embodiment, the overall size and shape of the centerbody are chosen to provide a smooth transition from the discharge ports to the muffler. Accordingly, the upstream/front face 124 is sized to correspond to the inboard contours of the ports 200 and 202 defined by the plate 50. This may be at a radius essentially equal to the root radius of the working portion of the rotor 26.
Similarly, the downstream/aft face 126 may be dimensioned correspondingly to the inner element of the muffler (e.g., having a similar outer radius). Similarly, the discharge plenum outer muffler section 150 may be shaped to provide a smooth flow transition to the flow through the annular space 74.
The discharge port mufflers 204 and 206 and their associated compartments in the bearing case may be engineered to provide a desired degree of sound/vibration suppression. The discharge port muffler shape may be influences or dictated by various factors. For example, in a reengineering, it may be desired to essentially preserve the location and shape of the port not occupied by the mufflers (e.g., to maintain the existing flow path for acceptable pressure drop). Structural integrity factors then influence the available bearing case metal for replacement by muffler. In the exemplary implementation, due to insufficient excess bearing case metal between the port and the bearings, the sound absorbing material does not extend along the bearing side of the associated port (
The case inserts and centerbody may be incorporated in the remanufacturing of a compressor or reengineering of a compressor configuration. In the reengineering or remanufacturing, various existing elements may be essentially preserved.
The section 306 has a stack of outer sound-absorbing rings 320 of like inner and outer diameters. The upstream section has two distinct groups of disks 322 and 324. The downstream disks 322 may be of like inner and outer diameter to the disks 320. The upstream disks 324 are of much smaller longitudinal span with a downstream progressive stepwise decreasing inner and outer diameters to form the appropriately converging taper within the discharge plenum. In the exemplary embodiment, an upstream end metallic structural assembly includes an outer ring 330, an inner plate 332, and a longitudinally and diametrically extending web 334 joining the two. The ring 330 may be provided with a pair of diametrically opposed recessed structures 336 for accommodating the bearing case cover plate. The downstream surface of the ring 330 may abut the upstream surface of the leading disk 324 or of a resilient spacer (not shown). A liner may be secured to the ring 330 (e.g., by welding) and may include an upstream frustoconical portion 338 which is downstream convergent and an essentially longitudinally extending circular cylindrical portion 339 extending downstream therefrom. These liner portions 338 and 339 may be foraminate and serve to protect the disks 322 and 324 from damage due to pressure pulsations. Similarly, a foraminate outer jacket for the centerbody may have a downstream-divergent (e.g., frustoconical) upstream portion 340 secured to the inner plate 332 and a circular cylindrical tubular downstream portion 342 extending downstream thereof to a plate 344. By the time the flow reaches the main muffler section 306, the pulsations may be sufficiently damped so that foraminate liners along inboard and outboard peripheries of the annular flowpath may be omitted even if included upstream. An H-sectioned ring 350 captures a downstream portion of the downstreammost disk 322 and an upstream portion of the upstreammost disk 320. An upstream-open U-sectioned channel 360 may be integrally formed with a downstream central end plate 362 such as connected by struts 364 (
One or more embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, in a reengineering or remanufacturing situation, details of the existing compressor may particularly influence or dictate details of the implementation. Accordingly, other embodiments are within the scope of the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2004/034946 | 10/20/2004 | WO | 00 | 4/19/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/043955 | 4/27/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2990906 | Audette | Jul 1961 | A |
4174196 | Mori et al. | Nov 1979 | A |
4475867 | Smith | Oct 1984 | A |
5365633 | Sunagawa et al. | Nov 1994 | A |
5507151 | Ring et al. | Apr 1996 | A |
5767459 | Sell | Jun 1998 | A |
6331103 | Teraoka | Dec 2001 | B1 |
6488480 | Zhong | Dec 2002 | B1 |
6672424 | Gadefait et al. | Jan 2004 | B2 |
6733258 | Okada et al. | May 2004 | B2 |
6875066 | Wolaver | Apr 2005 | B2 |
Number | Date | Country |
---|---|---|
0496591 | Jul 1992 | EP |
56054987 | May 1981 | JP |
2006039115 | Apr 2006 | WO |
2006039116 | Apr 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090060759 A1 | Mar 2009 | US |