This is a U.S. national stage of application No. PCT/EP2014/003377, filed Dec. 16, 2014. Priority is claimed on the following applications: DE 102013020825.4 and DE 102014001998.5, filed on Dec. 17, 2013 and Feb. 17, 2014, the content of which is/are incorporated herein in its entirety by reference.
The invention is directed to a compressor stage including the measurement of effective pressure.
Compressor stages known from practice have assemblies on the stator side and assemblies on the rotor side. The stator-side assemblies of a compressor stage include an intake connection piece via which medium which is to be compressed can be introduced into the compressor stage in the region of the compressor stage. The stator-side assemblies further include a stator-side flow channel via which the medium to be compressed can be conveyed in direction of a rotor-side impeller proceeding from the intake connection piece. The rotor-side impeller has a radially inner hub, a radially outer cover disk and also rotor-side impeller blades extending between the hub and the cover disk. A gap formed between the rotor-side cover disk and the stator is sealed via a seal which is held by a seal carrier.
For a compressor stage of the type mentioned above to operate in an optimal manner, it is important to know the volume flow of the compressor stage, which is determined through a measurement of differential or effective pressure. To this end, it is known from practice to provide or construct what are known as a plus measuring point and a minus measuring point at the compressor stage for measuring the effective pressure at the compressor stage. The plus measuring point is typically arranged in the region of a relatively large cross-sectional flow area and accordingly in the region of a relatively high static flow pressure, and the minus measuring point is arranged in the region of a relatively small cross-sectional flow area and accordingly in the region of a relatively low static flow pressure. Based on the pressure difference between the plus measuring point and the minus measuring point, a signal can be acquired for the measurement of effective pressure.
Although it is already known to provide a plus measuring point and a minus measuring point at compressor stages for measurement of effective pressure, there is a need for a compressor stage at which the measurement of effective pressure can be carried out in a particularly advantageous manner, particularly with high accuracy.
On this basis, it is an object of the present invention to provide a novel compressor stage. According to the invention, the minus measuring point is positioned upstream of the impeller outside of the stator-side inflow channel in an annular gap which branches off from the inflow channel.
With the present invention, it is proposed for the first time to position the minus measuring point for the measurement of effective pressure in an annular gap, i.e., outside of the stator-side inflow channel upstream of the impeller, which annular gap branches off from the inflow channel. There is a circumferentially averaged pressure distribution in the annular gap so that the measurement of effective pressure is not dependent on the specific positioning of the minus measuring point viewed in circumferential direction. The inhomogeneous flow influences affecting the measurement of effective pressure in the region of the minus measuring point are eliminated by arranging the minus measuring point in the annular gap. A bore diameter for a bore which leads to the annular gap from radially outside and via which the existing pressure in the annular gap can be tapped or diverted can be freely selected because the pressure at the minus measuring point is tapped in the region of the annular gap outside of the inflow channel.
The annular gap preferably branches off radially outward from the stator-side inflow channel immediately upstream of the impeller. This allows a particularly advantageous measurement of effective pressure because the pressure is lowest directly upstream of the impeller and accordingly, relative to the plus measuring point, the greatest pressure gradient can be utilized for the measurement of effective pressure.
According to an advantageous further development, the annular gap is bounded adjacent to the impeller by a stator-side seal carrier which carries a seal cooperating with the cover disk of the rotor-side impeller. Opposite the impeller, the annular gap is bounded by a stator-side housing or by a stator-side inlet star which is fastened to the stator-side housing. This arrangement is constructed in a simple manner and allows an optimal positioning of the minus measuring point for the measurement of effective pressure.
According to another advantageous further development, the annular gap is formed in a chamber-like manner, the minus measuring point being positioned in a chamber-like portion of the annular gap. The pressure in the region of the minus measuring point for measurement of effective pressure can be further homogenized in the chamber-like portion, so that the measurement of effective pressure can be further improved.
Embodiment examples of the invention are described more fully with reference to the drawings without the invention being limited to these embodiment examples. The drawings show:
The present invention is directed to a compressor stage, particularly a compressor stage of a radial compressor. However, the details according to the invention can also be utilized in a compressor stage for an axial compressor.
The compressor stage 10 has a stator-side intake connection piece 33, shown in
The medium to be compressed can be conveyed to a rotor-side impeller 14 of the compressor stage 10 via a stator-side inflow channel 11 which, in the present embodiment example, is bounded radially inwardly by a stator-side seal carrier 12 and radially outwardly by a stator-side housing 13.
The rotor-side impeller 14 has a shaft 15 with a radially inner hub 16, a radially outer cover disk 17 and impeller blades 18 extending between the hub 16 and the cover disk 17. A flow inlet edge 19 and a flow outlet edge 20 of the impeller blades 18 are shown in
A gap 29 which is formed between the rotor-side shaft 15 of the impeller 14 and the stator-side seal carrier 12 is sealed via a seal 26 supported by this stator-side seal carrier 12.
A gap 21 which is formed between the stator-side housing 13 and the cover disk 17 of the rotor-side impeller 14 is sealed by a seal 22 which is held by a further stator-side seal carrier 23.
A plus measuring point 31 is associated with the compressor stage 10 for measurement of effective pressure in the region of the intake connection piece, as shown in
A minus measuring point 32 for the measurement of effective pressure is positioned upstream of the impeller 14 outside of the stator-side inflow channel 11 in an annular gap 24 branching off from the inflow channel. In the embodiment example shown in the drawing, the annular gap 24 branches off radially outward from the stator-side inflow channel 11 directly upstream of the impeller 14. The minus measuring point 32 is positioned in the region of a relatively small cross-sectional flow area and, therefore, in the region of a relatively small flow pressure.
A bore 25 leads from the radially outer side to this annular gap 24 and opens into the annular gap 24. The pressure prevailing in the annular gap 24 and, therefore, at the minus measuring point 32 can be diverted or tapped via this bore 25 for measuring effective pressure.
A circumferentially averaged pressure level occurs in the annular gap 24 which extends radially outward over the entire circumferential extension of the inflow channel 11 and branches off from it so that the pressure which can be tapped for the measurement of effective pressure in the region of the minus measuring point accordingly does not depend on the exact circumferential position at which the bore 25 opens into the annular gap 24.
Further, inhomogeneous flow influences on the pressure in the region of the minus measuring point can be minimized as far as possible in this way.
A further advantage of the invention consists in that virtually any bore diameter can be selected for bore 25. Since the pressure in the annular gap 24 is extensively independent from the flow influences of the flow in the inflow channel 11, there is no need with regard to the bore diameter of bore 25 to compromise between the greatest possible operating reliability against clogging with impurities and signal quality with the least possible influence on the flow in the inflow channel 11.
In the embodiment example of
The embodiment example of
Accordingly, in the compressor stage 10 the plus measuring point is positioned at a portion with the greatest possible cross section and, therefore, with the highest possible pressure, preferably in the region of the intake connection piece 33, shown in
The compressor stage 10 according to the invention is preferably a radial compressor stage. However, the invention can also be used in a compressor stage for an axial compressor.
Thus, while there have shown and described and pointed out fundamental novel features of the invention as applied to a preferred embodiment thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention. For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Moreover, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or embodiment of the invention may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 020 825 | Dec 2013 | DE | national |
10 2014 001 998 | Feb 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/003377 | 12/16/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/090566 | 6/25/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5611663 | Kotzur | Mar 1997 | A |
20160061206 | Taketomi | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
3909180 | Sep 1990 | DE |
102004038523 | Mar 2004 | DE |
H08121381 | May 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20160319838 A1 | Nov 2016 | US |