The present disclosure relates generally to heating, ventilation, and air conditioning (HVAC) engineering and, in particular, to one or more of the design, construction, operation, or use of HVAC systems.
The field of heating, ventilation, and air conditioning (HVAC) engineering often involves the design, installation and service of HVAC systems with equipment such as air handling units, variable air volume (VAV) units, compressors, air movers, chillers, furnaces, and ventilators. An HVAC system is generally configured to control environmental conditions for a facility such as an industrial facility, institutional facility, commercial facility, residential facility and the like. The facility may also include a building automation system (BAS) or other control system to provide some level of computerized central control of an HVAC system and perhaps other environmental control systems of the facility.
It is desirable to operate an HVAC system such that the conditioned air, provided to one or more enclosed spaces, maintains the relative comfort of the occupants of those enclosed spaces. As will be appreciated, factors affecting the occupants' comfort include the temperature and humidity maintained in those enclosed spaces. In certain situations, a desirable temperature and humidity can be achieved by controlling the temperature and humidity of the conditioned air using what are referred to as hot gas reheat techniques. As will also be appreciated, then, it is desirable to properly control the control of HVAC systems that employ such hot gas reheat techniques, in order to maintain such desirable temperatures and humidity levels.
Example implementations of the present disclosure are directed to the design, construction, operation, or use of HVAC systems. In terms of the present disclosure, HVAC systems that employ hot-gas reheat techniques can benefit from techniques such as those described herein, which provide compressor staging control for HVAC systems employing such hot gas reheat techniques.
Some example implementations provide a method for controlling a heating, ventilation, and air conditioning (HVAC) system. The method includes measuring a temperature and controlling a compressor of the HVAC system. The temperature is measured by a temperature sensor located between a metering device of the HVAC system and an evaporator coil of the HVAC system. The temperature is representative of a refrigerant temperature. The refrigerant temperature is a temperature of a refrigerant fluid flowing from the metering device to the evaporator coil. The HVAC system further comprises a reheat coil and a condenser coil. The compressor, the metering device, the evaporator coil, the reheat coil, and the condenser coil are in fluid communication with one another, with respect to the refrigerant fluid. The compressor is controlled by control circuitry that is configured to perform the controlling in a dehumidify mode based, at least in part, on a value of a humidity parameter of air of an airflow through the evaporator coil and the reheat coil, where the value is determined using the temperature.
Some example implementations provide a computer-readable storage medium, comprising program instructions for controlling an HVAC system, which, when executed by one or more processors, perform a method that includes measuring a temperature and controlling a compressor of the HVAC system. The temperature is measured by a temperature sensor located between a metering device of the HVAC system and an evaporator coil of the HVAC system. The temperature is representative of a refrigerant temperature. The refrigerant temperature is a temperature of a refrigerant fluid flowing from the metering device to the evaporator coil. The HVAC system further comprises a reheat coil and a condenser coil. The compressor, the metering device, the evaporator coil, the reheat coil, and the condenser coil are in fluid communication with one another, with respect to the refrigerant fluid. The compressor is controlled by control circuitry that is configured to perform the controlling in a dehumidify mode based, at least in part, on a value of a humidity parameter of air of an airflow through the evaporator coil and the reheat coil, where the value is determined using the temperature.
Some example implementations provide an apparatus for controlling an HVAC system, which can include a hot-gas reheat dehumidification circuit, a sensor, and a system control unit. The hot-gas reheat dehumidification circuit can include an evaporator coil, a compressor, a reheat coil, and a metering device that are in fluid communication with one another, with respect to a refrigerant fluid. The metering device is in fluid communication with the evaporator coil via a refrigerant fluid line. The sensor is positioned between the metering device and the evaporator coil such that the sensor is positioned to measure a parameter representative of a refrigerant fluid parameter of a portion of the refrigerant fluid flowing through the refrigerant fluid line. The system control unit is configure to measure the parameter and control the compressor in a dehumidify mode based, at least in part, on a value of a humidity parameter of air of an airflow through the evaporator coil and the reheat coil. The parameter is measured by the sensor, and the value is determined using the parameter.
These and other features, aspects, and advantages of the present disclosure will be apparent from a reading of the following detailed description together with the accompanying figures, which are briefly described below. The present disclosure includes any combination of two, three, four or more features or elements set forth in this disclosure, regardless of whether such features or elements are expressly combined or otherwise recited in a specific example implementation described herein. This disclosure is intended to be read holistically such that any separable features or elements of the disclosure, in any of its aspects and example implementations, should be viewed as combinable unless the context of the disclosure clearly dictates otherwise.
It will therefore be appreciated that this Brief Summary is provided merely for purposes of summarizing some example implementations so as to provide a basic understanding of some aspects of the disclosure. Accordingly, it will be appreciated that the above described example implementations are merely examples and should not be construed to narrow the scope or spirit of the disclosure in any way. Other example implementations, aspects and advantages will become apparent from the following detailed description taken in conjunction with the accompanying figures which illustrate, by way of example, the principles of some described example implementations.
Having thus described example implementations of the disclosure in general terms, reference will now be made to the accompanying figures, which are not necessarily drawn to scale, and wherein:
Some implementations of the present disclosure will now be described more fully hereinafter with reference to the accompanying figures, in which some, but not all implementations of the disclosure are shown. Indeed, various implementations of the disclosure may be embodied in many different forms and should not be construed as limited to the implementations set forth herein; rather, these example implementations are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Like reference numerals refer to like elements throughout.
Unless specified otherwise or clear from context, references to first, second or the like should not be construed to imply a particular order. A feature described as being above another feature (unless specified otherwise or clear from context) may instead be below, and vice versa; and similarly, features described as being to the left of another feature else may instead be to the right, and vice versa. Also, while reference may be made herein to quantitative measures, values, geometric relationships or the like, unless otherwise stated, any one or more if not all of these may be absolute or approximate to account for acceptable variations that may occur, such as those due to engineering tolerances or the like.
As used herein, unless specified otherwise or clear from context, the “or” of a set of operands is the “inclusive or” and thereby true if and only if one or more of the operands is true, as opposed to the “exclusive or” which is false when all of the operands are true. Thus, for example, “[A] or [B]” is true if [A] is true, or if [B] is true, or if both [A] and [B] are true. Further, the articles “a” and “an” mean “one or more,” unless specified otherwise or clear from context to be directed to a singular form. Furthermore, it should be understood that unless otherwise specified, the terms “data,” “content,” “digital content,” “information,” and similar terms may be at times used interchangeably.
As indicated above, example implementations of the present disclosure relate generally to heating, ventilation, and air conditioning (HVAC) engineering and, in particular, to one or more of the design, construction, operation or use of HVAC systems. In this regard,
The facility 102 is generally any facility with one or more environmental control systems configured to control environmental conditions for the facility. The environmental control systems may include, for example, an HVAC system 104 with HVAC equipment 106 such as air handling units, variable air volume (VAV) units, compressors, air movers, chillers, furnaces, and ventilators. Other examples of suitable environmental control systems include lighting control systems, shading control systems, security systems, and the like. The facility may also include an industrial control system (ICS) such as a supervisory control and data acquisition (SCADA) system, distributed control system (DCS) or the like. A more specific example of a suitable DCS is a building automation system (BAS) 108. The ICS is configured to provide some level of computerized central control of at least some of the environmental control systems (including the HVAC system).
In the context of some example implementations of the present disclosure, the HVAC system 104 and perhaps also the BAS 108 may be installed at the facility, and then thereafter be placed in service at the facility. While in service and operated by a customer 112 such as a proprietor of the facility, the HVAC system and/or the BAS may be operated by the customer, but the owner of the facility, or by another party providing services with regard to the operation and maintenance of such HVAC systems.
As will also be appreciated, computers are often used throughout the installation and service of the HVAC system 104; and in this regard, a “computer” is generally a machine that is programmable to programmed to perform functions or operations. The installation and service of the HVAC system 104 at the facility 102 as shown makes use of a number of example computers. These computers may include communication devices 116, 118 and 120 used by a technician 110, a customer 112 and a service organization 114 to communicate with one another, such as during the operation of HVAC system 104. The service organization may also use a computer 122 for monitoring the operation of HVAC system 104, although this computer may be the same as the computer 120 used for communication. And in some examples, the service organization includes a number of units (e.g., offices) responsible for managing such systems.
A number of the computers 116-122 that may be used may be co-located or directly coupled to one another, or in some examples, various ones of the computers may communicate with one another across one or more networks. Further, although shown as part of the system 100, it should be understood that any one or more of the computers may function or operate separately from the system, without regard to any of the other computers. It should also be understood that the system may include one or more additional or alternative computers than those shown in
Example implementations of the present disclosure are thus directed to the improved control of humidity in HVAC systems that employ hot-gas reheat techniques.
According to some example implementations, compressor staging control (e.g., combinations of manifolded compressors, specifying variable compressor speed, and/or other such alternatives) can be employed to good effect. For example, in such HVAC systems, compressor staging control with hot-gas reheat can take, as one of its inputs, the leaving air dew point is desirable. It will be appreciated in light of the present disclosure that while the dew point of the leaving air is preferred as a result of the dew point directly representing the point at which humidity in the air condenses, a measure of relative humidity can also be used to good effect.
However, directly measuring leaving air humidity is typically infeasible in at least certain HVAC systems, and using a leaving evaporator dry bulb temperature (of air between evaporator and reheat coil) as a proxy for the dew point is difficult to implement in the design of such HVAC systems. To address this need, a control architecture and logic has been developed that utilizes a parameter value of a parameter of the entering evaporator refrigerant fluid (e.g., a temperature representative of the refrigerant fluid temperature, the refrigerant fluid temperature itself, or a proxy therefor) as an input, in order to achieve a proxy for the dew point measurement, where the term “refrigerant fluid,” as used herein, reflects the fact that the refrigerant in question is in a liquid state, a gaseous state, or a combination thereof, including transitioning therebetween. It is noted at this juncture that the parameter value (e.g., temperature value) just noted is referred to as being “representative,” in that a temperature measured at the outside surface of the refrigerant fluid line (or elsewhere sufficiently proximate thereto) can vary from the temperature of the refrigerant fluid itself, as a result of any number of factors, including, for example, wall thickness of the refrigerant fluid line, the material(s) from which the refrigerant fluid line is constructed, the proximity of the sensor to the refrigerant fluid line, and/or other such considerations. It is to be appreciated that the direct measurement of refrigerant fluid temperature is also possible, as is also true of other types of parameters (e.g., pressure of the refrigerant fluid, such as can be used to determine the saturated suction temperature of the refrigerant leaving the evaporator coil), and is intended to be comprehended by the present disclosure.
Additionally, such techniques can further consider the humidity dynamics of the conditioned space. That said, it is to be appreciated that measuring the leaving air humidity directly can present disadvantages when effecting such control. Such issues can include slow response speed of a humidity sensor in the indoor airstream (e.g., a space humidity sensor that senses humidity at the output of the evaporator coil; e.g., 30 minutes), potential difficulties with the installation of such a sensor, and the cost associated with such a sensor and its installation. Therefore, finding a measurable refrigeration system attribute (parameter) that can serve as a sufficiently accurately proxy for the dew point is desirable when controlling HVAC systems employing hot-gas reheat techniques. For example, sensing the adjusted temperature value is more accurate and more responsive than the information provided by humidity sensor, and is also more accurate than a reading of temperature across the evaporator coil.
Embodiments such as those described herein address such problems by sensing a parameter value of a parameter representative of a refrigerant fluid parameter of at least a portion of refrigerant fluid flowing through the HVAC system, using a parameter sensor configured to measure such a parameter. In one such embodiment, the parameter value is a temperature value, as measured by a temperature sensor. Further, certain of such embodiments can effect such measurement using a single temperature sensor to measure a temperature value representative of the refrigerant fluid's temperature. Such information can be combined with an appropriately-configured control system (e.g., analog control circuitry, control logic, computer program instructions (e.g., firmware or software), and/or the like), to generate a leaving air dew point approximation that can be used to control the HVAC system's compressor speed/staging. It will be further appreciated in light of the present disclosure that, with regard to compressor staging/speed control (and while various examples herein are discussed in terms of temperature), another possibility for monitoring/estimating leaving humidity or dew point is the use of evaporator pressure as a proxy for the desired dew point information (e.g., a determination of the saturated suction temperature of the refrigerant fluid). Other alternatives, while potentially less desirable due to factors such as cost, design difficulties, and/or the like, are the use of leaving evaporator dry bulb temperature (i.e., the dry bulb temperature of the air between after the evaporator and before the reheat coil) and the direct measurement of the humidity of the supply air.
As illustrated and noted in
In one such refrigerant circuit, refrigerant fluid flows from compressor 205 through a distribution valve 230, a portion of which then flows to condenser coil 210. An example of a distribution valve such as distribution valve 230 is a modulating valve (e.g., a proportional modulating valve). Such proportional valve can for example, provide a given percentage of the refrigerant fluid flow received to condenser coil 210, and a remaining percentage of the refrigerant fluid flow received to reheat coil 220 (where those percentages can be any combination that sums to 100%). In certain embodiments, distribution valve 230 may support other refrigerant lines/circuits, and provide refrigerant fluid in a manner appropriate to such other embodiments. Further, compressor 205, in certain embodiments, can provide multiple refrigerant output lines to support such functionality.
From condenser coil 210, that portion of the refrigerant fluid flows to a metering device 240, and then on through evaporator coil 215 and back to compressor 205. An example of a metering device such as metering device 240 is a thermostatic expansion valve (TXV), which is a metering device designed to regulate the rate at which the refrigerant fluid ultimately flows into evaporator coil 215. Metering device 240 can meter the refrigerant fluid based on parameters (e.g., temperature and pressure) detected by way of, for example, a metering device temperature sensor 242 and a sense line 244.
In a fashion similar to that described with respect to the foregoing refrigerant circuit, another such refrigerant circuit can also be traced beginning with compressor 205, which compresses the refrigerant fluid received and provides that to distribution valve 230, as noted. From distribution valve 230, another portion of which then flows to reheat coil 220, which receives this portion, and after the heat transfer of its operation, provides the exiting refrigerant fluid to metering device 240 via a check valve 237. As before, this refrigerant fluid transits metering device 240 and evaporator coil 215, and then returns to compressor 205.
In both the foregoing examples, the metered refrigerant fluid (that portion of the refrigerant fluid having flowed through and been metered by metering device 240) flows from metering device 240, through another of the refrigerant fluid lines (depicted in
In the architecture depicted in
The operation of compressor 205 is controlled by a system control unit 260. System control unit 260 can receive one or more signals from various sensors, such as may be included within HVAC system 200, within the building or other structure/conditioned space to which condition air is provided, outside the structure in question, or elsewhere. An example of such a sensor is sensor 270. In certain embodiments, sensor 270 is a temperature sensor situated on or near the surface of refrigerant fluid line 246, and can be implemented using, for example, a thermistor. Sensor 270 provides a signal or other information (depending on the analog and/or digital nature of sensor 270) to system control unit 260, which, in turn, uses this input (among other such inputs) in determining the appropriate control of compressor 205.
Sensor 270 can be implemented using a single sensor, as depicted in
Further, and as noted, in certain embodiments, sensor 270 is a temperature sensor such as a thermistor, although other types of temperature sensors can be employed to equally good effect. In fact, other sensor types (e.g., pressure, suction, and other such sensor types) can also be employed, given that the parameters measured by such sensors can be used as proxies for temperature values representative of refrigerant fluid temperatures.
Further still, it is to be appreciated that position can also be a consideration with regard to refrigerant fluid distribution lines 249 (e.g., micro-channels), as such structures can cause a pressure drop that is large enough to affect the validity of the parameter (temperature) used as a proxy for/representative of a refrigerant fluid parameter (refrigerant fluid temperature) of a portion of the refrigerant fluid flowing through the given refrigerant fluid line. In certain implementations, if the refrigerant fluid distribution lines cause the pressure drop to become too significant, affecting the saturated suction temperature (as a surrogate for the leaving air dew point), which would then need to be considered by the calculation of the adjusted temperature value. That said, such a system could, in fact, use a variable parameter offset (e.g., temperature offset) to manage such situations, where the risk of oscillation, the pressure drop encountered, and other factors could be considered.
In the manner noted, embodiments such as those described herein are able to provide partial-load refrigeration system capacity during a hot-gas reheat mode of an HVAC system such as that described herein. A system control unit such as system control unit 260 determines the appropriate compressor stage for the HVAC system (which can, for example, comprehend compressor speed and/or fan speed) by calculating a leaving air dew point target value based on the conditioned-space humidity dynamics. In order to make such as determination, the system control unit needs an input signal that can be used to generate a sufficiently-accurate proxy for the actual leaving air dew point. This is particularly relevant in circumstances in which a direct measure of humidity cannot reasonably be obtained (e.g., without undue expense, complexity, and/or other such considerations). Using techniques such as those described herein, a single refrigerant temperature input can be used to determine a proxy for dew point. The system control unit can also be designed to provide for appropriate compressor stage commands for HVAC system conditions in which the dew point proxy diverges the true dew point value. For an example of this divergence, and the manner in which such situations are addressed, the description in connection with
In a system in which the compressor (e.g., compressor 205) supports some number of stages of operation (e.g., a multi-stage compressor), embodiments of the control logic can provide features that include:
Functionality such as that described above is now discussed in connections with
HVAC control process 300 begins with the measurement of a parameter value such as a temperature value (e.g., as by sensing such a temperature value at or near the surface of a refrigerant fluid line) representative of the temperature of the refrigerant fluid at a point such as that depicted by the position of sensor 270 (between metering device 240 and distribution block 248) in
If the parameter value in question does not meet the minimum parameter threshold, the system control unit sends a signal to the compressor to shut down (430). The compressor is shut down in such situations as a failsafe—the HVAC system cannot provide the level of humidity needed to maintained the desired humidity, and in order to protect the system (e.g., the compressor), multi-stage control process 400 proceeds with having the system control unit send the compressor a shutdown signal. As will be described in connection with
In the alternative, if the parameter value meets the minimum parameter threshold, multi-stage control process 400 proceeds to a determination as to whether the parameter value meets a maximum parameter threshold (440). An example of such a maximum parameter threshold is an adjusted temperature value of 42°, and meeting such a threshold being greater than that adjusted temperature value.
In the case in which the parameter value does not meet the maximum parameter threshold, the system control unit sends a message to the compressor to increase its speed by staging up (470). Typically, this will mean that the system control unit will signal the compressor to immediately (or quickly) go to full load. This is also true of a high superheat condition, where such a superheat measurement is made by another sensor (e.g., temperature sensor) that measures the superheat of the refrigerant fluid leaving the evaporation coil. Examples of measurements of such superheat are presented in connection with
At this juncture, it should be noted that such divergence can be the result of a low target temperature (used to represent the dew point of the air of the airflow (e.g., airflow 250), in which case such staging up will bring the proxy parameter (e.g., the adjusted temperature value) back into sufficiently-close agreement with the actual temperature, and so, the actual dew point. Alternatively, such divergence may represent a situation in which the HVAC system is overloaded (at the current compressor staging level), which can also result in an artificially low target temperature (and so, dew point), a condition referred to as a “starved evaporator” condition (equating to a problematically-low saturated suction temperature). In in this case, the increase in fan speed (and so, airflow) will assist in the increase in capacity, in order to counter the conditions experienced within the HVAC system, and again bring the proxy parameter (e.g., the adjusted temperature value) back into sufficiently-close agreement, as noted. That being the case, embodiments such as those described herein address situations that result in divergence due to inaccuracy and divergence due to actual low capacity with equal success. Here again, once such actions are taken, multi-stage control process 400 then concludes, returning to HVAC control process 300 of
In a further alternative, if the parameter value meets the maximum parameter threshold (e.g., using the prior example of a threshold of 42°, and adjusted temperature value less than or equal to 42°), control systems (e.g., as may employ proportional (PI), proportional/integral/derivative (PID), and/or comparable techniques) can be configured to set the dew point target for the HVAC system based on the change in humidity of the conditioned space that is determined using an adjusted parameter value (460). In this case, the HVAC system is operating normally and the parameter in question (e.g., the adjusted temperature value) is not diverging unacceptably, and so the HVAC system's compressor can be staged appropriately in order to address any changes in the conditioned space's humidity.
Such an adjusted parameter value can be, in the case of temperature measurements (or their proxies), an adjusted temperature value. Thus, in those embodiments in which the parameter value is a temperature value (or such a temperature value is determined from a proxy therefor), the adjusted temperature value is determined by adjusting the temperature value by a temperature offset. As noted, such a temperature offset is used to determine the adjusted temperature value. For example, in certain embodiments such as those noted, the controller monitors the refrigerant fluid temperature by monitoring temperature value that represents refrigerant fluid temperature during reheat mode. This can be accomplished, as noted, using a normalized value of this input (e.g., a preliminary temperature offset of the refrigerant fluid's temperature (e.g., according to (Trefrigerant+Toffset)), which, as also noted, can be used as a proxy for the actual leaving air dew point. While a Toffset of 0° is ideal, practically speaking, a Toffset of 1.5° can be used as the preliminary temperature offset noted above, and depending on conditions, HVAC system design, and other such considerations, a range of Toffset values in the range of 2°-5° can be employed to good effect. The need to use a Toffset value greater than 0° is related to the real-world physics of such systems, and the need to avoid oscillations in the control thereof, which can result in increased cycling of the HVAC system and other untoward effects. This is a result of the preference for the adjusted temperature value to result in an estimated dew point that reflects the actual leaving air dew point as accurately as possible, while still avoid the effects noted.
Operating result graph 500 depicts data for the conditioned air in an enclosed space with various indoor and outdoor conditions. The attributes shown in operating result graph 500 include the temperature value (representative of the refrigerant fluid temperature), the dew point of the air leaving the reheat coil (e.g., airflow 250), and the superheat value for the evaporator coil (the leading evaporator superheat). As can be seen in operating result graph 500, the adjusted temperature value (e.g., representative of the refrigerant fluid temperature at the point at which the refrigerant fluid leads the metering device, adjusted by the aforementioned temperature offset) is effective as a proxy for the dew point of the air in most conditions depicted. However, as noted by the bold arrows depicted in
As can be seen in operating result graph 500, the result of these actions is to bring the adjusted temperature value back into sufficient agreement, such that the estimate of the dew point of the leaving air is sufficiently accurate. It will also be noted that, as reflected by a second sensor configured to detect the superheat of the refrigerant fluid leaving the evaporator coil, such actions also reduce such superheat to a level below the critical superheat value (e.g., in certain embodiments, a value of 24° F.).
According to example implementations of the present disclosure, the system 100 and its subsystems including computers 118-122 may be implemented by various computing architectures. Computing architectures for implementing the system and its subsystems may include hardware, alone or under direction of one or more computer programs (e.g., project-related software application 124) from a computer-readable storage medium. In some examples, one or more apparatuses may be configured to function as or otherwise implement the system and its subsystems shown and described herein. In examples involving more than one apparatus, the respective apparatuses may be connected to or otherwise in communication with one another in a number of different manners, such as directly or indirectly via a wired or wireless network or the like.
The processor 602 is generally any piece of computer hardware capable of processing information such as, for example, data, computer programs and/or other suitable electronic information. The processor includes one or more electronic circuits some of which may be packaged as an integrated circuit or multiple interconnected integrated circuits (an integrated circuit at times more commonly referred to as a “chip”). The processor may be a number of processors, a multi-core processor or some other type of processor, depending on the particular implementation.
The processor 602 may be configured to execute computer programs such as computer-readable program code 606, which may be stored onboard the processor or otherwise stored in the memory 604. In some examples, the processor may be embodied as or otherwise include one or more microprocessors, ASICs, FPGAs or the like. Thus, although the processor may be capable of executing a computer program to perform one or more functions, the processor of various examples may be capable of performing one or more functions without the aid of a computer program.
The memory 604 is generally any piece of computer hardware capable of storing information such as, for example, data, computer-readable program code 606 or other computer programs, and/or other suitable information either on a temporary basis and/or a permanent basis. The memory may include volatile memory such as random access memory (RAM), and/or non-volatile memory such as a hard drive, flash memory or the like. In various instances, the memory may be referred to as a computer-readable storage medium, which is a non-transitory device capable of storing information. In some examples, then, the computer-readable storage medium is non-transitory and has computer-readable program code stored therein that, in response to execution by the processor 602, causes the apparatus 600 to perform various operations as described herein.
In addition to the memory 604, the processor 602 may also be connected to one or more peripherals such as a network adapter 608, one or more input/output (I/O) devices or the like. The network adapter is a hardware component configured to connect the apparatus 600 to one or more networks to enable the apparatus to transmit and/or receive information via the one or more networks. This may include transmission and/or reception of information via one or more networks through a wired or wireless connection using suitable wired or wireless communication protocols.
The I/O devices may include one or more input devices 610 capable of receiving data or instructions for the apparatus 600, and/or one or more output devices 612 capable of providing an output from the apparatus. Examples of suitable input devices include a keyboard, keypad or the like, and examples of suitable output devices include a display device such as a one or more light-emitting diodes (LEDs), a LED display, a liquid crystal display (LCD), or the like.
As explained above and reiterated below, the present disclosure includes, without limitation, the following example implementations.
Clause 1. A method for controlling a heating, ventilation, and air conditioning (HVAC) system, the method comprising: measuring a temperature (where the temperature is measured by a temperature sensor located between a metering device of the HVAC system and an evaporator coil of the HVAC system, the temperature is representative of a refrigerant temperature, and the refrigerant temperature is a temperature of a refrigerant fluid flowing from the metering device to the evaporator coil) and controlling a compressor of the HVAC system (where the HVAC system further comprises a reheat coil and a condenser coil, the compressor, the metering device, the evaporator coil, the reheat coil, and the condenser coil are in fluid communication with one another, with respect to the refrigerant fluid, the compressor is controlled by control circuitry, the control circuitry is configured to perform the controlling in a dehumidify mode based, at least in part, on a value of a humidity parameter of air of an airflow through the evaporator coil and the reheat coil, and the value is determined using the temperature).
Clause 2. The method of clause 1, wherein the humidity parameter is a dew point of the air.
Clause 3. The method of clause 1 or clause 2, wherein the metering device is a thermostatic expansion valve.
Clause 4. The method of any of clauses 1 to 3, wherein the temperature sensor is a thermistor.
Clause 5. The method of any of clauses 1 to 4, wherein the controlling comprises: determining whether the temperature is sufficient to perform a staging operation by comparing the temperature to a first temperature threshold and in response to a determination that the temperature is not sufficient to perform the staging operation, causing the compressor to shut down.
Clause 6. The method of any of clauses 1 to 5, wherein the controlling further comprises: in response to a determination that the temperature is sufficient to perform a staging operation, comparing the temperature to a second temperature threshold and in response to a determination that the temperature exceeds the second temperature threshold, performing the staging operation.
Clause 7. The method of any of clauses 1 to 6, wherein the humidity parameter is a dew point of the air, the staging operation comprises setting the dew point of the air by increasing a compressor load of the compressor using a proportional integral control process, and an input to the proportional integral control process is the temperature.
Clause 8. The method of any of clauses 1 to 7, wherein another input to the proportional integral control is a temperature offset.
Clause 9. The method of any of clauses 1 to 8, wherein the controlling further comprises: in response to a determination that the temperature does not exceed the second temperature threshold, performing another staging operation, wherein the another staging operation causes the compressor to increase operation to full load.
Clause 10. The method of any of clauses 1 to 9, wherein the HVAC system further comprises a fan, the fan causes to air to flow through the evaporator coil and the reheat coil, and the another staging operation causes the fan to increase a velocity of the air through the evaporator coil and the reheat coil.
Clause 11. A computer-readable storage medium for establishing a heating, ventilation, and air conditioning (HVAC) system, the computer-readable storage medium being non-transitory and having computer-readable program code including a software application stored therein that, in response to execution by processor, causes an apparatus to at least: measuring a temperature (where the temperature is measured by a temperature sensor located between a metering device of the HVAC system and an evaporator coil of the HVAC system, the temperature is representative of a refrigerant temperature, and the refrigerant temperature is a temperature of a refrigerant fluid flowing from the metering device to the evaporator coil) and controlling a compressor of the HVAC system (where the HVAC system further comprises a reheat coil and a condenser coil, the compressor, the metering device, the evaporator coil, the reheat coil, and the condenser coil are in fluid communication with one another, with respect to the refrigerant fluid, the compressor is controlled by control circuitry, the control circuitry is configured to perform the controlling in a dehumidify mode based, at least in part, on a value of a humidity parameter of air of an airflow through the evaporator coil and the reheat coil, and the value is determined using the temperature).
Clause 12. The computer-readable storage medium of clause 11, wherein the humidity parameter is a dew point of the air, the metering device is a thermostatic expansion valve, and the temperature sensor is a thermistor.
Clause 13. The computer-readable storage medium of clause 11 or clause 12, wherein the method further comprises: determining whether the temperature is sufficient to perform a staging operation by comparing the temperature to a first temperature threshold, in response to a determination that the temperature is not sufficient to perform the staging operation causing the compressor to shut down, and in response to a determination that the temperature is sufficient to perform a staging operation comparing the temperature to a second temperature threshold and in response to a determination that the temperature exceeds the second temperature threshold performing the staging operation.
Clause 14. The computer-readable storage medium of any of clauses 11 to 13, wherein the humidity parameter is a dew point of the air, the staging operation comprises setting the dew point of the air by increasing a compressor load of the compressor using a proportional integral control process, an input to the proportional integral control process is the temperature, and another input to the proportional integral control is a temperature offset.
Clause 15. The computer-readable storage medium of any of clauses 11 to 14, wherein the method further comprises: in response to a determination that the temperature does not exceed the second temperature threshold, performing another staging operation, where the another staging operation causes the compressor to increase operation to full load, the HVAC system further comprises a fan, the fan causes to air to flow through the evaporator coil and the reheat coil, the another staging operation causes the fan to increase a velocity of the air through the evaporator coil and the reheat coil.
Clause 16. A heating, ventilation, and air conditioning (HVAC) system, comprising: a hot-gas reheat dehumidification circuit, a sensor, and a system control unit. The hot-gas reheat dehumidification circuit can include an evaporator coil, a compressor, a reheat coil, and a metering device that are in fluid communication with one another, with respect to a refrigerant fluid. The metering device is in fluid communication with the evaporator coil via a refrigerant fluid line. The sensor is positioned between the metering device and the evaporator coil such that the sensor is positioned to measure a parameter representative of a refrigerant fluid parameter of a portion of the refrigerant fluid flowing through the refrigerant fluid line. The system control unit is configure to measure the parameter and control the compressor in a dehumidify mode based, at least in part, on a value of a humidity parameter of air of an airflow through the evaporator coil and the reheat coil. The parameter is measured by the sensor, and the value is determined using the parameter.
Clause 17. The HVAC system of clause 16, wherein the humidity parameter is a dew point of the air, the metering device is a thermostatic expansion valve, and the sensor is a thermistor.
Clause 18. The HVAC system of clause 16 or clause 17, wherein the parameter is a temperature, measurement of the temperature provides a temperature value, the temperature value is representative of a refrigerant fluid temperature, and the refrigerant fluid temperature is a temperature of the portion of the refrigerant fluid flowing through the refrigerant fluid line.
Clause 19. The HVAC system of any of clauses 16 to 18, wherein the system control unit is further configure to: determine whether the temperature is sufficient to perform a staging operation by comparing the temperature to a first temperature threshold, in response to a determination that the temperature is not sufficient to perform the staging operation, cause the compressor to shut down, and, in response to a determination that the temperature is sufficient to perform a staging operation, compare the temperature to a second temperature threshold and, in response to a determination that the temperature exceeds the second temperature threshold, perform the staging operation.
Clause 20. The HVAC system of any of clauses 16 to 19, wherein the humidity parameter is a dew point of the air, the staging operation comprises setting the dew point of the air by increasing a compressor load of the compressor using a proportional integral control process, an input to the proportional integral control process is the temperature, and another input to the proportional integral control is a temperature offset.
Clause 21. The HVAC system of any of clauses 16 to 20, wherein the system control unit is further configure to: in response to a determination that the temperature does not exceed the second temperature threshold, perform another staging operation, where the another staging operation causes the compressor to increase operation to full load, the HVAC system further comprises a fan, the fan causes to air to flow through the evaporator coil and the reheat coil, and the another staging operation causes the fan to increase a velocity of the air through the evaporator coil and the reheat coil.
Many modifications and other implementations of the disclosure set forth herein will come to mind to one skilled in the art to which the disclosure pertains having the benefit of the teachings presented in the foregoing description and the associated figures. Therefore, it is to be understood that the disclosure is not to be limited to the specific implementations disclosed and that modifications and other implementations are intended to be included within the scope of the appended claims. Moreover, although the foregoing description and the associated figures describe example implementations in the context of certain example combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions may be provided by alternative implementations without departing from the scope of the appended claims. In this regard, for example, different combinations of elements and/or functions than those explicitly described above are also contemplated as may be set forth in some of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Date | Country | Kind |
---|---|---|---|
PCT/CN2022/102640 | Jun 2022 | WO | international |
This application claims benefit under 35 U.S.C. § 119(a) of Patent Application No. PCT/CN2022/102640 under the Patent Cooperation Treaty, filed in the Receiving Office of the People's Republic of China on Jun. 30, 2022, entitled “COMPRESSOR STAGING CONTROL ARCHITECTURE FOR HOT GAS REHEAT SYSTEMS,” and having J. Willhite, Q. Q. Zhou, Wei Luo, C. D. Bowers, M. K. Liang, J. Grubb, L. A. Liudahl as inventors. The above-referenced application is hereby incorporated by reference herein, in its entirety and for all purposes.