These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present invention, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Moreover, the use of “top,” “bottom,” “above,” “below,” and variations of these terms is made for convenience, but does not require any particular orientation of the components.
Turning now to the figures, an exemplary compressor 10 is provided in
A mechanical power source or driver 16, such as an engine or an electric motor, may be coupled to the compressor 10 to provide mechanical power to the various internal components and enable compression of the fluid within the cylinders 12. To facilitate access to such internal components, as may be desired for diagnostic or maintenance purposes, openings in the frame 14 may be provided and selectively accessed via removable covers 18. Further, the cylinders 12 may also include valve assemblies 20 for controlling flow of the fluid through the cylinders 12.
It will be appreciated that, although the exemplary compressor 10 is illustrated as a two-throw reciprocating compressor, other compressor configurations may also employ and benefit from the presently disclosed techniques. For instance, in other embodiments, the compressor 10 may include a different number of cylinder throws, such as a four-throw compressor, a six-throw compressor, a couple-free reciprocating compressor, a screw compressor, or the like. Further, other variations are also envisaged, including variations in the length of stroke, the operating speed, and the size, to name but a few.
A cross-sectional view of the exemplary compressor 10 is provided in
In operation, the driver 16 rotates the crankshaft 26 supported within the interior volume 24 of the frame 14. In one embodiment, the crankshaft 26 is coupled to crossheads 30 via connecting rods 28 and pins 32. The crossheads 30 are disposed within crosshead guides 34, which generally extend from the central body 22 and facilitate connection of the cylinders 12 to the compressor 10. In one embodiment, the compressor 10 includes two crosshead guides 34 that extend generally perpendicularly from opposite sides of the central body or housing 22, although other configurations are also envisaged. As may be appreciated, the rotational motion of the crankshaft 26 is translated via the connecting rods 28 to reciprocal linear motion of the crossheads 30 within the crosshead guides 34.
As noted above, the cylinders 12 are configured to receive a fluid for compression. The crossheads 32 are coupled to pistons 36 disposed within the cylinders 12, and the reciprocating motion of the crossheads allows compression of fluid within the cylinders 12 via the pistons 36. Particularly, as a piston 36 is driven forward (i.e., outwardly from central body 22) into a cylinder 12, the piston 36 forces the fluid within the cylinder into a smaller volume, thereby increasing the pressure of the fluid. A discharge valve of valve assembly 20 may then be opened to allow the pressurized or compressed fluid to exit the cylinder 12. The piston 36 may then stroke backward, and additional fluid may enter the cylinder 12 through an inlet valve of the valve assembly 20 for compression in the same manner described above.
As may be appreciated, the compressor 10 will be subjected to various forces during operation, such as reciprocating loads, torque, coupled moments, and the like. While partially balancing operation of the compressor, such as staggering the timing of forward strokes within the crosshead guides, may reduce or compensate for some of these operating forces and unbalanced loads, some of these forces and loads may still act on the frame 14. More specifically, these operating forces and the orientation of the various components may result in three-dimensional forces and moments (e.g., horizontal, vertical, and axial) that act on the crosshead guides 34 and on the central body 22 of the frame 14. Accordingly, as illustrated in
Particularly, a perspective view of the exemplary frame 14 is provided in
The crosshead guides 34 extending from the central body 22 generally include an interior volume or cavity 50 for receiving the crossheads 30 (
As the compressor 10 is operated, the crosshead guides 34 are subject to various operating forces, including those noted above, which may be distributed to the frame 14 via a number of support structures. In one embodiment, such support structures include support members or ribs 54 and 56, and angled supports 58, as discussed in greater detail below. Notably, the angled supports 58 may include one or more apertures 60 that facilitate handling and installation of the compressor 10.
Several of the above features, including the support structures, may also be seen in
The configuration of the angled supports 58 may be better appreciated through reference to
As will be appreciated, the exemplary support ribs 54 and 56 increase the structural rigidity of the exemplary frame 14, and distribute forces exerted on the crosshead guides 34 to the central body 22. It should be noted that, while the exemplary ribs 54 and 56 are illustrated as formed vertically from the top surface of the crosshead guides 34, vertical or horizontal support ribs may be provided on the other surfaces of the crosshead guides 34 instead of, or in addition to, those formed on the top surface. Additionally, as noted above and discussed in greater detail below, angled supports 58 generally extend outwardly from crosshead guides 34 to the central body 22 of the frame 14.
In addition to the plan view of
It should be noted that the relative stiffness provided by an angled support 58 in each of the horizontal and vertical dimensions will depend upon the angle 64. For instance, in one embodiment, an angled supports 58 is oriented such that angle 64 is substantially equal to forty-five degrees with respect to the vertical plane 66. In this embodiment, the angled supports 58 provide increased stiffness of equal amount in both the vertical and horizontal planes 66 and 68. Other embodiments, however, are also envisaged.
For instance, in one embodiment, the angled supports 58 may be oriented at a smaller angle 64, such as between ten and forty-five degrees, or a larger angle 64, such as between forty-five and eighty degrees, with respect to a vertical plane, such as the vertical plane 66. In such embodiments, the stiffness provided by the angled supports 58 would vary between the horizontal and vertical planes. Particularly, when the angle 64 is less than forty-five degrees greater stiffness would be provided in the vertical direction than the horizontal direction, whereas the converse is true if the angle 64 is greater than forty-five degrees. In still further embodiments, the angled supports 58 may be oriented with angles that are similar or dissimilar than one another. Indeed, in full accordance with the present techniques, the angled supports 58 may form any non-zero angle with respect to a horizontal or vertical plane or dimension, such as planes 66 and 68, through the crosshead guides 34 such that the angled supports 58 are oblique or non-orthogonal with respect to such planes or dimensions. Additionally, the angled supports 58 distribute such forces and moments over a wider portion of the central body 22 of the frame 14, reducing the magnitude of the coupled moment of the frame 14 attributable to the axial displacement of the crosshead guides 34.
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.