The invention relates to compressors. More particularly, the invention relates to hermetic refrigerant compressors.
Screw-type compressors are commonly used in air conditioning and refrigeration applications. In such a compressor, intermeshed male and female lobed rotors or screws are rotated about their axes to pump the working fluid (refrigerant) from a low pressure inlet end to a high pressure outlet end. During rotation, sequential lobes of the male rotor serve as pistons driving refrigerant downstream and compressing it within the space between an adjacent pair of female rotor lobes and the housing. Likewise sequential lobes of the female rotor produce compression of refrigerant within a space between an adjacent pair of male rotor lobes and the housing. The interlobe spaces of the male and female rotors in which compression occurs form compression pockets (alternatively described as male and female portions of a common compression pocket joined at a mesh zone). In one implementation, the male rotor is coaxial with an electric driving motor and is supported by bearings on inlet and outlet sides of its lobed working portion. There may be multiple female rotors engaged to a given male rotor or vice versa.
When one of the interlobe spaces is exposed to an inlet port, the refrigerant enters the space essentially at suction pressure. As the rotors continue to rotate, at some point during the rotation the space is no longer in communication with the inlet port and the flow of refrigerant to the space is cut off. After the inlet port is closed, the refrigerant is compressed as the rotors continue to rotate. At some point during the rotation, each space intersects the associated outlet port and the closed compression process terminates.
Many such compressors are hermetic compressors wherein the motor is located within the compressor housing and may be exposed to a flow of refrigerant. Hermetic compressors present difficulties regarding their wiring. Routing of conductors through the housing while maintaining hermeticity and convenience of use while controlling manufacturing costs present difficulty. One exemplary configuration involves mounting electrical power terminals on a machined terminal plate. The terminal plate is, in turn, mounted over an opening in the compressor housing and sealed thereto.
According to one aspect of the invention, a compressor has a housing having first and second members. A motor within the housing is coupled to one or more working elements to drive the one or more working elements to compress a fluid. A number of electrical terminals are each mounted in an associated aperture in the second housing member and electrically coupled to the motor.
In various implementations, the compressor may be a hermetic screw compressor. The first housing member may be a motor case having a compressor inlet port. The second housing member may be a rotor case.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference numbers and designations in the various drawings indicate like elements.
In the exemplary embodiment, the motor is an electric motor having a rotor and a stator. One of the shaft stubs of one of the rotors 26 and 28 may be coupled to the motor's rotor so as to permit the motor to drive that rotor about its axis. When so driven in an operative first direction about the axis, the rotor drives the other rotor in an opposite second direction. The exemplary housing assembly 22 includes a rotor housing 48 having an upstream/inlet end face 49 approximately midway along the motor length and a downstream/discharge end face 50 essentially coplanar with the rotor body ends 32 and 36. Many other configurations are possible.
The exemplary housing assembly 22 further comprises a motor/inlet housing 52 having a compressor inlet/suction port 53 at an upstream end and having a downstream face 54 mounted to the rotor housing downstream face (e.g., by bolts through both housing pieces). The assembly 22 further includes an outlet/discharge housing 56 having an upstream face 57 mounted to the rotor housing downstream face and having an outlet/discharge port 58. The exemplary rotor housing, motor/inlet housing, and outlet housing 56 may each be formed as castings subject to further finish machining.
Surfaces of the housing assembly 22 combine with the enmeshed rotor bodies 30 and 34 to define inlet and outlet ports to compression pockets compressing and driving a refrigerant flow 504 from a suction (inlet) plenum 60 to a discharge (outlet) plenum 62 (located below the cut plane and thus schematically indicated). A series of pairs of male and female compression pockets are formed by the housing assembly 22, male rotor body 30 and female rotor body 34. Each compression pocket is bounded by external surfaces of enmeshed rotors, by portions of cylindrical surfaces of male and female rotor bore surfaces in the rotor case and continuations thereof along a slide valve, and portions of face 57.
The exemplary compressor is a hermetic compressor wherein the motor 24 is sealed within the housing 22 and exposed to the refrigerant passing through the compressor. The motor 24 is coaxial with the rotor 26 along the axis 500 and has a stator 100 and a rotor 102. The rotor 102 is secured to an end portion of the shaft stub 39 to transmit rotation to the rotor 26. To supply power to the motor, electrical conductors must pass through the housing. These may include a number of terminals 104 mounted in the housing. Exemplary terminals have exterior pin-like contacts 106 having axes 510. Exemplary terminals 104 have interior contacts 108 (e.g., screw fittings). For each terminal, a wire 110 extends from a first end at the contact 108 to a second end at the motor. For an exemplary three-phase motor, there are three pairs of such terminals (
In the exemplary embodiment, the face 120 and plate 122 fall along a local shoulder 150 (
However, for the terminals, the machining includes machining of the counterbores 136 (
The precision of the thickness T may provide additional assembly ease benefits. A precise amount of compression of the O-ring 130 is required to provide an effective seal. Typically this precision could be obtained by precise torquing. However, with a precise thickness T and precise lengths of the insulator insertion portions 144 and 145 less torque precision is needed. These dimensions may be chosen to provide the desired degree of O-ring compression when the underside (shoulder) of the insulator body 143 is flat against the face 120 and the underside of the body 141 is bottomed against the base of the counterbore. This eases assembly and reduces risk of damage to the O-ring from overtorquing.
An additional assembly benefit may come from radial enlargement and faceting of the heads 148. The spacing between bores and the size of the heads 148 is chosen so that each head 148 interfits with the next so that more than a slight rotation of the head 148 brings it into interference with the adjacent head(s) 148 to prevent more than limited rotation. The antirotation engagement of the pin head 147 to the insulator head 148 thus holds the pin against more than this limited rotation. Thus, to tighten the nuts 146 no separate tool is necessarily required to hold the head of the pin.
One or more embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, in a reengineering, details of the existing compressor configuration may particularly influence or dictate details of the implementation. Accordingly, other embodiments are within the scope of the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2005/003815 | 2/7/2005 | WO | 00 | 7/27/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/085864 | 8/17/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2635550 | Granberg | Apr 1953 | A |
2781463 | Sprando | Feb 1957 | A |
3619086 | Johnson et al. | Nov 1971 | A |
3922114 | Hamilton et al. | Nov 1975 | A |
4193657 | Slone | Mar 1980 | A |
4903497 | Zimmern et al. | Feb 1990 | A |
5246349 | Hartog | Sep 1993 | A |
5385453 | Fogt et al. | Jan 1995 | A |
5961293 | Clemmons et al. | Oct 1999 | A |
6045344 | Tsuboi et al. | Apr 2000 | A |
6183227 | Hida et al. | Feb 2001 | B1 |
6241489 | Lewin et al. | Jun 2001 | B1 |
6364645 | Dieterich | Apr 2002 | B1 |
6485274 | Kosters | Nov 2002 | B2 |
6494699 | Sjoholm et al. | Dec 2002 | B2 |
6916213 | Nyblin et al. | Jul 2005 | B2 |
7687945 | Matin et al. | Mar 2010 | B2 |
20030091446 | Ikeda et al. | May 2003 | A1 |
20030209948 | Blatter et al. | Nov 2003 | A1 |
20050111994 | Kimura et al. | May 2005 | A1 |
Number | Date | Country |
---|---|---|
2381960 | May 2003 | GB |
8210281 | Aug 1996 | JP |
2004044606 | Feb 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20080131303 A1 | Jun 2008 | US |