The application relates generally to gas turbine engine compressors, and more particularly, to variable vanes for such compressors.
Variable vanes, namely vanes which are not fixed but pivot about axes such as to vary the angle of the vane airfoil, are sometimes used in gas turbine engine compressors to optimize compressor operability and/or efficiency over the compressor speed range. These variable vanes may include variable inlet guide vanes (IGV) located directly upstream of the first compressor stage, or variable vanes which form part of one or more of the subsequent downstream stages in a multistage compressor (ex: first compressor stage and/or second compressor stage, etc.). Variable vanes enable optimized compressor efficiency and/or operability by providing a close-coupled direction of the gas flow into the immediately downstream compressor rotor, and/or may introduce swirl into the compressor rotor to improve low speed operability of the compressor, and thus the engine, as well as to increase the flow capacity at high speeds.
Such variable vanes extend between the inner and outer shrouds which define the perimeter of the annular gas path into the compressor, and the variable vanes pivot about their respective radially extending axes to modify the angle of the vane airfoils and thus provide a closer incidence match between the air flow entering exiting the vane and the blade angle of the rotor. However, as each of the variable vane airfoils pivots about its radially extending axis, the clearance gap between the base and tip of the vane airfoil and the surrounding inner and outer shrouds, respectively, also varies. This can lead to greater vane tip losses which may negatively affect the aerodynamic performance of the vanes and thus the compressor. Improvements in variable compressor vanes are therefore sought.
In one aspect, there is provided a variable vane assembly for a compressor of a gas turbine engine, the variable vane assembly comprising: an inner shroud and an outer shroud radially spaced apart from each other and defining therebetween an annular compressor gas path, the inner shroud and the outer shroud each having an annular boundary surface facing the gas path, the boundary surface defining a nominal gas path boundary; a plurality of variable vanes radially extending between the inner and outer shrouds, each of the variable vanes being pivotable through a vane pivot arc about a respective span-wise vane axis, the variable vanes having a button disposed on each of the radially inner and outer opposed ends, the buttons being respectively pivotably mounted in corresponding openings formed in the inner shroud and the outer shroud, the variable vanes having an airfoil extending between the buttons on said opposed ends and having a chord between a leading edge and a trailing edge, the airfoil having an overhang portion disposed at at least said opposed ends and protruding beyond each of the buttons to overhang the shroud, and a radial clearance gap being defined between a terminal edge of the overhang portion and the respective inner and outer adjacent shrouds, the terminal edge of the overhang portion defining a plane when the variable vane is pivoted through said vane pivot arc; and wherein at least one of the inner and outer shrouds has a plurality of projections protruding into the gas path relative to said nominal gas path boundary, the projections disposed adjacent the overhang portion and having at least one angled planar surface that is substantially parallel to said plane, so that said radial clearance gap remains substantially constant through a substantial portion of said vane pivot arc.
In another aspect, there is provided a compressor for a gas turbine engine, the compressor comprising: an annular inner shroud and an annular outer shroud radially spaced apart and defining therebetween an annular compressor gas flow path; at least one rotor having an array of blades mounted on a rotatable shaft, the blades extending across the gas flow path; a plurality of circumferentially spaced apart variable vanes located upstream of the rotor and extending across the gas flow path from the inner shroud to the outer shroud, each of the variable vanes being rotatable through a range of rotation about a respective span-wise vane axis, each of the variable vanes defining an airfoil portion with leading and trailing edges, and opposed ends of the variable vane being pivotably mounted to the inner and outer shrouds, the airfoil portion defining a cord length between the leading edge and the trailing edge and having a downstream overhang portion at each of said opposed ends terminating at said trailing edge, a radial clearance gap being defined between a terminal edge of the overhang portion at each of said opposed ends and the respective inner and outer adjacent shrouds, the terminal edge of the overhang portion defining a plane when the variable vane is rotated through said range of rotation; and wherein a portion of the boundary surfaces of each of the inner and outer shrouds defines a nominal gas path boundary, and at least one of the inner and outer shrouds having an irregular surface profile thereon relative to the nominal gas path boundary, the irregular surface profile comprising a plurality of projections that protrude into the gas path relative to said nominal gas path boundary, said projections having at least one angled planar surface that is substantially parallel to said plane defined by the terminal edge of the overhang portion of said variable vane when pivoted through said vane pivot arc, the radial clearance gap between said angled planar surface and the terminal edge being substantially constant throughout said range of rotation of the variable vane.
In another aspect, there is provided a method of reducing compressor vane tip leakage losses in a variable vane assembly of a gas turbine engine compressor, the variable vane assembly having a plurality of pivoting variable vanes extending through a gas path defined between radially spaced apart inner and outer shrouds, the method comprising: minimizing a radial tip clearance gap between opposed ends of the variable vanes and the adjacent inner and outer shrouds by providing an irregular surface profile on a portion of a boundary surface of each of the inner and outer shrouds, the irregular surface profile including a plurality of projections that protrude into the gas path relative to a nominal gas path boundary of said boundary surface, and forming said projections having a gap-controlling surface thereon configured such that the radial clearance gap remains substantially constant throughout a pivoting travel of the variable vanes.
There is further provided a vane assembly for a gas turbine engine compressor with a plurality of variable vanes extending between inner and outer shrouds, which have an irregular surface profile on a portion of the boundary surfaces of at least one of the inner and outer shrouds. The irregular surface profile includes a plurality of projections that protrude into the gas path relative to a nominal gas path boundary of the shroud and which have a gap-controlling surface thereon configured such that the radial clearance gap between the ends of the variable vanes remains substantially constant throughout an arc of travel of the pivoting variable vanes.
Reference is now made to the accompanying figures in which:
a is a partial rear perspective view of the variable vane of
b is a cross-sectional view taken through the line 9b-9b of
a is a partial rear perspective view of the variable vane of
b is a cross-sectional view taken through the line 10b-10b of
The first stage axial compressor 20 of the compressor section 14 comprises generally a rotor 24 and a stator 22 downstream of the rotor, each having a plurality of airfoils blades radially extending through the annular compressor gas path defined by the compressor gas flow passage 25. The compressor gas flow passage 25 may include a stationary and circumferentially extending outer shroud which defines a radial outer boundary of the annular gas flow path through the compressor 20, and an inner hub or shroud which is radially inwardly spaced from outer shroud and defines a radial inner boundary of the annular gas flow path through the compressor 20.
The compressor 14 may, in one possible embodiment, include an inlet guide vane assembly 26 located within the compressor inlet upstream of the rotor 24 of the first stage 20 of the compressor. Alternately, however, the compressor 14 may not comprise any IGVs, and instead include only several compressor stages, each comprising a rotor and a downstream vane assembly. The IGV assembly may be a variable vane assembly 26, as will be described in further detail below. Instead of, or in addition to, the variable IGV, the stator 22 of the first compressor stage 20 and/or any stator vane of any of the plurality of stages of the multistage compressor 20, may alternately comprise a variable vane assembly as described herein. Accordingly, it is to be understood that the variable vane assembly 26 as described herein may be an IGV assembly, and/or may be a vane assembly forming any one or more of the compressor stages. Regardless, the variable vane assembly 26 as described herein comprises a plurality of variable vane airfoils 28 which radially project through the compressor gas flow passage 25 and are operable to pivot about their respective radially extending axes such as to modify and thus control the angle of the vane airfoils 28.
Referring now to
The buttons 36 are received within correspondingly shaped openings 38 formed the inner and outer shrouds 30, 32. Accordingly, rotation of one or both of the buttons 36 within the inner and outer shrouds 30, 32 causes corresponding rotation of the airfoil portion 34 of the variable vane 28 about its span-wise axis S. This therefore permits the angle of the variable vane 28 to be varied as required. The buttons 36 may, in one particular embodiment, be mounted on integrally formed trunions (not shown) which extend for example through the shrouds. Each of the variable vanes 28 is actuated for pivoting about its respective span-wise axis S using an appropriate type of actuation mechanism, for example a gear arrangement, a lever assembly, a pneumatic or hydraulic system, etc. This actuation mechanism is in communication with, and operated by, a control system which is operable to vary the angle of the vanes 28 as desired.
The leading edge 33 of each airfoil 34 of the variable vanes 28 is substantially axially aligned with the buttons 36, which are disposed at the forward or upstream end of the vanes 28, such that the leading edge 33 of the vane airfoil 34 intersects the button 36 at a point at or within the outer periphery of the circular button 36. Because the cord-wise length C of the vane airfoil 34 at the radial ends thereof is greater than the diameter of the button 36, a downstream overhang portion 42 of the vane airfoil 34 projects beyond the perimeter of the button 36 toward a trailing edge 35 of the vane airfoil 34.
In traditional variable vane assembly designs, as the vane pivots about its own radial axis, a gap between the ends (radially inner and outer) of the vane airfoil and the adjacent annular gas path passage wall also varies. The size of this mainly radial gap will depend on the radius of the annular gas path passage wall and the angle at which the variable vane is positioned relative to this wall surface.
Accordingly, referring now to
For simplicity of explanation, the inner shroud 30 of the variable vane assembly 26, as shown in
The inner shroud 30 of the variable vane assembly 26 includes a radially outer surface 41 facing away from the gas path 31 defined between the inner and outer shrouds 30, 32, and a radially inner surface 43 facing towards the annular gas path 31. The radially inner surface 43 of the inner shroud 30 includes an upstream portion 48 and a downstream portion 50. The downstream portion 50 may be disposed at least downstream of the openings 38 in the shroud 30 which receive the vane buttons 36 therein. In at least one embodiment, the downstream portion 50 is defined as being disposed rearward (i.e. downstream) of an annularly extending axis 44 which is axially aligned approximately with a midpoint of the circular openings 38 and therefore with a center of rotation of the variable inlet guide vanes.
At least the downstream portion 50 of the radially inner surface 43 of the inner shroud 30 has an irregular surface profile relative to a nominal gas path boundary surface. This nominal gas path boundary surface of the inner shroud may, for example, may be defined by the smooth surface 40 disposed on the upstream portion 48 of the inner shroud 30 and facing the gas path 31. The irregular surface profile of the downstream portion 50 comprises, in the depicted embodiment, a plurality of projections 52 which protrude into the gas path 31 relative to the smooth and flat surface 40 of the upstream portion 48 of the shroud 30. The projections 52 may also be optimized such as to limit aerodynamic losses, and thus may be formed as flow optimization surfaces. As seen in
Accordingly, the plurality of projections 52, which at least partially form the irregular surface profile of the downstream portion 50 of the inner shroud 30, are circumferentially spaced apart about the full circumference of the inner shroud 30, and are circumferentially offset from the vanes 28 such that at least one of the projections 52 is disposed between each pair of vanes 28. The irregular surface profile of the downstream portion 50 may also comprise recesses 54, rather than or in addition to the projections 52, which project (in the case of the inner shroud 30) radially inwardly into the material of the inner shroud 30 and thus which define troughs or grooves in the shroud 30 that extend below the nominal gas path surface of the shroud, as defined for example by the inwardly facing smooth surface 40 of the upstream portion 48.
The exact shape and configuration of the projections 52 which form the irregular surface profile of the downstream portion 50 of the inner shroud 30 is selected such as to minimize the radial clearance gap 60 defined between the radial edge of the overhang portion 42 of the vane airfoil 34 and the shroud 30, and to maintain this clearance gap 60 substantially constant throughout the range of travel of the pivoting variable vane 28.
As best seen in
As more clearly shown in
While the addition of the flow optimization surfaces forming the irregular surface profile provided within the downstream portion 50 of the shroud 30, and more particularly the projections 52 which extend into the flow stream of the gas path 31, enables the vane tip clearance gap 60 to be minimized and maintained substantially uniform over the full range of pivoting travel of the variable vanes 28, these projections may potentially cause flow disturbances which should be minimized. This may be achieved, for example, by balancing the projections 52 with neutralizing recesses 54, and alternately by extending portions of the irregular surface profile (ex: the projections 52, angular surfaces 53, recesses 54, etc.) upstream of the axis 44 (see
In at least the depicted embodiment, the projections 52, recesses 54 and angular surface portions 53 of the irregular surface profile of the downstream portion 50 are integrally formed with the remainder of the inner shroud 30. The irregular surface profile may thus be created within the outer surface 43 of the shroud using an appropriate machining process, such as milling for example.
Although the inner shroud 30 of the present variable vane assembly 26 is described in detail above with respect to the irregular surface profile on at least a downstream portion 50 thereof, which reduces the radial vane clearance gap 60 throughout the entire range of travel of the pivoting variable vanes 28, the outer shroud 32 of the variable vane assembly 26 may be similarly configured. More particularly, as best seen in
While both the inner and outer shrouds 30, 32 are described above and depicted in the enclosed drawings as comprising the flow optimizing irregular surface profiles, in an alternate embodiment one of the inner shroud 30 and the outer shroud 32 may be provided with an inwardly facing shroud surface, facing the gas path 31, which has an irregular surface profile as described herein on at least the downstream portion thereof.
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. Modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.