The invention relates to a compressor, in particular a lateral channel compressor.
A compressor is generally understood to be an engine in which fluid is compressed by rotation of an impeller (or bladed wheel) in a working area. On the inlet side, the working area of a compressor of the species is customarily joined to a connecting piece by which to aspirate the fluid that is to be compressed. On the outlet side of the working area, the compressed fluid is ejected via a pressure joint. In a lateral channel compressor, the working area comprises a lateral channel which adjoins the impeller. Upon rotation of the impeller, the fluid, while flowing helically between the impeller and the lateral channel, is delivered on a distance from the inlet connecting piece towards the outlet connecting piece and compressed successively.
For connection of the compressor to a plant which comprises for example an outlet vessel on the suction side and a pressure tank on the compression side, the inlet connecting piece is joined to a fluid duct of the outlet vessel and the outlet connecting piece to a fluid duct of the pressure tank. To this end, a connection must be produced between the inlet and outlet connecting piece, having a duct end of the respective fluid duct in such a way that there is no possibility of liquid or gas transfer to the surroundings.
A prerequisite for coupling the inlet or outlet connecting piece with the respective duct end resides in a connecting end of a specific type (for example hose joint, threaded joint, screwed flange etc.) being available that is compatible with the respective duct end.
In a conventional compressor, the connecting end, or each connecting end, is only suitable to be coupled with a duct end of a certain type so that solely fluid ducts that have that type of a duct end can be joineded to the compressor. For connection of fluid ducts to differing types of duct end, comparatively complicated retrofitting of the compressor is necessary or again the use of a specific adapter piece.
It is an object of the invention to specify a compressor to which easily and flexibly to connect fluid ducts with duct ends of various designs.
According to the invention, this object is attained by the features of claim 1. To this end, the compressor comprises an inlet connecting piece and an outlet connecting piece for fluid feed or discharge. A connector is allocated to at least one of these connecting pieces, the connector being provided for coupling the inlet or outlet connecting piece with a duct end of a fluid duct. According to the invention, the connector is equipped with a flange for joining the connector to the inlet or outlet connecting piece, and with a number (i.e. one or several) of connecting ends for joining the duct end. The or each connecting end is designed for optional connection to various types of duct ends.
In an especially simple embodiment, the connector only has one connecting end that is multi-functional, suiting for joining various types of duct ends. For example, the connecting end is equipped with an internal thread as well as an external thread, offering the option of joining fluid ducts with respectively corresponding threads. By alternative, the connector comprises several, in particular two connecting ends, each of which corresponding to one or several types of duct ends. For instance, a connecting end possesses a screwed flange and another connecting end, a hose joint, an internal and/or external thread etc.
In keeping with an advantageous embodiment, two connecting ends are disposed on both sides of the flange that is provided for connection to the inlet or outlet connecting piece. Appropriately, the flange is an annular projection which, by one of two opposed front faces, is optionally mountable on, or fixable to, the inlet or outlet connecting piece. Consequently, the connector can be placed on the inlet or outlet connecting piece, taking two alternative positions in which a respective connecting end is located on the outside of the inlet or outlet connecting piece, “ready” for being joined to a fluid duct, whereas the other connecting end “rests” inside the inlet or outlet connecting piece.
By advantage, the connecting end, in particular in the form of a hose joint, screwed or clamped flange, or threaded connecting piece, is provided with an internal and/or external thread.
For especially efficient absorption of the noise produced by the compressor upon operation, provision is made for a sound absorber which can be joined to the connecting end that is disposed inside the inlet or outlet connecting piece.
The advantages obtained by the invention reside in particular in that a connector, which is equipped with a number of connecting ends, is used for various types of fluid-duct ends to be joined, enabling rapid, reliable and flexible mounting of various types of fluid ducts on the inlet or outlet connecting piece of the compressor.
Details of the invention will become apparent from the ensuing description of exemplary embodiments, taken in conjunction with the drawing, in which
FIGS. 2 to 4 are longitudinal sectional views I-I according to
FIGS. 5 to 7 are illustrations, in accordance with
A connector 8 is allocated to each connecting piece 4, fluidically joining a fluid duct 10 on the suction side or on the compression side to the respective connecting piece 4. For the connector 8 to be fixed to the connecting piece 4, the connector 8 comprises a screwed flange 12 which is provided with a number of through holes 14 which lead through the flange 12 from a front 16 to a front 18 opposite thereof. The screwed flange 12 is mounted on the connecting piece 4 by means of screws 20 which are inserted into the through holes 14. To this end, the screws 20 engage with corresponding screw holes-22 of the connecting piece 4.
For joining the fluid duct 10 to the connecting piece 4, the connector 8 comprises a number of connecting ends 24, 26 in addition to the screwed flange 12 which is disposed approximately centrally there-between. The connecting end 24 adjoins the front 16 and the connecting end 26 the front 18 of the screwed flange 12. The screwed flanged 12 is placed on the connecting piece in such a way that the connecting end 24 is located outside the connecting piece 4 and the connecting end 26 inside the connecting piece 4. The connecting end 24 is ready for being coupled with a duct end 28 of the fluid duct 10. For the connecting end 26 to be used for coupling with a corresponding fluid-duct-10 end 28 instead of the connecting end 24, the connector 8 can be detached from the connecting piece 4 and placed on reversely, with the front 16 on the connecting piece 4 and the connecting end 24 inside the connecting piece 4. The screwed flange 12 is configured in such a way that the connector 8 may be placed optionally by one of the two fronts 16, 18 on the connecting piece 4.
FIGS. 2 to 7 illustrate exemplary embodiments of the connector 8 as seen in a longitudinal sectional view I-I of
For fluidic connection of the connecting end 24 to the connecting end 26, and thus for fluidic connection of the connecting piece 4 to the corresponding fluid duct 10, the connector 8 is provided with a through hole 36 of an inside diameter 38 which passes through the screwed flange 12 from the front 16 to the front 18. The connecting piece 4 further comprises a sound absorber 40 of the type of a sieve pipe or the like. The sound absorber 40 has an outside diameter 44 which, on the one hand, exceeds the inside diameter 38 of the through hole 36 and, on the other, is slightly less than the inside diameter 46 of the connecting end 26 so that the sound absorber 40 is insertable into the connecting end 26. In this way, the sound absorber 40 is held safely and tightly in particular in the vicinity of the connecting end 26, precluding any vibrations.
According to
In the arrangement, seen in
By analogy to
By analogy to
In the embodiment of the connector 8 according to FIGS. 5 to 7, the screwed flange 12 possesses an odd number of (in particular three) through holes 14, and the screwed-flange connection 58 an odd number of (in particular three) screw holes 66. The through holes 14 and the screw holes 66 are distributed regularly along the circumference of the connector 8, with the through holes 14 and the screw holes 66 being displaced one in relation to the other in the peripheral direction for free accessibility of the through holes 14 from both fronts 16 and 18 of the screwed flange 12.
Number | Date | Country | Kind |
---|---|---|---|
20200419206.3 | Dec 2004 | DE | national |