The present invention relates to a method and apparatus for generating compressed air. More specifically, the invention relates to a compressor for motor vehicles employing an inlet port in a swash plate housing.
Swash plate compressors are generally known in the art. These compressors typically employ a cylinder block with a plurality of piston channels mounted on a drive shaft. A plurality of pistons are slidably disposed in the piston channels and are coupled to a swash plate that is also mounted on the drive shaft. In accordance with the rotation of the drive shaft, the swash plate pivots, causing reciprocal motion of the pistons within the piston channels, thereby alternately creating suction and compression strokes.
These compressors employ a variety of mechanisms that utilize the rotational force of the drive shaft to make the swash plate pivot, such as an actuating assembly with a slanted surface underneath the swash plate, as disclosed in U.S. Pat. No. 6,439,857 to Koelzer, which is assigned to the assignee of the present application, an assembly of rotating and non-rotating plates, as disclosed in U.S. Pat. No. 5,626,463 to Kimura, and a rotatable cylinder block, as disclosed in U.S. Pat. No. 5,394,698 to Takagi. As the swash plate pivots, the pistons reciprocate within the piston channels of the cylinder block, alternately drawing fluid to be compressed into the channels and subsequently compressing and discharging the fluid, all of which are hereby incorporated herein by reference.
In this way, the rotational force of the shaft is converted into axial motion of the pistons, enabling the pistons to alternately perform the functions of suction and compression, and thus, fluid is first drawn into a piston channel and is subsequently compressed and discharged from the piston channel.
In order to permit fluid to be drawn into, and subsequently discharged from, the piston channels, these compressors typically include a compressor head having inlet and outlet valves, or separate valve plates disposed between the compressor head and the cylinder block having such valves, which regulate the inflow and outflow of the fluid. These valves permit the piston channels to communicate with inlet and outlet channels, and ultimately, inlet and outlet ports, in the compressor head.
One disadvantage of these compressors, however, is that they must facilitate both the entry of uncompressed fluid from the compressor head in one direction and the discharge of compressed fluid to the compressor head in the opposite direction. Therefore, the compressor head must be designed with both inlet and outlet ports in the compressor head that each exclusively communicate with corresponding channels and valves, in order to permit the fluid to alternately flow in opposite directions and prevent the backfeeding of this fluid. Such assemblies tend to be difficult and costly to manufacture, and further, often entail multiple parts that are difficult to assemble.
Another disadvantage of these compressors is that the swash plate assemblies typically include at least one bearing facilitating the translation of the rotational motion of the drive shaft to the axial motion of the pistons within the piston channels. Such bearings may include, for example, a bearing coupling an inner part of the swash plate, which rotates with the drive shaft, and an outer part of the swash plate, which is coupled to the pistons, such as the assembly disclosed in U.S. Pat. No. 6,439,857 to Koelzer. Similarly, such bearings may include a bearing by which the pistons are coupled to the swash plate, or a bearing by which another device that facilitates the efficient operation of the swash plate is coupled thereto.
In order to overcome this disadvantage, it has been proposed to use a swash plate compressor having a cylinder block defining a swash plate chamber therein, the cylinder block having an inlet port that permits a fluid to flow into the swash plate chamber and cool the bearings therein, such as the compressor disclosed in U.S. Pat. No. 4,963,074 to Sanuki. Such compressors employing an inlet port in the cylinder block, however, suffer from several disadvantages. First, because the path of air flowing through the inlet port intersects with the piston channel, the port is often obstructed. Moreover, the fluid must pass over the inner walls of the cylinder block, which obviously have been heated due to the frictional force resulting from the pistons reciprocating in the piston channels, thereby increasing the temperature of the fluid and decreasing its ability to cool the bearings in the swash plate chamber.
What is desired, therefore, is a method and apparatus for compressing fluid that employs an arrangement for receiving and discharging fluid that is not complex. What is further desired is a method and apparatus that permits the fluid to be compressed to also be used to cool at least one of the bearings employed by the apparatus.
Accordingly, it is an object of the present invention to provide a compressor that has an arrangement for receiving and discharging fluid that is inexpensive to manufacture.
It is a further object of the present invention to provide a compressor that has an arrangement for receiving and discharging fluid that is easy to assemble.
It yet another object of the present invention to provide a compressor that permits the fluid to be compressed to also be used to cool at least one of the bearings in the compressor.
In order to overcome the deficiencies of the prior art and to achieve at least some of the objects and advantages listed, the invention comprises a compressor including a cylinder block, the cylinder block at least partially defining a compression chamber, a swash plate housing mounted adjacent to the cylinder block, the swash plate housing at least partially defining a swash plate chamber, an inlet port in the swash plate housing through which fluid enters the swash plate chamber without passing through any part of any cylinder block, and a passageway by which the swash plate chamber communicates with the compression chamber.
In another embodiment, the invention comprises a compressor including a cylinder block at least partially defining a compression chamber and having at least one piston channel therein, a swash plate housing mounted adjacent to the cylinder block, the swash plate housing at least partially defining a swash plate chamber, an inlet port in the swash plate housing through which fluid enters the swash plate chamber without passing through any part of any cylinder block, a passageway by which the swash plate chamber is in fluid communication with the compression chamber, through which the fluid in the swash plate chamber flows to the compression chamber, a shaft disposed in the swash plate housing and cylinder block, a swash plate mounted on the shaft, at least one piston coupled to the swash plate and disposed in the at least one piston channel and slidable therein, and an actuator contacting the swash plate, such that the actuator, in a first position, exerts a force on the swash plate appropriate to retain the swash plate in a position perpendicular to the drive shaft, such that the at least one piston remains idle, and, in a second position, exerts a force on the swash plate appropriate to pivot the swash plate, thereby causing reciprocal motion of the at least one piston.
In yet another embodiment, the invention comprises a method of compressing fluid with a compressor having a cylinder block at least partially defining a compression chamber and a swash plate housing at least partially defining a swash plate chamber, the method including receiving the fluid in the swash plate chamber, cooling a bearing in the swash plate chamber with the received fluid, communicating the fluid to the compression chamber, compressing the fluid in the compression chamber, and discharging the fluid to a vehicle's air system.
The basic components of one embodiment of a swash plate compressor 10 in accordance with the invention are illustrated in FIG. 1. As used in the description, the terms “top,” “bottom,” “front,” “rear,” “up” and “down” refer to the objects referenced when in the orientation illustrated in the drawings, which orientation is not necessary for achieving the objects of the invention.
Typically, the compressor 10 includes a main body 12, a rear mounting cover 14, and a front mounting flange 16. When in use, the compressor 10 is installed on a vehicle, such as an over-the-road truck, and generates compressed air for the vehicle's pressure system, which typically includes a tank (not shown) that supplies the compressed air to various accessories, such as, for example, the brake system. This production of the compressed air begins by receiving air, which may or may not be delivered from a turbocharger (not shown), in response to a reduction of the air pressure in the air system to or below a reference pressure. Though, in the embodiment described herein, the fluid is air, in certain other embodiments, the fluid may comprises any of various gases, liquids, or mixtures thereof.
The basic components of one embodiment of the main body 12 of the compressor 10 are illustrated in
Each piston 30 has a face 31 for contacting the air to be compressed. Accordingly, a compression chamber 34 is formed from the space in the piston channel 32 to which the piston face 31 is exposed. The compression chamber 34, which is in fluid communication with the air system, both receives air to be compressed and discharges air after compressing it. Accordingly, the air pressure in the compression chamber 34 corresponds to the air pressure in the air system, thereby ensuring a state of pressure equilibrium for the compressor 10, as is further explained below.
In the embodiment described herein, the swash plate 24 has an outer part 42 and inner part 44, wherein the outer part 42 is coupled to the inner part 44 via a bearing 46. The inner part 44 is mounted on the shaft 40 with a pin 48, such that the inner part 44 rotates with the shaft 40. As the shaft 40 rotates, the bearing 46 permits the outer part 42 of the swash plate 24 to be restrained as the inner part 44 rotates with the shaft 40. Accordingly, the outer part 42, the pistons 30, and the cylinder block 26 can all be non-rotating. With this arrangement, the shaft 40 can continue to rotate even when the compressor 10 is not compressing air, and the pistons 30 are idle. As a consequence, accessories coupled to the shaft 40, such as, for example, a fuel pump (not shown), continue to function.
In certain embodiments, in order to prevent the outer part 42 from rotating, the swash plate 24 receives a radially extending stopper 49 that engages an axial groove of the housing 20, as shown in FIG. 2. In other embodiments, as shown in
To facilitate the reciprocal motion of the pistons 30 within the piston channels 32, the entire swash plate 24 is pivotal with respect to the shaft 40. In order to translate the pivotal displacement of the swash plate 24 about the shaft 40 to reciprocal displacement of the pistons 30 parallel to the axis of the shaft 40, the pistons 30 are coupled to the swash plate 24 via a bearing 50. In the embodiment described herein, the outer part 42 of the swash plate 24 includes a plurality of ball links, each of which is comprised of a swash plate rod 52 and a ball element 54. In certain embodiments, the rods 52, which are typically spaced angularly equidistantly from one another along an outer periphery of the swash plate 24 and extend radially therefrom, are bolts having a thread 56 on one end, which is screwed into the swash plate 24, and a nut 58 on the opposite end. The ball element 54 has a spherical outer surface for slidably engaging a piston rod 60, which extends parallel to the rotating shaft 40, in order to permit axial displacement of the piston rod 60 while allowing the ball element 54 and the piston rod 60 to be angularly displaced relative to one another.
In the embodiment depicted herein, an actuator 70 is provided for effecting the pivotal displacement of the swash plate 24. The pistons 30 remain idle in a state of pressure equilibrium when a piston-generated force acting upon the swash plate 24 and corresponding to the air pressure in the compression chambers 34 above the pistons 30 is equal and oppositely directed to a thrust generated by the actuator 70 against the swash plate 24. This state of equilibrium occurs when the swash plate 24 is in a substantially perpendicular position with respect to the axis of a drive shaft 40. Once the balance of air pressure has been disturbed, the thrust from the actuator 70 exceeds the lowered piston-generated force to angularly displace the swash plate 24 from its perpendicular position. As a result, the pistons 30 begin to reciprocally move in the piston channels 32. Thus, the more the air pressure in the air system drops, the larger the angular displacement of the swash plate 24 and the longer the strokes of the pistons 30 within the piston channels 32.
The swash plate 24 pivots about the pin 48 upon the thrust exerted by the actuator 70. In certain advantageous embodiments, the actuator 70 includes a resilient element 72, such as, for example, Belleville washers, and a cam collar 74. The washers 72 are connected to the cam collar 74, which has a slanted cam surface with respect to the shaft 40, an extended part of which is always in contact with the swash plate 24. The swash plate 24 is always under pressure existing above the pistons 30, and thus, in order to maintain the swash plate 24 in a position perpendicular to the shaft 40 during the state of equilibrium, the cam collar 74 must continuously preload the swash plate 24. However, this contact in the state of equilibrium does not generate a thrust sufficient to overcome the pressure above the pistons 30 and pivot the swash plate 24. In operation, the washers 72 expand in response to the pressure drop in the air system to or below the reference value. As a result, the cam collar 74 is axially displaced to pivot the swash plate 24, the movement of which generates the suction and compression strokes of the pistons 30.
Although the actuator 70 is shown rotatably mounted on the shaft 40, in certain embodiments, the actuator 70 can be mounted on the housing 20. Further, in certain embodiments, other types of resilient elements, such as different types of compression springs 78, such as, for example, bellows, are used instead of the Belleville washers described above. In other embodiments, the actuator includes a servo piston (not shown), which is actuated in response to a pilot signal representing the reference value of the air system's pressure and generated by an external source once the pressure falls down to or below the threshold. In such embodiments, the servo piston, which is attached to a mechanical link such as a fork, displaces the cam collar 74 to exert a thrust to pivotally displace the swash plate 24.
Typically, the main body 12 of the compressor 10 further includes a compressor head 18 mounted adjacent to the cylinder block 26. The compressor head has an inlet channel 80 and an outlet channel 82 that are both in communication with the compression chambers 34. In order to regulate the entry of uncompressed air from the inlet channel 80, and the discharge of compressed air to the outlet channel 82, and to prevent the back-feeding of this air, the compressor 10 is typically provided with a plurality of inlet and outlet valves 84, 85. The valves 84, 85, which are often one-way reed or poppet valves, allow air to flow along a path from a high-pressure area to a low-pressure area, and are typically part of the compressor head 18, or are created using valve plates 86, 87 disposed between the compressor head 18 and the cylinder block 26.
The compressor head 18 is provided with an outlet port 92 in communication with the outlet channel 82. Accordingly, once compressed air is discharged from the compression chambers 34 through the outlet valves 85, the air may be directed to the air system via the outlet port 92. The swash plate housing 20 is provided with an inlet port 90, thereby eliminating the need for the compressor head 18 to have both an inlet port and an outlet port in fluid communication with the inlet channel 80 and the outlet channel 82, respectively, one of which runs along the outer periphery of the compressor head 18, and the other of which runs around the center of the compressor head 18, as explained further below.
As illustrated in
This arrangement is particularly useful because various types of bearings are typically employed in order to operate the compressor 10 effectively and efficiently. As shown more clearly in
Another bearing typically employed in order to operate the compressor 10 may be the bearings 50, mentioned above, by which the swash plate 24 is coupled to the pistons 30. Each bearing 50 could take any of various forms, such as, for example, a flange 62 of the piston rod 60, the inner surface of which cooperates with an outer extremity of the ball element 54, as illustrated in FIG. 9. Accordingly, as the swash plate 24 is angularly displaced from a position perpendicular to the drive shaft 40, the cooperating surfaces of the ball element 54 and flange 62 slide relative to one another. Such relative displacement allows the piston rod 60 and ball element 54 to move axially together, while the ball element 54 rotates within the flange 62 in response to the angular motion of the swash plate 24. Though the cooperating surfaces of the ball element 54 and flange 62 are depicted as annular, in certain embodiments, other shapes that move synchronously while being angularly displaced relative to one another may be used. Alternatively, in other embodiments, the bearing 50 may take other forms, such as, for example, bearings similar to those described above.
Yet another bearing that may be employed in order to operate the compressor 10 efficiently is a gimbal arm bearing. As mentioned above and shown more clearly in
In order to permit rotation, each of the joints 102, 104 typically includes at least one roller bearing 110 and a journal 112 disposed therein. These joints may take various forms. For example, a journal cap 114 may include the roller bearing 110. Hence, the journal 112, which is coupled with, connected to, or an integral part of, the swash plate 24 or housing 20, is rotatably disposed in the journal cap 114. Alternatively, a cavity 118 in the housing 20 or swash plate 24 may include a roller bearing 120 and thus, a journal 122 is rotatably disposed in the cavity 118 to create the joint 104.
As illustrated in
It should be understood that the foregoing is illustrative and not limiting, and that obvious modifications may be made by those skilled in the art without departing from the spirit of the invention. Accordingly, reference should be made primarily to the accompanying claims, rather than the foregoing specification, to determine the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4321019 | Degawa et al. | Mar 1982 | A |
4814653 | Hasegawa et al. | Mar 1989 | A |
4963074 | Sanuki et al. | Oct 1990 | A |
5113670 | McAuliffe et al. | May 1992 | A |
5394698 | Takagi et al. | Mar 1995 | A |
5626463 | Kimura et al. | May 1997 | A |
5752413 | Kuhn et al. | May 1998 | A |
5782316 | Kobayashi et al. | Jul 1998 | A |
6162024 | Bruzek | Dec 2000 | A |
6439857 | Koelzer et al. | Aug 2002 | B1 |
6443711 | Miller | Sep 2002 | B1 |
6883416 | Koelzer et al. | Apr 2005 | B1 |
20020048521 | Achtelik et al. | Apr 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20040213678 A1 | Oct 2004 | US |