The present disclosure is based on and incorporates herein by reference Japanese Patent Application No. 2012-81327 filed on Mar. 30, 2012.
The present disclosure relates to a compressor that has a compression chamber, into which an intermediate pressure gas is injected.
As disclosed in, for example, Patent Literature 1, there is known a compressor that supercharges a compression subject fluid upon injection of the compression subject fluid into the compressor. Known electric compressors for refrigerating and air conditioning include an electric compressor having a compressing unit of a reciprocating type, an electric compressor having a compressing unit of a rotary type, and an electric compressor having a compressing unit of a scroll type. Among these types, the compressor of the scroll type has been practically used by utilizing the characteristics of the high efficiency, the low noise level and the low vibration level. In the compressor of the scroll type, a refrigerant gas of an intermediate pressure is injected through a check valve into a compression chamber formed between a stationary scroll and an orbiting scroll to implement the stable and efficient gas injection by utilizing the moderate compression that is the characteristic of the compressor of the scroll type. However, in a case where a path, which extends from the check valve to the compression chamber formed between the stationary scroll and the orbiting scroll, is complicated and is long, it is known that a dead volume becomes large to cause adverse influence on the compression efficiency, an increase in the amount of intrusion of a lubricating oil, unstableness of the lubrication caused by deterioration of draining, and unstableness of the performance.
In the prior art technique of Patent Literature 1, an injection port is formed in an end plate of the stationary scroll in such a manner that the injection port penetrates through the end plate from a back surface side of the end plate to the compression chamber in a wall thickness direction of the end plate. A block, to which an injection pipe is connected, is engaged with an outer surface of the end plate of the stationary scroll, which corresponds to the injection port, and a check valve chamber is formed between the end plate and the block. A reed valve element is fixed with bolts to a guide inlet of the block, which is connected with the injection pipe, to form a check valve. In this instance, the guide inlet of the injection pipe and the injection port are coaxially arranged. Furthermore, a valve stopper of the reed valve element is formed in a portion of the check valve chamber.
The prior art technique of Patent Literature 1 is the one that has a simple structure and a relatively small dead volume and can limit re-expansion of a compressible fluid and outflow of a lubricant oil. However, the following disadvantages (1)-(3) have been encountered.
(1) In the prior art technique, attention is not given to a relationship between a lifting direction of the reed valve element and a location of the injection port, so that depending on the positional relationship discussed above, a flow passage resistance may possibly become high, and an injection flow quantity may possibly be reduced. Furthermore, a size of the reed valve element is large. Therefore, when it is desirable to further reduce the dead volume, there will be a mounting difficulty.
(2) In the prior art technique, the bolts, which fix the reed valve element, are required. Therefore, the component costs are increased. Furthermore, the number of assembling steps is increased, and thereby the assembling costs are increased.
(3) Normally, in the case where the reed valve element is used, the valve stopper is required. In the prior art technique, there is the disclosure about the formation of the valve stopper, and the formation of the valve stopper requires a separate processing step, which is separate from a processing step of the refrigerant passage.
Besides the above prior art technique, Patent Literature 2 discloses a compressor of a refrigeration cycle, into which an intermediate pressure gas is injected. In Patent Literature 2, a reed valve element, which opens or closes in a direction perpendicular to an axial direction of an injection port that projects from a back surface of a stationary scroll, is inserted into the injection port, so that a dead volume cannot be reduced, and there is a disadvantage with respect to provision of an axial space. Patent Literature 3 recites a compressor, in which liquid injection is executed, and a plug is fitted into a connecting conduit, which is communicated with an injection port, to limit gasification of the liquid. In this compressor, a dead volume cannot be reduced when the dead volume of the entire flow passage is considered.
An objective of the present disclosure relates to the above disadvantages and is to provide a compressor, which has a compression chamber for receiving an intermediate pressure gas injected thereto, while the compressor can reduce a dead volume and can improve an injection characteristic.
A compressor according to the present disclosure has a housing that includes: a low pressure refrigerant supply passage that conducts refrigerant, which has a low pressure; a compression chamber that compresses the refrigerant supplied from the low pressure refrigerant supply passage to a high pressure, which is higher than the low pressure, and discharges the compressed refrigerant out of the compression chamber; and an intermediate pressure refrigerant supply passage that is communicatable with the compression chamber through an injection port to inject refrigerant, which has an intermediate pressure that is higher than the low pressure and is lower than the high pressure, into the compression chamber. The compressor has a check valve that is received in a receiving hole of the intermediate pressure refrigerant supply passage, which is placed adjacent to a flow inlet of the injection port. The check valve includes a valve seat portion and a reed valve element. The valve seat portion has a valve seat and a valve seat passage, and the valve seat passage is located radially inward of the valve seat and extends through the valve seat portion to conduct the refrigerant therethrough. A center of the flow inlet of the injection port is offset from a central axis of the valve seat passage. The reed valve element is seatable against the valve seat to close the valve seat passage and is liftable from the valve seat to open the valve seat passage. A check valve chamber is formed in the receiving hole at a location between the valve seat portion and a wall surface of the receiving hole to receive at least a portion of the reed valve element when the reed valve element is lifted from the valve seat.
a) is cross-sectional view showing an area around a compression chamber of the compressor according to the embodiment of the present disclosure, and
a) is a cross-sectional view of an area around a reed valve element in a first modification of the embodiment of the present disclosure, and
a) is a front cross-sectional view of an area around a reed valve element in a second modification of the embodiment of the present disclosure, and
An embodiment of the present disclosure will be described with reference to the drawings. In the following embodiment and modifications thereof described below, similar components are indicated by the same reference numerals and will not be redundantly described.
The embodiment of the present disclosure is an example, in which a principle of the present disclosure is applied to a refrigeration cycle, more specifically, a heat pump cycle of a hot-water supply system.
The heat pump cycle branches at a branch point 7, which is located on a downstream side of the first expansion valve 3 and on an upstream side of the second expansion valve 4, to supply the refrigerant gas of an intermediate pressure, which is once depressurized through the first expansion valve 3, to the compressor 1 through an intermediate pressure conduit 8. A refrigerant discharge passage 54 (see
In the embodiment of the present disclosure, the principle of the present disclosure is applied to the heat pump cycle of the hot-water supply system. Alternatively, the principle of the present disclosure may be applied to other systems or a refrigeration cycle (including a heat pump cycle) of other apparatuses. For example, the principle of the present disclosure may be applied to a refrigeration cycle of a vehicle air conditioning system or a refrigeration cycle of other industrial or domestic air conditioners. Furthermore, the embodiment of the present disclosure describes an example, in which the principle of the present disclosure is applied to the compressor 1, which is constructed as a scroll compressor. However, the present disclosure is not limited to this, and the principle of the present disclosure may be applied to single stage compressors of other types. In addition, the principle of the present disclosure may be applied to a double stage compressor. Furthermore, in the heat pump cycle of the embodiment of the present disclosure, the gas-liquid separator 6 is provided on the downstream side of the heat exchanger 5. However, it should be noted that the principle of the present disclosure may be applied to a heat pump cycle that does not have the gas-liquid separator 6.
An electric power is supplied to the stator coil 212 through power supply terminals 23. The power supply terminals 23 are placed at an upper end part of the housing 30. When the electric power is supplied to the stator coil 212, a rotating magnetic field is applied to the rotor 22 to generate a rotational force at the rotor 22, and thereby the rotor 22 is rotated together with the drive shaft 25. The drive shaft 25 is configured into a cylindrical tubular body, and an oil supply passage 251, which supplies the lubricant oil to slidable parts (lubrication subject parts) of the drive shaft 25, is formed in an interior space of the drive shaft 25. The oil supply passage 251 opens in a lower end surface of the drive shaft 25 and is closed by a closing member 26 at an upper end surface of the drive shaft 25.
A flange 252, which projects in a horizontal direction (a direction perpendicular to the axial direction), is formed in a portion of the drive shaft 25, which projects from the rotor 22 on the lower side of the rotor 22. A balance weight 254 is formed in the flange 252. Balance weights 221, 222 are also provided at upper and lower sides, respectively, of the rotor 22. The drive shaft 25 is supported by bearings 27, 291. A middle housing 29 is configured into a cylindrical tubular form having inner and outer diameters, which are increased in a stepwise manner from the upper side toward the lower side of the middle housing 29 in the top-to-bottom direction. An outer peripheral surface of the middle housing 29 is fixed to a tubular member 31 of the housing 30. An upper portion of the middle housing 29 forms the bearing 291. A movable scroll (also referred to as an orbiting scroll) 11, which serves as a movable member of the compressing mechanism 10, is received in a lower portion of the middle housing 29. A stationary scroll 12 of the compressing mechanism 10, which serves as a stationary member, is securely held on a lower side of the movable scroll 11. The movable scroll 11 is slidable relative to the stationary scroll 12.
The movable scroll 11 and the stationary scroll 12 has a movable scroll base plate portion 111 and a stationary scroll base plate portion 121, respectively, which are configured into a disk plate form. The movable scroll base plate portion 111 and the stationary scroll base plate portion 121 are opposed to each other in the top-to-bottom direction. A boss portion 113, which is configured into a cylindrical tubular form and receives a lower end part of the drive shaft 25, i.e., an eccentric portion 253, is formed in a center portion of the movable scroll base plate portion 111. The eccentric portion 253 is eccentric to a rotational center of the drive shaft 25.
A rotation limiting mechanism (not shown) is provided in the movable scroll 11 and the stationary scroll 12 to limit rotation of the movable scroll 11 about the eccentric portion 253. Therefore, when the drive shaft 25 is rotated, the movable scroll 11 revolves about a revolution center thereof, which is the rotational center of the drive shaft 25, without rotating about the eccentric portion 253. Two thrust plates 13, 14 are stacked one after another in the top-to-bottom direction at a location between the movable scroll 11 and the middle housing 29. The thrust plate 13 is positioned relative to the middle housing 29 by a positioning pin 131. The thrust plate 14 is fixed to the movable scroll 11 and is positioned relative to the movable scroll 11 by a positioning pin 141.
A spiral tooth (scroll wrap) 112 is formed in the movable scroll 11 to project from the movable scroll base plate portion 111 toward the stationary scroll 12. A spiral tooth (a scroll wrap) 122, which is meshed with the tooth 112 of the movable scroll 11, is formed in a top surface (a movable scroll 11 side surface) of the stationary scroll base plate portion 121. The spiral teeth 112, 122 of the scrolls 11, 12 are meshed with each other and contact with each other at a plurality of locations, so that a plurality of crescent shaped compression chambers 15 is formed. The refrigerant is supplied to each compression chamber 15 through a refrigerant inlet 36 and a refrigerant intake passage 128. The refrigerant inlet 36 and the refrigerant intake passage 128 form a low pressure refrigerant supply passage 37 that conducts the refrigerant gas, which has a low pressure, to the compression chamber 15. A refrigerant conduit 38 is connected to the refrigerant inlet 36. The refrigerant intake passage 128 of the stationary scroll base plate portion 121 is communicated with a radially outermost part of a spiral groove of the stationary scroll base plate portion 121 (a radially outermost part of the groove formed between the tooth 122 and an outer peripheral part of the stationary scroll base plate portion 121).
A discharge hole 123 is formed at a center part of the stationary scroll base plate portion 121 to discharge the refrigerant compressed in the compression chamber 15. A discharge chamber 124, which is communicated with the discharge hole 123, is formed in the stationary scroll base plate portion 121 at a lower side of the discharge hole 123. The discharge chamber 124 is defined by a recess 125, which is formed in the lower surface of the stationary scroll 12, and a partition member 18, which is fixed to a lower surface of the stationary scroll 12. A reed valve element 17 and a stopper 19 are placed in the discharge chamber 124. The reed valve element 17 serves as a check valve that limits backflow of the refrigerant to the compression chamber 15, and the stopper 19 limits a maximum opening degree of the reed valve element 17. The refrigerant of the discharge chamber 124 is discharged to an outside of the housing 30 through the refrigerant discharge passage 54, which is formed in the stationary scroll base plate portion 121, and the refrigerant outlet 54a (see
As shown in
A stationary side oil supply passage (not shown) is formed in an inside of the stationary scroll base plate portion 121. A movable side oil supply passage (not shown) is formed in an inside of the movable scroll base plate portion 111 to intermittently communicate with the stationary side oil supply passage at the time of orbital movement (revolution) of the movable scroll 11. The lubricant oil, which is outputted from the oil separator 40, is supplied to a location between the stationary scroll base plate portion 121 and the movable scroll base plate portion 111 through the conduit connecting member 34. Thereafter, this lubricant oil is supplied to a location between the eccentric portion 253 and the boss portion 113 of the movable scroll 11 and is also supplied to the bearings 27, 291 and the like through the oil supply passage 251. An oil reserve chamber 35 is formed in a bottom portion of the housing 30.
The supply and discharge passages of the refrigerant, and the supply passage of the lubricant oil discussed above are indicated as examples and are not limited to the above-described ones. That is, the supply and discharge passages of the refrigerant and the supply passage of the lubricant oil may be changed to other known modifications. The compressor 1 of
Next, the injection mechanism, which injects the intermediate pressure gas into the compression chamber of the compressor, will be described.
In a case where the intermediate pressure gas is injected into the compression chamber of the compressor, particularly, when carbon dioxide is used as the refrigerant, it is demanded to have a high ratio of specific heat, a high gas density, a reduced dead volume and improvement of inflow of the gas in a high efficiency operational range. In the present embodiment, a plurality of injection ports (hereinafter simply referred to as ports) 400, each of which injects the intermediate pressure refrigerant into the corresponding compression chamber 15, is formed in the stationary scroll base plate portion 121 of the stationary scroll 12. Each of the ports 400 and the surrounding portion thereof are constructed substantially identical to each other for all of the ports 400. Therefore, in the following discussion, only one of the ports 400 will be described. Furthermore, instead of the plurality of ports 400, it is possible to provide only one port 400, which injects the intermediate pressure refrigerant to a corresponding one of the compression chambers 15, if necessary. As shown in
The refrigerant (the intermediate pressure gas) to be injected into the compression chamber 15 is guided from the branch point 7 of
a) to 3(c) show details of the check valve 300. In the present embodiment, the check valve 300 is placed at the closest possible position to the compression chamber 15. The receiving hole 310 is generally parallel to an extending direction of the port 400 and is recessed in a surface of the stationary scroll base plate portion 121, which is located on a side that is opposite from the compression chamber 15 in a top-to-bottom direction (an axial direction of a central axis Od of the drive shaft 25) in
The check valve 300 includes a valve seat portion (also referred to as a valve seat member) 302 and the reed valve element 303. The valve seat portion 302 and the reed valve element 303 are formed as separate bodies, respectively, from metal (e.g., iron or iron alloy). At the time of assembling the check valve 300 to the receiving hole 310, the reed valve element 303 is press fitted into the receiving hole 310 up to a point, at which a circular outer peripheral seal portion 303c of the reed valve element 303 contacts a wall surface portion of the receiving hole 310, i.e., a seat portion 310b of the receiving hole 310. Next, the valve seat portion 302 is press fitted into the receiving hole 310 and is fixed in a state where the valve seat portion 302 contacts the reed valve element 303. In this way, the valve seat portion 302 is directly held in the state where the valve seat portion 302 contacts a valve seat portion holding section 310a of the receiving hole 310. The assembling method of the check valve 300 is not limited to this method, and the check valve 300 may be assembled by a different method. For example, a male thread may be formed in the outer peripheral surface of the valve seat portion 302, and a female thread may be formed in an inner peripheral surface of the receiving hole 310. In such a case, the male thread of the valve seat portion 302 is threadably engaged with the female thread of the receiving hole 310, and the valve seat portion 302 is urged against the reed valve element 303, which is inserted into the receiving hole 310, to fix the valve seat portion 302.
In the state shown in
Normally, in order to reduce the dead volume, the lift amount of the reed valve element 303 (more specifically, the opening and closing end portion 303b) should be made as small as possible. However, when the refrigerant to be injected passes between the valve seat 302a and the reed valve element 303, the reed valve element 303, which is adjacent to the valve seat 302a, forms a flow passage resistance to possibly cause a reduction in the flow quantity. In the present embodiment, a central axis O2 of the valve seat portion 302 (more specifically, the valve seat 302a) and a central axis O1 of the reed valve element 303 (the circular outer peripheral seal portion 303c) are arranged such that the central axis O2 and the central axis O1 generally coincide with a central axis O3 of the check valve chamber 301. A center Op of the flow inlet 400a of the port 400, which is communicated with the compression chamber 15, is placed in a corresponding position, which is opposite from the connecting portion 303a of the reed valve element 303 in the radial direction and is offset from the central axis O of the valve seat passage 304. Therefore, when the opening and closing end portion 303b of the reed valve element 303 is opened upon lifting of the opening and closing end portion 303b from the valve seat 302a, as indicated by the dotted line in
Particularly, when the port 400 is placed on the opposite side, which is opposite from the connecting portion 303a of the reed valve element 303 in the radial direction, the gap between the reed valve element 303 (more specifically, the opening and closing end portion 303b) and the valve seat portion 302 (more specifically, the valve seat 302a) at the time of opening the reed valve element 303 is maximized, and thereby the refrigerant can flow into the port 400 from the side where the flow passage cross-sectional area is maximized. Thus, the pressure loss can be limited.
With the above construction, the flow passage resistance is reduced, and the re-expansion loss caused by the dead volume is reduced. Thus, the performance ratio (flow characteristics) can be improved by about 25%. The injection of the intermediate pressure gas into the compression chamber 15 is made for the purpose of increasing the quantity of the flow through the condenser (the water refrigerant heat exchanger), and this increase in the quantity of the flow can be about 25%.
In the embodiment discussed above, the central axis O1 of the reed valve element 303 (more specifically, the circular outer peripheral seat portion 303c), the central axis O2 of the valve seat portion 302, and the central axis O3 of the check valve chamber 301 are arranged to be generally coaxial to each other. In this way, a generally circular outer peripheral edge of the circular outer peripheral seat portion 303c, a generally circular outer peripheral edge of the valve seat portion 302, and a generally circular inner peripheral edge of the check valve chamber 301 become generally concentric to each other and can be easily processed. Here, it should be noted that the present embodiment can be implemented even in a case where the central axis O of the valve seat passage 304 does not coincide with the central axes O1-O3 in some cases as long as the center Op of the flow inlet 400a of the port 400 is offset from the central axis O of the valve seat passage 304. In the present embodiment, the central axis O2 of the valve seat portion 302 and the central axis O of the valve seat passage 304 are separately indicated. Although these axes normally, generally coincide with each other, these axes are separately indicated in order to include the case, in which these axes do not coincide with each other, in the scope of the present disclosure.
An outer diameter of the circular outer peripheral seat portion 303c of the reed valve element 303 is set to be slightly larger than an inner diameter of the receiving hole 310, so that the positioning of the reed valve element 303 can be achieved by the press fitting without using, for example, a bolt(s). Specifically, the circular outer peripheral seat portion 303c and the valve seat portion 302 can be fixed into the receiving hole 310 by the press fitting. In this way, the fixing element, such as the bolt(s), which was required in the prior art technique, is not required. Thereby, the costs can be reduced.
The present disclosure is not limited to the above embodiment, and the above embodiment can be appropriately modified within the scope of the present disclosure. For example, the above embodiment can be modified as follows.
a) is a cross-sectional view of an area around the reed valve element in a first modification of the embodiment of the present disclosure.
When the taper is formed in the circular outer peripheral seat portion 303c of the reed valve element 303, warping of the valve is increased to possibly deteriorate the sealing performance. Thus, as shown in
a) is a front cross-sectional view of an area around the reed valve element in a second modification of the embodiment of the present disclosure.
In the above embodiment and the modifications discussed above, the principle of the present disclosure is applied to the compressor of the scroll type. Alternatively, the principle of the present disclosure may be applied to another type of compressor (e.g., a compressor of a rotary type). At that time, the check valve 300 may be fixed by, for example, press fitting to a receiving hole that is formed in a stationary member (e.g., a cylinder of the compressor of the rotary type), which has a port communicated with a compression chamber.
Number | Date | Country | Kind |
---|---|---|---|
2012-081327 | Mar 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/002042 | 3/26/2013 | WO | 00 |