The present invention relates to a compressor according to the preamble of claim 1. In addition, the present invention relates to a driving mechanism or engine having a compressor.
The basic structure of such a compressor is explained first.
Such a compressor compresses a compression medium, whereby the pressure of the medium is thereby increased. In order to achieve high pressures, the compressor has several stages, which comprise alternately arranged rotors and stators.
The compressor has an outer housing 18, within which is disposed a housing segment 20, which in turn is disposed—as seen in the direction of flow—upstream of a rotor 30, which has blades. A pressure compensation chamber 12, the so-called plenum, is found between outer housing 18 and housing segment 20.
In the case of this compressor, an air current is introduced into pressure compensation chamber 12 via an air feed tube 10 disposed on outer housing 18, whereupon a high pressure builds up in this chamber 12. Air is injected into rotor 30 through nozzles accommodated in housing segment 20. A relatively low pressure prevails thereby in the rotor space. The rotor running direction is indicated in
In addition, such a compressor has additional rotors and stators, which are not shown in
With such a structure, there exists the danger of a flow separation for the flow in the compressor, since the flow of the compression medium must run up against increasing pressure. If a break in the flow occurs in one or in several stages of the compressor, a massive decrease in performance results in the compressor. The compressor then tends toward a so-called pumping, since the flow at the walls no longer possesses sufficient kinetic energy in order to overcome the pressure increase.
The onset of this so-called compressor pumping can be opposed by different measures. It is known that when a compressor is throttled, the compressor pumping can be delayed by injection in the region of the housing.
One measure is thus the configuration of deflecting nozzles, so-called injection nozzles, in the region of the housing edge (in the liner segments), which blow an introduced air flow to the rotor wall, whose blowing direction toward the rotor wall (parallel to the wall) is deflected—with swirling. This deflection of air flow in the nozzles is produced in the axial direction and in the circumferential direction of the compressor. The onset of compressor pumping can be clearly delayed by a specific configuration of the injection nozzles when compared to other conventional solutions.
These injection nozzles usually are made up of simple slots that pass through the liner segment so that the blow-out or discharge end is facing the rotor. In addition, round and flattened injection nozzles are also used.
The installation space for these deflecting injection nozzles, i.e., in the liner segment, is thus very limited and a high degree of deflection (strong deflection) results. The installation space also remains very limited in the case in which the nozzles are incorporated in the annular space (pressure chamber) found over this. Also, an additional obstruction is caused thereby and the deflection remains high.
In this way, in the case of conventional configurations, free jets are produced, whose dispersion behavior (i.e., direction, as well as velocity and swirling distributions) cannot be influenced at all or can be influenced only with difficulty.
Channels and nozzles with large cross-sectional surface and strong deflection thus tend to form strong three-dimensional cross flows within the nozzle core flow, which can lead to flow separation.
However, in these conventional injection nozzles, there is the problem that a strong spatial deflection, i.e., a large difference between the entrance angle and the exit angle of the injection nozzle can hardly be created, since strong cross flows would then result, which in turn lead to flow separations within the nozzle.
The backward effect of a crosswise directed external flow at the nozzle outlet on the nozzle core flow is very strong when the length to diameter ratio is small (approx. 1/d<3 . . . 5).
In addition, in the case of small nozzle cross sections, it is nearly impossible to integrate swirlers into the nozzle.
The problem of the present invention thus is to create an improved compressor, in which the injection is configured advantageously, and to create an improved driving mechanism or engine.
With regard to the compressor, this problem is solved by a compressor with the features of claim 1. With regard to the driving mechanism or engine, the problem is solved by a driving mechanism or engine with the features of claim 10.
Advantageous enhancements of the invention are the subject of the additional claims.
According to the compressor of the invention according to claim 1, there is provided a so-called fan-like nozzle having a plurality of small individual nozzles. In this construction, in comparison to the conventional slot solution, several small individual nozzles, which replace the slot, provide the injection into the rotor space. Disruptive cross flows can be much more easily avoided in the small individual nozzles. The individual nozzles are largely free of cross flows. A strong radial deflection and/or a strong circumferential deflection is thereby possible without producing premature flow separations.
In turn, the installation space of the nozzles can be made smaller in this way, and/or a greater deflection can be produced than in the conventional slot solution.
The compressor of the invention according to claim 2 makes possible the formation of a suitable deflection in the case of a small installation space in the liner segment. Since small individual nozzles (individual channels) are formed, a stronger deflection can still be selected in comparison to the conventional slot solution, without needing to fear cross flows.
The compressor of the invention according to claim 3 makes possible an advantageous inflow from the pressure chamber into the individual nozzles when there is small installation space, and supports a strong deflection in the nozzle.
In the compressor of the invention according to claim 4, there is increased flexibility of the application site.
The compressor of the invention according to claim 5 leads to an outflow similar to that of slots by utilizing the advantage of individual nozzles. A surface flow can be provided thereby.
The compressor of the invention according to claim 6 makes possible a high volume flow by utilizing the advantage of individual nozzles.
The compressor of the invention according to claim 7 makes possible an improvement of the flow behavior of the main flow in the rotor at the rotor wall.
The compressor of the invention according to claim 8 makes possible a flexible air delivery as desired in the compressor.
The compressor of the invention according to claim 9 makes possible a better protection against a break in the flow along the circumference of the compressor.
The compressor of the invention according to claim 10 makes possible a cost-effective production of the compressor.
The driving mechanism or engine of the invention according to claim 11 utilizes these compressor advantages.
The present invention is explained more precisely below based on embodiment examples. Drawings are attached to better illustrate several aspects of the embodiment examples.
An example of embodiment of the present invention is described below with reference to the drawings.
First, the general construction of the compressor according to the invention is described.
The compressor has an outer housing 111, within which a segment 120 (a so-called liner segment) is disposed, which is disposed upstream from a rotor (not shown), which has rotating blades. The so-called plenum 112 is found between outer housing 111 and liner segment 120. Liner segment 120 is engaged on outer housing 111 via a so-called housing hook 116. The end section of liner segment 120 is defined on housing hook 116. A pocket 115 is formed on outer housing 111 facing plenum 112 in the region of the end section of liner segment 120.
Formed in the end section of liner segment 120 are so-called injection channels 122 with nozzles 123 (see
Nozzles 123 are provided as nozzle groups in the end section of liner segment 120. In the present example of embodiment, such a group of nozzles 123 is formed in the end section of liner segment 120 by five nozzles 123, which are aligned adjacent to one another in the circumferential direction of liner segment 120. Several groups of nozzles according to the invention can be provided at the liner segment.
The mode of operation of the compressor according to the invention is described below.
In this compressor, an air flow is introduced into pressure chamber 112 (the so-called plenum) via an air feed pipe 110 disposed on outer housing 111 by means of flange 113. Air reaches the entrance region of nozzles 123 via pocket 115 and is injected into rotor 30 via the nozzle outlets.
The velocity profile beforehand is shown by the dashed line, wherein the decrease in velocity of the compressor flow at the housing wall can be recognized. The velocity profile afterward is shown by the solid line. The increased velocity at the housing wall, which is caused by the fan-like nozzle according to the invention, can be recognized.
The entrance region of the group of nozzles 123 formed as a fan-like nozzle is formed on the upper side of the narrow liner segment that is facing plenum 112, so that it faces pocket 115 in housing 111. The five nozzles used in this embodiment example for the group of nozzles have a quadrilateral or square cross section in the entrance region.
The outlet region of the group of nozzles 123 formed as a fan-like nozzle on the bottom side of the liner segment that is facing away from plenum 112 is formed so that it faces the rotor. The five nozzles used in this embodiment example for the group of nozzles have a quadrilateral or square cross section throughout from the entrance region down to the exit region.
The many individual nozzles are disposed next to one another. According to the embodiment example, the wall space between two adjacent individual nozzles is in fact smaller than the width of an individual nozzle. The many individual nozzles thus form a compact configuration.
In
The entrance region of the respective nozzle 122* has an entrance swirling that results from the angle of the entrance region to the perpendicular of the tangent line at the nozzle inlet. The exit region of the respective nozzle 122* has an exit swirling that results from the angle of the exit region to the perpendicular of the tangent line at the nozzle outlet. As shown in
The fan-like nozzle according to the invention makes possible a production of the liner segment, e.g., as a casting or also by so-called rapid prototyping.
Instead of a single, strongly deflecting, individual nozzle, a group of several small individual nozzles is used, which provide the same deflection or a greater deflection.
Due to the compact configuration of the many individual nozzles, the total effect is comparable to the effect of a large individual nozzle (e.g., the conventional slot nozzle) in the vicinity of the nozzle. The entrance swirling reduces the necessary deflection and the structural space of the nozzle.
Based on the large ratio between length and cross section of the small-diameter individual nozzles according to the invention, these nozzles are largely free of disruptive cross flows.
The construction with individual channels makes possible almost any spatial arrangement of the individual nozzles, so that a great diversity of configurations corresponding to the most varied technical requirements results.
Thus, in contrast to a configuration with a conventional slot nozzle (see the comparison in
The additional pressure loss due to the greater wall friction (larger wetted surface) can be tolerated in many cases.
The fan-like nozzle according to the invention thus makes possible a strong radial deflection and/or circumferential deflection in the smallest space. Thus, it is best suitable for use in liner segments.
By means of a special configuration of the nozzle outlet openings 125 (radial offset, axial offset and/or circumferential offset), any desired distribution of velocity and swirling can be produced in the vicinity of the housing wall. That is, due to the spatial position (radial and/or axial gradation) of the nozzle outlet openings 125 to one another, a desired velocity profile or swirling profile of the air flow can be adjusted in the vicinity of the nozzle at the housing wall (e.g., a free jet with swirling). In the case of a radial-axial gradation with adjusted exit angle of the individual nozzles, a special velocity profile perpendicular to the wall can be adjusted as desired with injection flush with the wall.
In the case of a circumferential spread of the distribution of nozzle outlet openings 125 of individual nozzles 123, slot-shaped velocity distributions or a homogenization of jet velocities can be achieved in the circumferential direction.
The fan-like nozzle according to the invention in fact makes possible deflections that lead to an outlet injection flow which is directed approximately flush with the nozzle outlet wall.
Therefore, the above-named problem of flow separation is minimized in the fan-like nozzle according to the invention.
The flow cross section of the fan-like nozzles is formed in a quadrilateral shape in the above-described example of embodiment. Thus, it can assume a square or a rectangular shape. The rectangular shape facilitates a slot-like injection. In another example of embodiment, the flow cross section of the fan-like nozzles can be designed in oval or circular shape.
In the above-described example of embodiment, five individual nozzles 123 form a group of nozzles. A group of nozzles may also be formed, e.g., by three, four or six nozzles 123. The number is not limited as long as several individual nozzles are used.
In the above-described example of embodiment, as is particularly well shown in
In the above-described example of embodiment, the fan-like nozzle according to the invention is provided with an entrance swirling. The invention is not limited thereto. A fan-like nozzle according to the invention without an entrance swirling may also be provided.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 052 372 | Oct 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2009/001437 | 10/16/2009 | WO | 00 | 4/13/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/045923 | 4/29/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2685429 | Auyer | Aug 1954 | A |
2702157 | Stalker | Feb 1955 | A |
2958456 | Forshaw | Nov 1960 | A |
3462071 | Garve | Aug 1969 | A |
4303371 | Eckert | Dec 1981 | A |
4732531 | Minoda et al. | Mar 1988 | A |
5059093 | Khalid et al. | Oct 1991 | A |
5340271 | Freeman et al. | Aug 1994 | A |
5586859 | Nolcheff | Dec 1996 | A |
5607284 | Byrne et al. | Mar 1997 | A |
6585479 | Torrance | Jul 2003 | B2 |
6813887 | Sumser et al. | Nov 2004 | B2 |
7704039 | Liang | Apr 2010 | B1 |
8066471 | Bayere et al. | Nov 2011 | B2 |
20060104805 | Gummer | May 2006 | A1 |
Number | Date | Country |
---|---|---|
69621079 | Jan 2003 | DE |
EP1862641 | Dec 2007 | DE |
0537503 | Apr 1993 | EP |
Number | Date | Country | |
---|---|---|---|
20110200470 A1 | Aug 2011 | US |