This invention relates to compressors. More particularly, this invention relates to swash plate compressors.
Refrigeration systems containing a fluid that changes from liquid to vapor (a phase change commonly known as vaporization) and back to liquid again (a phase change commonly known as condensation) are common in motor vehicles, buildings, appliances, and industrial operations. Refrigeration systems are commonly known as air conditioners when the enclosure being cooled is occupied by people.
Refrigeration systems feature two heat exchangers, a compressor, an expansion valve, and a refrigerant fluid. Arbitrarily choosing the compressor as the starting point, the fluid enters the compressor as a low pressure and low temperature vapor. The vapor is compressed and leaves the compressor as a high pressure and high temperature vapor. The vapor then passes through the first heat exchanger (known as the condenser and located in the ambient surroundings). The vapor releases heat to the surroundings and condenses into a liquid. The liquid then passes through the expansion valve where the pressure and temperature decrease. The cold, low pressure liquid then passes through the second heat exchanger (known as the evaporator and located in the enclosure to be cooled). The liquid accepts heat from the enclosure and evaporates into a low pressure and low temperature vapor. The vapor then returns to the compressor to complete and restart the cycle.
A variety of compressors are used in refrigeration systems. One type of compressor is known as a swash plate compressor. A conventional swash plate compressor 10 is shown in
Swash plate compressors are used in many different types of refrigeration systems and are especially preferred for use in motor vehicle refrigeration systems for several reasons. The compressors are compact and generally have a displacement of about 50 to 800 cubic centimeters. Unless otherwise indicated, the term “about” is used herein to mean plus or minus 25 percent of the measurement or other property referenced. The compressor also has relatively few moving parts. It also delivers a relatively constant flow of compressed fluid because volumes of compressed fluid from each cylinder are delivered to the compressor outlet with each rotation of the drive shaft.
As the swash plate rotates, the pistons reciprocate and also tend to rotate slightly. The rotation of the pistons is limited by contact between the bridge of the pistons and the outer face of the swash plate. Contact also occurs between the spherical joints and the front and rear faces of the swash plate. Over time, these areas of contact cause wear on the components and can eventually cause failure of the compressor.
Accordingly, there is a demand for an improved swash plate compressor that has an increased life.
The general object of this invention is to provide an improved swash plate compressor. A more particular object is to provide a swash plate compressor that has an increased life.
We have invented an improved swash plate compressor. The compressor comprises four major components: (a) a block; (b) a rotating drive shaft; (c) a rotating swash plate; and (d) a plurality of reciprocating pistons. The first three components are conventional.
The block has: (i) a block inlet for accepting a fluid at a first pressure; (ii) a block outlet for discharging the fluid at a higher pressure; (iii) a central recess for accepting a drive shaft and defining an axis; and (iv) a plurality of hollow cylinders arranged around the central recess, each cylinder having an axis parallel to the axis of the central recess, each cylinder having an inlet communicating with the block inlet and an outlet communicating with the block outlet.
The rotating drive shaft in the central recess of the block has an axis that is coaxial with the axis of the central recess.
The rotating swash plate is attached to the drive shaft. The swash plate is inclined relative to the drive shaft and has: (i) a front face defining a front plane, (ii) a rear face defining a rear plane, the rear plane being parallel to the front plane of the front face; (iii) an outer face extending between the front face and the rear face and forming a front edge where the outer face meets the front face and forming a rear edge where the outer face meets the rear face, the outer face being parallel to the drive shaft axis.
The pistons reciprocate within the cylinders as the swash plate rotates. Each piston has cylindrical ends and a central recess into which the swash plate extends. Each piston has a bridge complementary to the recess connecting the ends. Each bridge has a front face overlapping the front face of the swash plate, a rear face overlapping the rear face of the swash plate, and an inner face with a boss that contacts the outer face of the swash plate only between the front edge and rear edge throughout an entire rotation of the swash plate such that no contact occurs between the piston and the front edge or rear edge of the swash plate.
The compressor of this invention has an increased life. It is believed the primary reason for the increased life is that the boss on the inner face of the piston bridge eliminates contact between the piston and the front edge or rear edge of the swash plate.
1. The Compressor in General
This invention is best understood by reference to the drawings. Referring to
The compressor of this invention is suited for use in any refrigeration systems, but is especially suited for use in an air conditioning system in a motor vehicle. The compressor of this invention functions the same regardless of the direction of rotation of the drive shaft. The fluid inlet and fluid outlet stay the same regardless of rotation direction. The terms “front” and “rear” as used herein are chosen arbitrarily with the rear of the compressor being the end containing the fluid inlet and fluid outlet.
While not wishing to be bound by theory, it is believed that contact between the pistons and the front edge and rear edge of the swash plate in conventional swash plate compressors causes wear and unevenness at the outer edges of the swash plate. As can be seen in in the upper piston of
The absence of contact between the pistons and the front edge or rear edge of the swash plate in the compressor of this invention is believed to be primarily responsible for its increased life.
2. The Block
The block 110 of the compressor is conventional. The block has an inlet 120 for accepting a fluid at a first pressure and an outlet 130 for discharging the fluid at a higher pressure. The inlet and outlet are generally part of a separate head portion. The fluid is generally a refrigerant. The block also has a central recess 135 for accepting a drive shaft. The central recess defines an axis. The block also has a plurality of hollow cylinders 140 arranged around the central recess. The preferred embodiment shown contains five cylinders. The compressor generally contains three to seven cylinders. Increasing the number of cylinders provides a more constant supply of pressurized fluid, but also increases the number of parts. The cylinders are typically equally spaced radially. The axis of each cylinder is parallel to the axis of the central recess. Each cylinder has an inlet 141 that communicates with the block inlet. Each cylinder also has an outlet 142 that communicates with the block outlet. The portion of the block containing the cylinders is generally made of two or more parts connected together.
3. The Rotating Drive Shaft
The rotating drive shaft 150 of the compressor is conventional. The drive shaft rotates within the central recess of the block. One end 151 of the drive shaft is connected to a drive means. In motor vehicles, the drive means is typically the engine or motor of the motor vehicle connected to the drive shaft with gears, belts, or the like.
4. The Swash Plate
The swash plate 160 of the compressor is conventional. The swash plate is circular and is attached to the drive shaft at an oblique angle so that it is inclined relative to the drive shaft. The swash plate generally includes a mounting ring 161 portion and a plate portion 162. The swash plate has a rear face 163 that defines a rear plane and a front face 164 that defines a front plane. The rear plane and the front plane are parallel to each other. The angle formed by the faces to the drive shaft varies around the circumference of the drive shaft. The angle formed by the front face to the drive shaft and the angle formed by the rear face to the drive shaft are supplementary in that their measurements add to 180 degrees at any point around the circumference of the drive shaft. The angle typically varies from an acute angle of about 10 to 30 degrees to an obtuse angle of about 150 to 170 degrees. The swash plate also has an outer face 165 that extends between the front face and the rear face. The outer face is parallel to the drive shaft axis. The outer face has a rear edge 166 where the outer face meets the rear face and a front edge 167 where the outer face meets the front face.
5. The Pistons
The pistons 170 of the compressor are conventional except for the bosses. Each piston is generally cylindrical and fits tightly within a cylinder. Each piston has cylindrical ends 171 and 172 with small cut outs to accommodate (avoid contact with) the swash plate mounting ring. Each piston has a recess 173 into which the swash plate extends and a bridge 174 that connects the two cylindrical ends of the piston. The recess and the bridge together form an imaginary complete cylinder that extends between, and connects, the two cylindrical ends of the piston. The empty recess and the solid bridge are thus complementary. The bridge has a rear face 175 that overlaps the rear face of the swash plate. The bridge also has a front face 176 that overlaps the front face of the swash plate. As explained below, the front faces of the bridge and swash plate and the rear faces of the bridge and swash plate generally do not contact each other directly. Instead, a spherical joint is generally interposed between the faces to facilitate movement, reduce friction, and to distribute wear. When a spherical joint is interposed, the front face and the rear face of the piston bridge generally contains an indentation (also referred to as a socket) to retain the spherical joint.
The bridge also has inner face 177 that contacts the outer face of the swash plate. The inner face of the bridge of the preferred embodiment has two bosses 178 and 179 that rise above the surface. These bosses are the only points of contact between the inner face of the bridge and the outer face of the swash plate. Furthermore, these bosses contact the outer face of the swash plate only between the front edge and the rear edge of the swash plate. Over time, the contact between the bosses and the outer face of the swash plate create wear patterns on the outer face. The wear patterns 168 are shown in
The size, shape, and location of the bosses are matters of choice, provided they make the only contact between the inner face of the piston bridge and the outer face of the swash plate and provided the bosses contact the outer face only between the front edge and the rear edge, i.e., without contacting either the front edge or the rear edge. The bosses are preferably located equidistant between the front and rear faces of the bridge. As best seen in
6. The Spherical Joints
The spherical joints are conventional and preferably consist of balls 180 and shoes 190. Each shoe has a flat side 191 that contacts the front or rear face of the swash plate. Each shoe also has an indented side 192 that retains a ball that contacts the front or rear face of the piston bridge. The indentation is also referred to as a socket. There are two spherical joints per piston. One joint is interposed between the front faces of each piston bridge and the swash plate and one joint is interposed between the rear faces of each piston bridge and the swash plate. The spherical joints facilitate movement between the piston and the swash plate with a minimum of friction. An alternative spherical joint (not shown) is a semi-hemispherical ball with a flat side. The rounded portion of the ball fits into an indentation in the piston and the flat side of the ball contacts the front or rear face of the swash plate.
7. Operation
The operation of the compressor can now be considered in detail. The operation is generally conventional. The drive shaft and the swash plate rotate. As the swash plate rotates, it causes the pistons to reciprocate. Each reciprocation receives a volume of the refrigerant fluid, compresses it to a smaller volume, and then discharges it. During operation, the inner faces of the pistons contact the outer face of the swash plate. The compressor of this invention differs from prior compressors in that contact between inner faces of the pistons and outer face of the swash plate occurs only between the front and rear edges. In other words, the pistons do not contact the front and rear edges and, thus, cause no wear on the edges. Eliminating piston-caused wear on the outer edges of the swash plate has been found to create a cascading effect of additional benefits. Eliminating piston-caused wear reduces unevenness and wear on the outer edges. This, in turn, reduces unevenness and wear on the flat faces of the spherical joints and this, in turn, reduces unevenness and wear on the front and rear faces of the swash plate.
8. Advantages
Compared to prior swash plate compressors, the swash plate compressor of this invention has the advantage of eliminating contact between the pistons and outer edges of the outer face of the swash plate. This eliminates piston-caused wear on the outer edges. It has been discovered that eliminating piston-caused wear on the outer edges also reduces uneven wear on the spherical joints which, in turn, reduces uneven wear on the front and rear faces of the swash plate. Reducing wear on these components increases the life of the compressor.
While the compressor of this invention is generally manufactured and sold as a complete unit, the pistons with the bosses can be substituted for conventional pistons in an existing conventional compressor.
Number | Name | Date | Kind |
---|---|---|---|
RE15756 | Michell | Feb 1924 | E |
2027076 | Volliman | Jan 1936 | A |
2320526 | Landis | Jun 1943 | A |
3057545 | Ransom | Oct 1962 | A |
3319878 | Steinhagen | May 1967 | A |
3380651 | Niki | Apr 1968 | A |
3885460 | Park | May 1975 | A |
3930758 | Park | Jan 1976 | A |
4289453 | Shibuya | Sep 1981 | A |
4364306 | Hattori | Dec 1982 | A |
4415315 | Shibuya | Nov 1983 | A |
4470761 | Mukai | Sep 1984 | A |
4505122 | Inomata | Mar 1985 | A |
4522112 | Nomura | Jun 1985 | A |
4583922 | Iijima | Apr 1986 | A |
4704073 | Nomura | Nov 1987 | A |
4789311 | Ikeda | Dec 1988 | A |
4886024 | Meredith | Dec 1989 | A |
5100306 | Moran, Jr. | Mar 1992 | A |
5139392 | Pettitt | Aug 1992 | A |
5452647 | Murakami | Sep 1995 | A |
5921756 | Matsuda | Jul 1999 | A |
6217295 | Kato | Apr 2001 | B1 |
6367368 | Ganster | Apr 2002 | B1 |
6412171 | Kato | Jul 2002 | B1 |
6438834 | Takamatsu | Aug 2002 | B1 |
6739236 | Kato | May 2004 | B2 |
6834636 | Thomas | Dec 2004 | B2 |
6925925 | Casar | Aug 2005 | B2 |
7056100 | Schwarzkopf | Jun 2006 | B2 |
7464673 | Thomas | Dec 2008 | B2 |
7997880 | Lim | Aug 2011 | B2 |
8419382 | Sato | Apr 2013 | B2 |
8668388 | Peterson | Mar 2014 | B1 |
9169835 | Takahashi | Oct 2015 | B2 |
10145370 | Ogawa | Dec 2018 | B2 |
20010027721 | Kato | Oct 2001 | A1 |
20020174764 | Kato | Nov 2002 | A1 |
20030044292 | Shiina | Mar 2003 | A1 |
20040118149 | Tsunoda | Jun 2004 | A1 |
20050188835 | Le | Sep 2005 | A1 |
20060255675 | Saito | Nov 2006 | A1 |
20170284381 | Ogawa | Oct 2017 | A1 |
20170356490 | Santiago | Dec 2017 | A1 |