Computational modeling of viral capsid and bacterial microcompartment assembly

Information

  • Research Project
  • 10171588
  • ApplicationId
    10171588
  • Core Project Number
    R01GM108021
  • Full Project Number
    5R01GM108021-14
  • Serial Number
    108021
  • FOA Number
    PA-16-160
  • Sub Project Id
  • Project Start Date
    12/1/2008 - 15 years ago
  • Project End Date
    5/31/2022 - a year ago
  • Program Officer Name
    LYSTER, PETER
  • Budget Start Date
    6/1/2021 - 2 years ago
  • Budget End Date
    5/31/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    14
  • Suffix
  • Award Notice Date
    6/11/2021 - 2 years ago
Organizations

Computational modeling of viral capsid and bacterial microcompartment assembly

In many virus families, replication requires that hundreds to thousands of proteins assemble around the viral nucleic acid to form a protein shell called a capsid. Understanding the assembly pathways for capsid formation and learning how antiviral drugs can block or alter these pathways would provide information to develop new antiviral strategies and improve existing ones. Similarly, at least 20% of bacterial species have protein-based organelles called bacterial microcompartments, which are protein shells that assemble around a group of enzymes. Since microcompartments are essential for bacterial growth and pathogenesis, understanding the mechanisms that control their assembly would provide information for developing novel antibiotics that work by inhibiting microcompartment formation. Assembly mechanisms inferred from experiments alone are incomplete because intermediates are transient and thus not readily observed. Therefore, this project develops and applies computational models for capsid proteins, nucleic acids (NAs), putative antiviral agents, and microcompartment components that reveal details of assembly not accessible to experiments. The first aim will study how NAs guide assembly pathways toward particular capsid structures. Goals will include understanding experiments in which capsid proteins form different icosahedral morphologies to accommodate NAs with different physical properties (e.g. sequence length and base-pairing interactions), and testing simulated pathways against experiments from collaborators. The latter effort will include developing a computational tool to predict small angle x-ray scattering profiles from simulation trajectories as well as developing models that interpret novel light scattering experiments that monitor assembly of individual capsids. The second aim will examine how small molecules that perturb protein-protein or protein- NA interactions redirect assembly pathways. The goal is to learn how to design optimal antiviral agents. We will develop coarse-grained computational models that are informed by atomistic simulations and predict assembly pathways and products as a function of the amount and type of putative antiviral agent. Predictions will be compared against extensive data from our experimental collaborator on assembly of hepatitis B virus (HBV) proteins in the presence of potential antiviral agents. Finally, the third aim will study how bacterial microcompartments assemble around their enzyme cargos. The simulations will identify assembly pathways and critical control parameters for microcompartment assembly, while learning how protein shell assembly can promote and regulate liquid-liquid phase separation within cells. To enable simulating the length and time scales of assembly, our simulations employ advanced GPU computing and an approach to apply Markov state modeling to assembly reactions developed by our group. Furthermore, we use coarse-grained models that are informed by experiments and atomistic simulations.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R01
  • Administering IC
    GM
  • Application Type
    5
  • Direct Cost Amount
    200000
  • Indirect Cost Amount
    109999
  • Total Cost
    309999
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NIGMS:309999\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    MSFD
  • Study Section Name
    Macromolecular Structure and Function D Study Section
  • Organization Name
    BRANDEIS UNIVERSITY
  • Organization Department
    PHYSICS
  • Organization DUNS
    616845814
  • Organization City
    WALTHAM
  • Organization State
    MA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    024532728
  • Organization District
    UNITED STATES