Computationally efficient design for broadcast satellite single wire and/or direct demod interface

Information

  • Patent Grant
  • 8238813
  • Patent Number
    8,238,813
  • Date Filed
    Wednesday, August 20, 2008
    15 years ago
  • Date Issued
    Tuesday, August 7, 2012
    11 years ago
Abstract
A broadcast satellite single wire interface. Such an interface comprises a low noise block amplifier module having multiple outputs, a plurality of filter banks, each filter bank coupled to each of the outputs of the low noise block amplifier module in a respective fashion and comprising a plurality of filters, and a plurality of analog-to-digital (A/D) converters, each A/D converter coupled to a filter in the plurality of filters in the plurality of filter banks in a respective fashion, wherein the A/D converters directly sample incoming downconverted broadcast satellite signals and the sampled incoming downconverted broadcast signals are output on a single wire in a stacked output.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to satellite video systems, and in particular, to a method, apparatus, and article of manufacture for efficiently delivering satellite broadcast signals.


2. Description of the Related Art


Satellite broadcasting of communications signals has become commonplace. Satellite distribution of commercial signals for use in television programming currently utilizes multiple feedhorns on a single Outdoor Unit (ODU) which supply signals to up to eight IRDs on separate cables from a multiswitch.



FIG. 1 illustrates a typical satellite-based broadcast system of the related art.


System 100 uses signals sent from Satellite A (SatA) 102, Satellite B (SatB) 104, and Satellite C (SatC) 106 that are directly broadcast to an Outdoor Unit (ODU) 108 that is typically attached to the outside of a house 110. ODU 108 receives these signals and sends the received signals to IRD 112, which decodes the signals and separates the signals into viewer channels, which are then passed to monitor 114 for viewing by a user. There can be more than one satellite transmitting from each orbital location (slot). The orbital slots are typically designated by their longitude, so, for example, a satellite 102 located in the orbital slot at 101 degrees West Longitude (WL) is usually referred to as transmitting from “101.”


Satellite uplink signals 116 are transmitted by one or more uplink facilities 118 to the satellites 102-104 that are typically in geosynchronous orbit. Satellites 102-106 amplify and rebroadcast the uplink signals 116, through transponders located on the satellite, as downlink signals 120. Depending on the satellite 102-106 antenna pattern, the downlink signals 120 are directed towards geographic areas for reception by the ODU 108.


Each satellite 102-106 broadcasts downlink signals 120 in typically thirty-two (32) different frequencies, which are licensed to various users for broadcasting of programming, which can be audio, video, or data signals, or any combination. These signals are typically located in the Ku-band of frequencies, i.e., 11-18 GHz, but can also be broadcast in the Ka-band of frequencies, i.e., 18-40 GHz, but typically 20-30 GHz.


As satellites 102-106 broadcast additional services and additional channels to viewers, it will be necessary to deliver these services in a more efficient manner.


SUMMARY OF THE INVENTION

To minimize the limitations in the prior art, and to minimize other limitations that will become apparent upon reading and understanding the present specification, the present invention discloses a computationally efficient design for broadcast satellite single wire and/or direct demod interface.


A broadcast satellite single wire interface in accordance with the present invention comprises a low noise block amplifier module having multiple outputs, a plurality of filter banks, each filter bank coupled to each of the outputs of the low noise block amplifier module in a respective fashion and comprising a plurality of filters, and a plurality of analog-to-digital (A/D) converters, each A/D converter coupled to a filter in the plurality of filters in the plurality of filter banks in a respective fashion, wherein the A/D converters directly sample incoming downconverted broadcast satellite signals and the sampled incoming downconverted broadcast signals are output on a single wire in a stacked output.


Such an interface further optionally comprises the sampling frequency of the A/D converters being adjustable, a digital signal processor (DSP), the DSP comprising a plurality of polyphase bandpass filters, the plurality of polyphase bandpass filters overlapping in terms of passbands, a plurality of stacked outputs being present, at least one of the plurality of stacked outputs being an In-phase/Quadrature phase (I/Q) near-baseband output, and the I/Q near-baseband output being networked onto a distribution layer.


Other features and advantages are inherent in the system disclosed or will become apparent to those skilled in the art from the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference numbers represent corresponding parts throughout:



FIG. 1 illustrates a typical satellite-based broadcast system of the related art;



FIG. 2 illustrates a typical Single Wire Multiswitch of the related art;



FIGS. 3A and 3B illustrate related LNB modules and an LNB module in accordance with one or more embodiments of the present invention, respectively;



FIG. 4 illustrates an Analog-to-Digital subsystem functionality in accordance with one or more embodiments of the present invention;



FIG. 5 illustrates a block diagram of the DSWM Channelizer in accordance with one or more embodiments of the present invention;



FIG. 6 illustrates a coarse granularity channelizer in accordance with one or more embodiments of the present invention; and



FIG. 7 illustrates an exemplary fine granularity channelizer embodiment in accordance with one or more embodiments of the present invention.





DETAILED DESCRIPTION

In the following description, reference is made to the accompanying drawings which form a part hereof, and which is shown, by way of illustration, several embodiments of the present invention. It is understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.


Overview


Recent advances in high speed Analog to Digital (A/D) converters open up the possibility of direct A/D conversion of baseband or near baseband 500 MHz wide Satellite downlink signals and thereby opens up the possibility of all digital demultiplexing (demuxing) of one or more 500 MHz complexes or transponders and subsequent all digital multiplexing (muxing) of a selected subset of these transponder channels onto a single wire interface for home distribution. The possibility of all digital demuxing and feeding of selected transponder baseband I/Q signals for direct demod for subsequent home or multi-dwelling distribution over any suitable physical/network layer protocols now also becomes possible.


To capitalize on these opportunities of an all-digital demuxing/muxing and baseband I/Q interfaces, computationally efficient Digital Signal Processing (DSP) architectures are required. It is assumed that simple brute force digital mimicry of the analog building blocks of demuxing/muxing/conversion processes will not lead to commercially viable designs. By bringing together the high-speed A/D hardware and computationally efficient DSP techniques, and adapting them specifically for the purposes of demuxing, muxing, and baseband I/Q conversion, the present invention provides one or more preferred embodiments with significant commercial advantages over other current designs.


No known previously proposed satellite home/MDU distribution design exists to create a practical all digital implementation of the demuxing, muxing, and direct digital demodulation (demod) interface. This invention proposes a number of embodiments of such designs which utilize computationally efficient techniques which allow for commercially viable all digital implementation of these functions.


The present invention allows for better overall performance of an embodiment of a Single Wire Multiswitch (SWM) architecture because the present invention allows for the distribution of more channels within the same bandwidth (i.e., single wire bandwidth) through tighter packing of channels. Distribution of additional channels allows for the support of additional IRDs, or the same number of IRDs with less wired bandwidth. Further, embodiments of the present invention allow for inexpensive provision of baseband I/Q signals for reduced cost integration of a significant portion of the current IRD. Further still, embodiments of the present invention allow for the ability to provide greater flexibility for future system designs, and the potential of a smaller footprint for the SWM into the current system. Embodiments of the present invention also allow for simpler integration and interfaces between the parts of the present system, by simplifying the interface of shared demod resources without expending any bandwidth. This simplification allows for future products, such as Home Gateway and Multi-Dwelling Unit (MDU) architectures, to become possible.


Digital SWM



FIG. 2 illustrates a typical Single Wire Multiswitch.


Hardware advances have increased A/D sampling rates in excess of 1 Gigasample/second (1 Gsps) with a good Effective Number Of Bits (ENOB) and an adequate linearity performance figure. Advances in Multi-rate Digital Signal Processing techniques coupled with nanometer Application-Specific Integrated Circuit (ASIC) processes allow applications with significant signal processing capabilities. These factors make it possible to make an all-digital replacement for the demux and mux functions of the Single Wire Multiswitch (SWM). Further, these technological advances allow for a baseband and/or near baseband digital I/Q interface for cost-effective integration of a significant portion of the IRD front end functionality.


The present invention provides embodiments for a digital replacement for the hardware shown in FIG. 2. FIG. 2 illustrates SWM 200, where SWM 200 is fed by four composite signals 202-208, specifically LNB1202, LNB2204, LNB3206, and LNB4208, which are produced by the LNB module 300 hardware shown in FIG. 3A.


Each LNB signal 202-208, as shown in FIG. 3A, comprises 3 stacked 500 MHz bandwidth signals, generated from downlink signals 120 and received at various orbital slots. Ku-band signals 302 are from satellites at the 119 WL slot, Ku-band signals 304 are from satellites at the 110 WL slot, Ka-band signals 306 are from satellites at the 102.8 (also referred to as 103) WL slot, Ku-band signals 308 are from satellites at the 101 WL slot, and Ka-band signals 302 are from satellites at the 99.2 (also referred to as 99) WL slot. Combinations of these signals, based on their polarization and transmission frequencies, are used to generate LNB signals 202-208.


After down conversion within module 300, the Ku-band signals 302, 304, and 308 are downconverted to an Intermediate Frequency (IF) band, 500 MHz wide, in the frequency range of 950-1450 MHz. The Ka-band signals 306 and 310 are downconverted into two different 500 MHz wide bandwidths, namely the 250-750 MHz bandwidth (known as Ka-LO IF band or Ka-B IF band) and the 1650-2150 MHz bandwidth (known as Ka-HI IF band or Ka-A IF band), and are combined in various combinations to form signals 202-208


The SWM 200 shown in FIG. 2 selects any nine 40 MHz pieces of spectrum from LNB1202 through LNB4208 and stacks them to form a single composite signal called the channel stacked output 210. The nine 40 MHz channels are typically located on 102 MHz centers and range from 974 MHz to 1790 MHz (i.e., the channels are at 974, 1076, 1178, 1280, 1382, 1484, 1586, 1688, and 1790 MHz, respectively).


Coarse Granularity Design



FIG. 3B illustrates an embodiment of a corresponding Coarse Granularity Design Digital SWM in accordance with the present invention.


The SWM module 300 is modified into module 312, where signals 302-310 are combined into different signals that are to be used as inputs to a modified SWM. Rather than stacking 1500 MHz into a single signal, as is done with signals 202-208, a larger number of outputs 312-326 are used. Although eight outputs 312-326 are shown, a larger or smaller number of outputs 312-326 are possible without departing from the scope of the present invention.


As shown in FIG. 3B, LNB1 signal 312, LNB2 signal 314, LNB5 signal 320, and LNB6 signal 322 each comprise two 500 MHz signals, each 500 MHz signal corresponding to a Ka-LO band signal and a Ka-HI band signal. LNB3 signal 316, LNB4 signal 318, LNB7 signal 324, and LNB8 signal 326, on the other hand, are 500 MHz signals, each corresponding to a Ku-band signal. To facilitate A/D conversion, the local oscillators 328 can be modified so that each of the signals 312-326 can have a desired and, possibly, different tunable starting frequency from 10 to 100 MHz, or beyond these limits if desired. Additional mixing can be added to achieve an offset frequency start for one or more of the signals 312-326 if desired. It is also possible within the scope of the present invention to implement tuning for signals 312-326 within the digital domain if desired.



FIG. 4 illustrates an embodiment of the Analog-to-Digital subsystem functionality of the present invention.



FIG. 4 shows the A/D subsystem 400 functions, where the sampling frequency Fs is adjustable, typically from 1.02 GHz to 1.2 GHz, but other frequencies and ranges are possible within the scope of the present invention. Each signal 312-326 is placed through a filter 402, and then into an A/D converter 404, which produce the output signals 406-428. The typical maximal sampling rate of the A/D converters 404, FsMAX, is typically 1.35 GHz, but other rates are possible without departing from the scope of the present invention. The Ka HI signals are typically sub-sampled, so the analog paths should have a useable bandwidth of FsMAX+500 MHz, which is typically 1.85 GHz.



FIG. 5 illustrates a block diagram of the DSWM Channelizer in accordance with one or more embodiments of the present invention.


Each input “x” 500, 502, etc., receives one of the A/D converter 404 outputs 406-428, and there can be extra inputs x 500, 502, etc., to allow for expansion of the system. Each typical input x 500 is typically channelized into uniformly spaced K filters 504. The portion k 506 of the K filters 504 actually utilized will be different for different LNB paths, and, typically, k=3 for Ka HI, k=12 for Ka LO, and k=16 for Ku. L, the number of filter bands on the output side, is set to be equal to the number of stacked carriers desired at the stacked output 210.


There are many embodiments within the scope of the present invention that can create computationally efficient DSP architectures. Another example embodiment of the present invention uses multi-rate poly phase techniques and takes advantage of the correspondence between the complex mixing and the Fast Fourier Transform (FFT), as shown in FIG. 6.



FIG. 6 illustrates a coarse granularity channelizer in accordance with one or more embodiments of the present invention.


In FIG. 6, system 600 shows inputs 406-428, each entering a Hilbert transform 600. Hilbert transforms 602 are linear operations, typically multipliers, similar to Fourier transforms. Other types of transforms of the signal inputs 406-428 are also possible within the scope of the present invention. The K filters 604 for each of the inputs 406-428 are set to 16, but other settings are possible within the scope of the present invention, including different values for K and x for each input 406-428. If the transponder count and spacing are uniform and well known, then K can be set to the number of transponders, etc. If, however, the number of transponders varies from satellite to satellite and/or the spacing of these transponders is not uniform, then a number of filters 604 greater than the maximum number of transponders to be encountered is typically used to allow for expansion. Further, the filters are then expanded or contracted by slight adjustments in the sampling frequency and by slight shifts in the downconverter LO frequency used in the LNB. By adjustment of both the downconverter LO of the LNB and sampling rate, any channel spacings can be accommodated in any of the LNB outputs.


The signals 406-428, after being filtered by filters 602 are subjected to Fast Fourier Transforms (FFT) in FFTs 606, and then selected, reordered, and combined in multiplexer 608. The combined signal is further processed to generate stacked output 210. Alternatively, the present invention can use a non-maximally decimated filter bank of overlapping filters. This approach, along with the added technique of near-perfect reconstruction techniques, allow for fine granularity.


A choice of L=32 is typically chosen for the output despite a maximum of 26 channels. The choice of the power of 2 composite K and L is chosen to simplify the FFT hardware implementation. Other approaches or arrangements may also be used within the scope of the present invention.


ADC ENOB Considerations


Consider any one of the 500 MHz LNB signals 406-428. Since each signal is a composite of many signals, each signal is approximately Gaussian distributed. Given this approximation, the attack point on the ADC can be set so that the full scale deflection is 3.3 times the Root Mean Square (RMS) value of the composite signal. This corresponds to setting the probability at a 3.3 sigma event. This will result in a probability of overflow of 10−3. Under these conditions, the Signal to Quantization noise Ratio (SQR) is (6.02b+0.42) dB where b=ENOB−1. For and A/D with and ENOB of 9 bits this results in an SQU of the composite signal of 45.58 dB.


The SQR of a single transponder, in a twelve transponders mix with five high-power transponders and seven low power transponders, where a high power transponder is 10 dB higher than a low power transponder. A given low power transponder then accounts for 1/57th of the composite power, or −17.56 dB from the composite power. The transponder's Noise Equivalent Bandwidth at the receiver is 36 MHz. Quantization noise is essentially white noise over the Nyquist bandwidth. If the Nyquist bandwidth is set to 500 MHz for the composite bandwidth, then the noise BW affecting the transponder is 36/500, which is −11.43 dB down from the total quantization noise. Therefore the SQR affecting the demodulator is 48.58−17.56+11.43=42.45 dB. Since the 8PSK waveform typically has an Signal to Noise Ratio (SNR) requirement of approximately 11 dB, an ENOB of 9 bits is typically satisfactory in terms of design. However, an accounting of the NPR of the finite word processing and additional details of the noise bandwidth and system settings may allow the ENOB to be relaxed from a 9 bit setting and still be within the scope of the present invention.



FIG. 7 illustrates a fine granularity channelizer implementation in accordance with one or more embodiments of the present invention.


A fine granularity design using perfect or near perfect reconstruction polyphase filtering techniques has advantages over the coarse granularity approach. Employment of maximal decimation techniques can be used to simplify filter design if desired. For such an approach, the spectrum of each of the incoming 500 MHz blocks is subdivided much more finely than in the coarse granularity design. Where in the coarse granularity design the goal is to create a number of filters greater than or equal to the maximum number of expected transponders, in the fine granularity design the goal is to divide up the spectrum into smaller pieces. This can be done in such a way that the fine pieces of spectrum can be “glued” back together to yield a nearly perfect reconstruction of any arbitrary spectral bandwidth within the granularity specified for the design. An illustrative design for a fine granularity system is shown in FIG. 7.


The system 700 shown in FIG. 7 has four output signals 702, 704, 706, and 708. Outputs 702 and 704 are typically used to create two 500 MHz blocks of single wire bandwidth. Outputs 702 and 704 can then be power combined onto a single wire interface and thus replicate the output of related SWM designs, except that they provide more channels within the same physical bandwidth.


The other outputs 706 and 708 illustrate two illustrative embodiments that include shared demod assets that do not expend any of the Single Wire Bandwidth. Other embodiments are possible within the scope of the present invention. Only one output 708 or 708 can be implemented, or other embodiments can be implemented alone or in any combination, without departing from the scope of the present invention. Output 706 illustrates an approach having an additional internal single wire interface which drives conventional receiver/demod inputs.


Output 708 illustrates an approach where that the receiver portion of the receiver demod chips can be eliminated at the same time as the last upconversion of the processed signals. These chips correspond to I/Q near baseband demodulation. Other configurations are possible if some of the output polyphase filtering is incorporated directly on the demod chip. In both outputs 706 and 708 the output of the shared demod resources is SCID filtered data which is networked onto any suitable physical layer and/or network layer protocols for distribution throughout the house or MDU. The outputs 706 and 708 are Internet Protocol (IP) type outputs, or similar, that can be output over ethernet cabling, local area networks, RF or IR signals, or other similar interfaces as desired, without departing from the scope of the present invention.


CONCLUSION

The present invention discloses embodiments of computationally efficient designs for broadcast satellite single wire and/or direct demod interfaces.


A broadcast satellite single wire interface in accordance with one or more embodiments of the present invention comprises a low noise block amplifier module having multiple outputs, a plurality of filter banks, each filter bank coupled to each of the outputs of the low noise block amplifier module in a respective fashion and comprising a plurality of filters, and a plurality of analog-to-digital (A/D) converters, each A/D converter coupled to a filter in the plurality of filters in the plurality of filter banks in a respective fashion, wherein the A/D converters directly sample incoming downconverted broadcast satellite signals and the sampled incoming downconverted broadcast signals are output on a single wire in a stacked output.


Such an interface may further optionally comprise the sampling frequency of the A/D converters being adjustable; a digital signal processor (DSP), where the DSP may comprise a plurality of polyphase bandpass filters, the plurality of polyphase bandpass filters overlapping in terms of passbands; a plurality of stacked outputs being present, where at least one of the plurality of stacked outputs being an In-phase/Quadrature phase (I/Q) near-baseband output, and the I/Q near-baseband output being networked onto a distribution layer.


A system in accordance with one or more embodiments distributes a plurality of satellite signals on a single interface, and comprises a plurality of low noise block amplifier modules, each receiving at least one satellite signal, a plurality of filter banks, each filter bank coupled to each of the outputs of the low noise block amplifier module in a respective fashion and comprising a plurality of filters, a plurality of analog-to-digital (A/D) converters, each A/D converter coupled to a filter in the plurality of filters in the plurality of filter banks in a respective fashion, wherein the A/D converters directly sample incoming downconverted broadcast satellite signals, a plurality of transformers, each transformer coupled to an A/D converter in the plurality of A/D converters in a respective fashion, and a combiner, coupled to the plurality of transformers, wherein the combiner outputs the plurality of satellite signals on the single interface.


Such a system may further optionally comprise the sampling frequency of the A/D converters being adjustable; a digital signal processor (DSP), where the DSP may comprise a plurality of polyphase bandpass filters, the plurality of polyphase bandpass filters overlapping in terms of passbands; a plurality of stacked outputs being present, where at least one of the plurality of stacked outputs being an In-phase/Quadrature phase (I/Q) near-baseband output, and the I/Q near-baseband output being networked onto a distribution layer.


The foregoing description of the preferred embodiment of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not by this detailed description, but by the claims appended hereto and the full range of equivalents of the claims appended hereto.

Claims
  • 1. A broadcast satellite single wire interface, comprising: a low noise block amplifier module having multiple outputs;a plurality of filter banks, each filter bank coupled to each of the outputs of the low noise block amplifier module in a respective fashion and comprising a plurality of filters;a plurality of analog-to-digital (A/D) converters, each A/D converter coupled to a filter in the plurality of filters in the plurality of filter banks in a respective fashion;a plurality of Hilbert transformers and a plurality of Fourier transformers, each Hilbert transformer coupled in series with a corresponding Fourier transformer and in series with a corresponding A/D converter in the plurality of A/D converters; anda combiner, coupled to outputs of the plurality of Fourier transformers, for combining signals output from the Fourier transformers in a digital manner, wherein the A/D converters directly sample incoming downconverted broadcast satellite signals and the sampled incoming downconverted broadcast signals are output on a single wire from the combiner in a stacked output.
  • 2. The broadcast satellite single wire interface of claim 1, wherein the sampling frequency of the A/D converters is adjustable.
  • 3. The broadcast satellite single wire interface of claim 1, further comprising a digital signal processor (DSP).
  • 4. The broadcast satellite single wire interface of claim 3, wherein the DSP comprises a plurality of polyphase bandpass filters.
  • 5. The broadcast satellite single wire interface of claim 4, wherein the plurality of polyphase bandpass filters overlap in terms of passbands.
  • 6. The broadcast satellite single wire interface of claim 5, wherein a plurality of stacked outputs are present.
  • 7. The broadcast satellite single wire interface of claim 6, wherein at least one of the plurality of stacked outputs is an In-phase/Quadrature phase (I/Q) near-baseband output.
  • 8. The broadcast satellite single wire interface of claim 7, wherein the I/Q near-baseband output is networked onto a distribution layer.
  • 9. A system for distributing a plurality of satellite signals on a single interface, comprising: a plurality of low noise block amplifier modules, each receiving at least one satellite signal;a plurality of filter banks, each filter bank coupled to each of the outputs of the low noise block amplifier module in a respective fashion and comprising a plurality of filters;a plurality of analog-to-digital (A/D) converters, each A/D converter coupled to a filter in the plurality of filters in the plurality of filter banks in a respective fashion, wherein the A/D converters directly sample incoming downconverted broadcast satellite signals;a plurality of transformers, each transformer in the plurality of transformers comprising at least a Fourier transformer and a Hilbert transformer, each transformer coupled to an A/D converter in the plurality of A/D converters in a respective fashion; anda combiner, coupled to the plurality of transformers, wherein the combiner combines outputs from the transformers in a digital manner and outputs the plurality of satellite signals on the single interface.
  • 10. The system of claim 9, wherein the sampling frequency of the A/D converters is adjustable.
  • 11. The system of claim 9, further comprising a digital signal processor (DSP).
  • 12. The system of claim 11, wherein the DSP comprises a plurality of polyphase bandpass filters.
  • 13. The system of claim 12, wherein the plurality of polyphase bandpass filters overlap in terms of passbands.
  • 14. The system of claim 13, wherein a plurality of stacked outputs are present.
  • 15. The system of claim 14, wherein at least one of the plurality of stacked outputs is an In-phase/Quadrature phase (I/Q near-baseband output.
  • 16. The system of claim 15, wherein the I/Q near-baseband output is networked onto a distribution layer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 60/956,889, filed on Aug. 20, 2007, by Robert Popoli, entitled “COMPUTATIONALLY EFFICIENT DESIGN FOR BROADCAST SATELLITE SINGLE WIRE AND/OR DIRECT DEMOD INTERFACE,” which application is incorporated by reference herein.

US Referenced Citations (212)
Number Name Date Kind
3581209 Zimmerman May 1971 A
3670275 Kalliomaki et al. Jun 1972 A
4064460 Gargini Dec 1977 A
4132952 Hongu et al. Jan 1979 A
4354167 Terreault et al. Oct 1982 A
4382266 Panzer May 1983 A
4397037 Theriault Aug 1983 A
4403343 Hamada Sep 1983 A
4509198 Nagatomi Apr 1985 A
4513315 Dekker et al. Apr 1985 A
4530008 McVoy Jul 1985 A
4532543 Groenewegen Jul 1985 A
4538175 Balbes et al. Aug 1985 A
4545075 Miller et al. Oct 1985 A
4556988 Yoshisato Dec 1985 A
4592093 Ouchi et al. May 1986 A
4608710 Sugiura Aug 1986 A
4628506 Sperlich Dec 1986 A
4656486 Turner Apr 1987 A
4663513 Webber May 1987 A
4667243 Blatter et al. May 1987 A
4672687 Horton et al. Jun 1987 A
4675732 Oleson Jun 1987 A
4710972 Hayashi et al. Dec 1987 A
4723320 Horton Feb 1988 A
4761825 Ma Aug 1988 A
4761827 Horton et al. Aug 1988 A
4785306 Adams Nov 1988 A
4802239 Ooto Jan 1989 A
4805014 Sahara et al. Feb 1989 A
4813036 Whitehead Mar 1989 A
4823135 Hirashima et al. Apr 1989 A
4860021 Kurosawa et al. Aug 1989 A
4866787 Olesen Sep 1989 A
4876736 Kiewit Oct 1989 A
4885803 Hermann et al. Dec 1989 A
4903031 Yamada Feb 1990 A
4945410 Walling Jul 1990 A
5010400 Oto Apr 1991 A
5027430 Yamauchi et al. Jun 1991 A
5068918 Verheijen et al. Nov 1991 A
5073930 Green et al. Dec 1991 A
5119509 Kang Jun 1992 A
5235619 Beyers, II et al. Aug 1993 A
5249043 Grandmougin Sep 1993 A
5276904 Mutzig et al. Jan 1994 A
5289272 Rabowsky et al. Feb 1994 A
5301352 Nakagawa et al. Apr 1994 A
5382971 Chanteau Jan 1995 A
5437051 Oto Jul 1995 A
5521631 Budow et al. May 1996 A
5565805 Nakagawa et al. Oct 1996 A
5572517 Safadi Nov 1996 A
5574964 Hamlin Nov 1996 A
5587734 Lauder et al. Dec 1996 A
5617107 Fleming Apr 1997 A
5649318 Lusignan Jul 1997 A
5675390 Schindler et al. Oct 1997 A
5708961 Hylton et al. Jan 1998 A
5734356 Chang Mar 1998 A
5748732 Le Berre et al. May 1998 A
5760819 Sklar et al. Jun 1998 A
5760822 Coutinho Jun 1998 A
5787335 Novak Jul 1998 A
5790202 Kummer et al. Aug 1998 A
5793413 Hylton et al. Aug 1998 A
5805806 McArthur Sep 1998 A
5805975 Green et al. Sep 1998 A
5835128 MacDonald et al. Nov 1998 A
5838740 Kallman et al. Nov 1998 A
5848239 Ando Dec 1998 A
5864747 Clark et al. Jan 1999 A
5883677 Hofmann Mar 1999 A
5886995 Arsenault et al. Mar 1999 A
5898455 Barakat et al. Apr 1999 A
5905941 Chanteau May 1999 A
5905942 Stoel et al. May 1999 A
5923288 Pedlow, Jr. Jul 1999 A
5936660 Gurantz Aug 1999 A
5959592 Petruzzelli Sep 1999 A
5970386 Williams Oct 1999 A
5982333 Stillinger et al. Nov 1999 A
6005861 Humpleman Dec 1999 A
6011597 Kubo Jan 2000 A
6023603 Matsubara Feb 2000 A
6038425 Jeffrey Mar 2000 A
6100883 Hoarty Aug 2000 A
6104908 Schaffner et al. Aug 2000 A
6134419 Williams Oct 2000 A
6147714 Terasawa et al. Nov 2000 A
6173164 Shah Jan 2001 B1
6188372 Jackson et al. Feb 2001 B1
6192399 Goodman Feb 2001 B1
6198449 Muhlhauser et al. Mar 2001 B1
6198479 Humpleman et al. Mar 2001 B1
6202211 Williams, Jr. Mar 2001 B1
6292567 Marland Sep 2001 B1
6304618 Hafeez et al. Oct 2001 B1
6340956 Bowen et al. Jan 2002 B1
6397038 Green, Sr. et al. May 2002 B1
6424817 Hadden Jul 2002 B1
6430233 Dillon et al. Aug 2002 B1
6430742 Chanteau Aug 2002 B1
6441797 Shah Aug 2002 B1
6442148 Adams et al. Aug 2002 B1
6452991 Zak Sep 2002 B1
6463266 Shohara Oct 2002 B1
6493873 Williams Dec 2002 B1
6493874 Humpleman Dec 2002 B2
6501770 Arsenault et al. Dec 2002 B2
6510152 Gerszberg et al. Jan 2003 B1
6549582 Friedman Apr 2003 B1
6574235 Arslan et al. Jun 2003 B1
6598231 Basawapatna et al. Jul 2003 B1
6600897 Watanabe et al. Jul 2003 B1
6653981 Wang et al. Nov 2003 B2
6728513 Nishina Apr 2004 B1
6762727 Rochford et al. Jul 2004 B2
6864855 Fujita Mar 2005 B1
6865193 Terk Mar 2005 B2
6879301 Kozlovski Apr 2005 B2
6889385 Rakib et al. May 2005 B1
6906673 Matz et al. Jun 2005 B1
6941576 Amit Sep 2005 B2
6944878 Wetzel et al. Sep 2005 B1
7010265 Coffin, III Mar 2006 B2
7016643 Kuether et al. Mar 2006 B1
7020081 Tani et al. Mar 2006 B1
7039169 Jones May 2006 B2
7069574 Adams et al. Jun 2006 B1
7085529 Arsenault et al. Aug 2006 B1
7130576 Gurantz et al. Oct 2006 B1
7239285 Cook Jul 2007 B2
7245671 Chen et al. Jul 2007 B1
7257638 Celik et al. Aug 2007 B2
7260069 Ram et al. Aug 2007 B2
7263469 Bajgrowicz et al. Aug 2007 B2
7519680 O'Neil Apr 2009 B1
7522875 Gurantz et al. Apr 2009 B1
7542715 Gurantz et al. Jun 2009 B1
7546619 Anderson et al. Jun 2009 B2
7603022 Putterman et al. Oct 2009 B2
7634250 Prasad et al. Dec 2009 B1
20010055319 Quigley et al. Dec 2001 A1
20020044614 Molnar Apr 2002 A1
20020140617 Luly et al. Oct 2002 A1
20020152467 Fiallos Oct 2002 A1
20020154055 Davis et al. Oct 2002 A1
20020154620 Azenkot et al. Oct 2002 A1
20020178454 Antoine et al. Nov 2002 A1
20020181604 Chen Dec 2002 A1
20030023978 Bajgrowicz Jan 2003 A1
20030129960 Kato Jul 2003 A1
20030185174 Currivan Oct 2003 A1
20030217362 Summers et al. Nov 2003 A1
20030220072 Coffin, III Nov 2003 A1
20040060065 James et al. Mar 2004 A1
20040064689 Carr Apr 2004 A1
20040107436 Ishizaki Jun 2004 A1
20040136455 Akhter et al. Jul 2004 A1
20040153942 Shtutman et al. Aug 2004 A1
20040161031 Kwentus et al. Aug 2004 A1
20040163125 Phillips et al. Aug 2004 A1
20040184521 Chen et al. Sep 2004 A1
20040192190 Motoyama Sep 2004 A1
20040198237 Abutaleb et al. Oct 2004 A1
20040203425 Coffin Oct 2004 A1
20040214537 Bargroff et al. Oct 2004 A1
20040229583 Ogino Nov 2004 A1
20040244044 Brommer Dec 2004 A1
20040244059 Coman Dec 2004 A1
20040255229 Shen et al. Dec 2004 A1
20040261110 Kolbeck et al. Dec 2004 A1
20050002640 Putterman et al. Jan 2005 A1
20050033846 Sankaranarayan et al. Feb 2005 A1
20050052335 Chen Mar 2005 A1
20050054315 Bajgrowicz et al. Mar 2005 A1
20050057428 Fujita Mar 2005 A1
20050060525 Schwartz, Jr. et al. Mar 2005 A1
20050066367 Fyke et al. Mar 2005 A1
20050071882 Rodriguez et al. Mar 2005 A1
20050118984 Akiyama et al. Jun 2005 A1
20050138663 Throckmorton et al. Jun 2005 A1
20050184923 Saito et al. Aug 2005 A1
20050190777 Hess et al. Sep 2005 A1
20050193419 Lindstrom et al. Sep 2005 A1
20050198673 Kit Sep 2005 A1
20050204388 Knudson et al. Sep 2005 A1
20050240969 Sasaki et al. Oct 2005 A1
20050264395 Bassi Dec 2005 A1
20050289605 Jeon Dec 2005 A1
20060018345 Nadarajah et al. Jan 2006 A1
20060030259 Hetzel et al. Feb 2006 A1
20060041912 Kuhns Feb 2006 A1
20060048202 Bontempi et al. Mar 2006 A1
20060080707 Laksono Apr 2006 A1
20060112407 Kakiuchi May 2006 A1
20060133612 Abedi et al. Jun 2006 A1
20060174282 Dennison et al. Aug 2006 A1
20060225104 James et al. Oct 2006 A1
20060259929 James et al. Nov 2006 A1
20060294512 Seiden Dec 2006 A1
20070083898 Norin et al. Apr 2007 A1
20070202800 Roberts et al. Aug 2007 A1
20080064355 Sutskover et al. Mar 2008 A1
20080127277 Kuschak May 2008 A1
20080134279 Curtis et al. Jun 2008 A1
20080205514 Nishio et al. Aug 2008 A1
20090013358 Throckmorton et al. Jan 2009 A1
20090150937 Ellis et al. Jun 2009 A1
20090222875 Cheng et al. Sep 2009 A1
20090252316 Ratmanski et al. Oct 2009 A1
Foreign Referenced Citations (7)
Number Date Country
1413021 Apr 2003 CN
10114082 Jan 2003 DE
1447987 Aug 2004 EP
2354650 Mar 2001 GB
2377111 Dec 2002 GB
11355076 Dec 1999 JP
02082351 Oct 2002 WO
Provisional Applications (1)
Number Date Country
60956889 Aug 2007 US