Computer assisted completion of hyperlink command segments

Information

  • Patent Grant
  • 9836495
  • Patent Number
    9,836,495
  • Date Filed
    Saturday, May 14, 2016
    8 years ago
  • Date Issued
    Tuesday, December 5, 2017
    7 years ago
Abstract
Described are methods, systems and computer readable media for computer assisted completion of hyperlink command segments.
Description

Embodiments relate generally to computer console command line interface systems, and more particularly, to methods, systems and computer readable media for assisting the completion of hyperlink command segments in a computer console command line interface.


Many computer system user consoles require commands to be typed into a command line interface. User input for complex commands can be very long and error prone. Long complex commands can contain numerous parameters with special characters after the initial command segment. It is not uncommon for a user to type a long command string with many parameters followed by pressing the enter key only for system to display an error on the console screen informing the user that the command was not executed because of a syntax error. At that point, the user must determine where in the command line the error was made and retype the long command yet again. Also, in a system that has hundreds of possible command segment choices and associated parameter combinations, it can be difficult for a user to remember the best available command and parameter choices. A user may need to generate a new command when the user may not know or remember all of the necessary syntax or parameters. Without any prompting of choices, the user may form and submit a command and parameters that are not optimal for the desired task or results. Automatic completion of a full command with the last used command and parameters that contain the same beginning characters is not a remedy because numerous commands with the same root command segment may exist and the command chosen by the system may not be the command and parameters preferred or desired by the user.


Embodiments were conceived in light of the above mentioned needs, problems and/or limitations, among other things.


Some implementations can include a system for computer processor assisted completion of hyperlink command segments comprising one or more hardware processors, a computer console coupled to the one or more hardware processors, a computer readable data storage device coupled to the one or more hardware processors, the computer readable data storage device having stored thereon software instructions that, when executed by the one or more hardware processors, cause the one or more hardware processors to perform operations. The operations can include (a) using the computer processor for monitoring for input in the computer console command line interface. The operations can also include (b) receiving by the computer processor one or more characters input into the computer console command line interface. The operations can include (c) receiving by the computer processor a first designated hot key character input into the computer console command line interface. The operations can further include (d) upon receiving the first designated hot key character, using the computer processor for searching potential command line completion sources in a computer memory for segment matches with the received characters input into the computer console command line interface. The operations can include (e) if only a common segment match is found, making the common segment match a selection. The operations can also include (f) if only a common segment match is found, displaying the common segment match in the computer console command line interface and proceeding to step (k). The operations can further include (g) if more than one common segment matches are found, displaying as one or more hyperlinks in proximity to the computer console command line interface any segment matches found in the potential command line completion sources. The operations can include (h) receiving by the computer processor a selection of one of the one or more hyperlinks in proximity to the computer console command line interface or one or more characters. The operations can also include (i) if the selection of one of the one or more hyperlinks in proximity to the computer console command line interface is received, displaying the selection of one of the one or more hyperlinks in proximity to the computer console command line interface in the computer console command line interface. The operations can further include (j) if one or more characters are received, displaying the one or more characters in the computer console command line interface and proceeding to step (l) below. The operations can include (k) using the computer processor for monitoring for character input into the computer console command line interface. The operations can also include (l) if a character is received that is not a second designated hot key character repeat steps (a) through (j). The operations can further include (m) if the second designated hot key character is received, execute the command segments using the computer processor.


The operations can include wherein potential command line completion sources include at least one source from a command history, a command syntax file, a database name space source, and a table name source.


The operations can also include wherein the selection includes a cursor click operation.


The operations can also include wherein the designated hot key character includes a <tab> key character.


The operations can include wherein displaying as one or more hyperlinks in proximity to the computer console command line interface any segment matches found in the potential command line completion sources includes displaying an indicator if one or more additional hyperlinks are available off-screen.


Some implementations can include a method for computer processor assisted completion of hyperlink command segments comprising (a) using a computer processor for monitoring for input in a computer console command line interface. The method can also include (b) receiving by the computer processor one or more characters input into the computer console command line interface. The method can further include (c) receiving by the computer processor a first designated hot key character input into the computer console command line interface. The method can also include (d) upon receiving the first designated hot key character, using the computer processor for searching potential command line completion sources in a computer memory for segment matches with the received characters input into the computer console command line interface. The method can include (e) if only a common segment match is found, making the common segment match a selection. The method can also include (f) if only a common segment match is found, displaying the common segment match in the computer console command line interface and proceeding to step (k). The method can further include (g) if more than one common segment matches are found, displaying as one or more hyperlinks in proximity to the computer console command line interface any segment matches found in the potential command line completion sources. The method can also include (h) receiving by the computer processor a selection of one of the one or more hyperlinks in proximity to the computer console command line interface or one or more characters. The method can include (i) if the selection of one of the one or more hyperlinks in proximity to the computer console command line interface is received, displaying the selection of one of the one or more hyperlinks in proximity to the computer console command line interface in the computer console command line interface. The method can also include (j) if one or more characters are received, displaying the one or more characters in the computer console command line interface and proceeding to step (l). The method can include (k) using the computer processor for monitoring for character input into the computer console command line interface. The method can also include (l) if a character is received that is not a second designated hot key character repeat steps (a) through (j). The method can further include (m) if the second designated hot key character is received, execute the command segments using the computer processor.


The method can include wherein potential command line completion sources include at least one source from a command history, a command syntax file, a database name space source, and a table name source.


The method can also include wherein the selection includes a cursor click operation.


The method can include wherein the designated hot key character includes a <tab> key character.


The method can also include wherein displaying as one or more hyperlinks in proximity to the computer console command line interface any segment matches found in the potential command line completion sources includes displaying an indicator if one or more additional hyperlinks are available off-screen.


Some implementations can include a nontransitory computer readable medium having stored thereon software instructions that, when executed by one or more computer processors, cause the one or more processors to perform operations. The operations can include (a) using the one or more computer processors for monitoring for input in a computer console command line interface. The operations can also include (b) receiving by the one or more computer processors one or more characters input into the computer console command line interface. The operations can further include (c) receiving by the one or more computer processors a first designated hot key character input into the computer console command line interface. The operations can include (d) upon receiving the first designated hot key character, using the one or more computer processors for searching potential command line completion sources in a computer memory for segment matches with the received characters input into the computer console command line interface. The operations can include (e) if only a common segment match is found, making the common segment match a selection. The operations can also include (f) if only a common segment match is found, displaying the common segment match in the computer console command line interface and proceeding to step (k). The operations can further include (g) if more than one common segment matches are found, displaying as one or more hyperlinks in proximity to the computer console command line interface any segment matches found in the potential command line completion sources. The operations can also include (h) receiving by the computer processor a selection of one of the one or more hyperlinks in proximity to the computer console command line interface or one or more characters. The operations can include (i) if the selection of one of the one or more hyperlinks in proximity to the computer console command line interface is received, displaying the selection of one of the one or more hyperlinks in proximity to the computer console command line interface in the computer console command line interface. The operations can also include (j) if one or more characters are received, displaying the one or more characters in the computer console command line interface and proceeding to step (l), The operations can include (k) using the computer processor for monitoring for character input into the computer console command line interface. The operations can also include (l) if a character is received that is not a second designated hot key character repeat steps (a) through (j). The operations can further include (m) if the second designated hot key character is received, execute the command segments using the computer processor.


The operations can further include wherein potential command line completion sources include at least one source from a command history, a command syntax file, a database name space source, and a table name source.


The operations can also include wherein the selection includes a cursor click operation.


The operations can include wherein the designated hot key character includes a <tab> key character.


The operations can also include wherein displaying as one or more hyperlinks in proximity to the computer console command line interface any segment matches found in the potential command line completion sources includes displaying an indicator if one or more additional hyperlinks are available off-screen.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of an example computer data system showing an example data distribution configuration in accordance with some implementations.



FIG. 2 is a diagram of an example computer data system showing an example administration/process control arrangement in accordance with some implementations.



FIG. 3 is a diagram of an example computing device with a console configured for user input of commands into a command line interface.



FIG. 4 is a diagram of an example computer console with a command line interface.



FIG. 4A is a diagram of an example computer console with a command line interface interaction.



FIG. 4B is a diagram of an example computer console with a command line interface interaction.



FIG. 4C is a diagram of an example comp e console with a command line interface interaction.



FIG. 4D is a diagram of an example computer console with a command line interface interaction.



FIG. 4E is a diagram of an example computer console with a command line interface interaction.



FIG. 4F is a diagram of an example computer console with a command line interface interaction.



FIG. 5 is a diagram of an example flow chart for assisted completion of hyperlink command segments.





DETAILED DESCRIPTION

Reference is made herein to the Java programming language, Java classes, Java bytecode and the Java Virtual Machine (JVM) for purposes of illustrating example implementations. It will be appreciated that implementations can include other programming languages (e.g., Groovy, Scala, R, Go, etc.), other programming language structures as an alternative to or in addition to Java classes (e.g., other language classes, objects, data structures, program units, code portions, script portions, etc.), other types of bytecode, object code and/or executable code, and/or other virtual machines or hardware implemented machines configured to execute a data system query.



FIG. 1 is a diagram of an example computer data system and network 100 showing an example data distribution configuration in accordance with some implementations. In particular, the system 100 includes an application host 102, aperiodic data import host 104, a query server host 106, a long-term file server 108, and a user data import host 110. While tables are used as an example data object in the description below, it will be appreciated that the data system described herein can also process other data objects such as mathematical objects e.g., a singular value decomposition of values in a given range of one or more rows and columns of a table), TableMap objects, etc. A TableMap object provides the ability to lookup a Table by some key. This key represents a unique value (or unique tuple of values) from the columns aggregated on in a byExternal( ) statement execution, for example. A TableMap object can be the result of a byExternal( ) statement executed as part of a query. It will also be appreciated that the configurations shown in FIGS. 1 and 2 are for illustration purposes and in a given implementation each data pool (or data store) may be directly attached or may be managed by a file server.


The application host 102 can include one or more application processes 112, one or more log files 114 (e.g., sequential, row-oriented log files), one or more data log milers 116 and a multicast key-value publisher 118. The periodic data import host 104 can include a local table data server, direct or remote connection to aperiodic table data store 122 (e.g., a column-oriented table data store) and a data import server 120. The query server host 106 can include a multicast key-value subscriber 126, a performance table logger 128, local table data store 130 and one or more remote query processors (132, 134) each accessing one or more respective tables (136, 138). The long-term file server 108 can include a long-term data store 140. The user data import host 110 can include a remote user table server 142 and a user table data store 144. Row-oriented log files and column-oriented table data stores are discussed herein for illustration purposes and are not intended to be limiting. It will be appreciated that log files and/or data stores may be configured in other ways. In general, any data stores discussed herein could be configured in a manner suitable for a contemplated implementation.


In operation, the input data application process 112 can be configured to receive input data from a source (e.g., a securities trading data source), apply schema-specified, generated code to format the logged data as it's being prepared for output to the log file 114 and store the received data in the sequential, row-oriented log file 114 via an optional data logging process. In some implementations, the data logging process can include a daemon, or background process task, that is configured to log raw input data received from the application process 112 to the sequential, row-oriented log files on disk and/or a shared memory queue (e.g., for sending data to the multicast publisher 118). Logging raw input data to log files can additionally serve to provide a backup copy of data that can be used in the event that downstream processing of the input data is halted or interrupted or otherwise becomes unreliable.


A data log taller 116 can be configured to access the sequential, row-oriented log file(s) 114 to retrieve input data logged by the data logging process. In some implementations, the data log taller 116 can be configured to perform strict byte reading and transmission (e.g., to the data import server 120). The data import server 120 can be configured to store the input data into one or more corresponding data stores such as the periodic table data store 122 in a column-oriented configuration. The periodic table data store 122 can be used to store data that is being received within a time period (e.g., a minute, an hour, a day, etc.) and which may be later processed and stored in a data store of the long-term file server 108. For example, the periodic table data store 122 can include a plurality of data servers configured to store periodic securities trading data according to one or more characteristics of the data (e.g., a data value such as security symbol, the data source such as a given trading exchange, etc.).


The data import server 120 can be configured to receive and store data into the periodic table data store 122 in such a way as to provide a consistent data presentation to other parts of the system. Providing/ensuring consistent data in this context can include, for example, recording logged data to a disk or memory, ensuring rows presented externally are available for consistent reading (e.g., to help ensure that if the system has part of a record, the system has all of the record without any errors), and preserving the order of records from a given data source. If data is presented to clients, such as a remote query processor (132, 134), then the data may be persisted in some fashion (e.g., written to disk).


The local table data server 124 can be configured to retrieve data stored in the periodic table data store 122 and provide the retrieved data to one or more remote query processors (132, 134) via an optional proxy.


The remote user table server (RUTS) 142 can include a centralized consistent data writer, as well as a data server that provides processors with consistent access to the data that it is responsible for managing. For example, users can provide input to the system by writing table data that is then consumed by query processors.


The remote query processors (132, 134) can use data from the data import server 120, local table data server 124 and/or from the long-term file server 108 to perform queries. The remote query processors (132, 134) can also receive data from the multicast key-value subscriber 126, which receives data from the multicast key-value publisher 118 in the application host 102. The performance table logger 128 can log performance information about each remote query processor and its respective queries into a local table data store 130. Further, the remote query processors can also read data from the RUTS, from local table data written by the performance logger, or from user table data read over NFS.


It will be appreciated that the configuration shown in FIG. 1 is atypical example configuration that may be somewhat idealized for illustration purposes. An actual configuration may include one or more of each server and/or host type. The hosts/servers shown in FIG. 1 (e.g., 102-110, 120, 124 and 142) may each be separate or two or more servers may be combined into one or more combined server systems. Data stores can include local/remote, shared/isolated and/or redundant. Any table data may flow through optional proxies indicated by an asterisk on certain connections to the remote query processors. Also, it will be appreciated that the term “periodic” is being used for illustration purposes and can include, but is not limited to, data that has been received within a given time period (e.g., millisecond, second, minute, hour, day, week, month, year, etc. and which has not yet been stored to a long-term data store (e.g., 140).



FIG. 2 is a diagram of an example computer data system 200 showing an example administration/process control arrangement in accordance with some implementations. The system 200 includes a production client host 202, a controller host 204, a GUI host or workstation 206, and query server hosts 208 and 210. It will be appreciated that there may be one or more of each of 202-210 in a given implementation.


The production client host 202 can include a batch query application 212 (e.g., a query that is executed from a command line interface or the like) and a real time query data consumer process 214 (e.g., an application that connects to and listens to tables created from the execution of a separate query). The batch query application 212 and the real time query data consumer 214 can connect to a remote query dispatcher 222 and one or more remote query processors (224, 226) within the query server host 1208.


The controller host 204 can include a persistent query controller 216 configured to connect to a remote query dispatcher 232 and one or more remote query processors 228-230. In some implementations, the persistent query controller 216 can serve as the “primary client” for persistent queries and can request remote query processors from dispatchers, and send instructions to start persistent queries. For example, a user can submit a query to 216, and 216 starts and runs the query every day. In another example, a securities trading strategy could be a persistent query. The persistent query controller can start the trading strategy query every morning before the market open, for instance. It will be appreciated that 216 can work on times other than days. In some implementations, the controller may require its own clients to request that queries be started, stopped, etc. This can be done manually, or by scheduled (e.g., cron) jobs. Some implementations can include “advanced scheduling” (e.g., auto-start/stop/restart, time-based repeat, etc.) within the controller.


The GUI/host workstation can include a user console 218 and a user query application 220. The user console 218 can be configured to connect to the persistent query controller 216. The user query application 220 can be configured to connect to one or more remote query dispatchers (e.g., 232) and one or more remote query processors (228, 230).



FIG. 3 is a diagram of an example computing device 300 in accordance with at least one implementation. The computing device 300 includes one or more processors 302, operating system 304, computer readable medium 306, network interface 308, and a console 314. The memory 306 can include a completion of hyperlink command segments application 310 and a data section 312 (e.g., for storing ASTs, precompiled code, etc.).


In operation, the processor 302 may execute the application 310 stored in the memory 306. The application 310 can include software instructions that, when executed by the processor, cause the processor to perform operations for computer assisted completion of hyperlink command segments in accordance with the present disclosure (e.g., performing one or more of 502-520 described below).


The application program 310 can operate in conjunction with the data section 312, the operating system 304, and the console 314.


In general, some implementations can provide a system for assisting the completion of a user's partially or fully typed command segments that a user types into a command line interface. The system described herein monitors a user typing into a command line interface and when signaled by a user pressing a designated hot key, the system searches through possible command segment completion sources to find one or more matches that begin with the typed characters. For example, a user could type the first three letters of a command segment followed by pressing the <tab> key on the user's keyboard. The system can then respond by displaying to the user alone match to the command segment or if more than one command segment match is found, all the command segments with the first three characters that match the user-typed three characters. The user can then accept one of the presented command segments with a cursor click on the hyperlinked command segment or type in more characters followed by pressing the designed hot key again to further limit the choices. The user can then repeat the process of typing a few characters followed by a designated hot key to add more command segments and parameter segments in order to create a full command string. Finally, the user can request that the system execute the displayed command string by pressing the <ENTER> key.


It will be appreciated that command segments that are not hyperlinked can also be chosen by a cursor click or other selection method.



FIG. 4 is a diagram of an example computer console with a command line interface 400. The computer console 402 can provide a symbol such as a “>” designating a command line interface 403 available for a user to enter input.


It will be appreciated that a user can enter input through a variety of means including but not limited to a physical keyboard, hot keys, touch screen, touch screen with displayed keyboard, voice recognition, macros, cut and paste, and the like.



FIG. 4A is a diagram of an example computer console with a command line interface 400. In a continuation of an example from FIG. 4, a user can type in one or more characters into the command line interface followed by the user pressing a designated hot key, such as a <tab> key. For example, the user can type “>t=db.t2(“S<tab> as shown at 404. In response, the system can search for all command segment matches to “S” and can display command segment matches (e.g., SyncCalc, SystemX SystemY SystemIndex) to the console in the form of hyperlinks as shown at 406.


It will be appreciated that the user can choose to click on one of the command segment hyperlink choices (e.g., SyncCalc, SystemX SystemY SystemIndex) with a cursor or can choose to type more characters followed by pressing a <tab> key to narrow the command segment choices to only command segment choices with a “System” substring within the full segment string. Each of the choices (e.g., SyncCalc, SystemX SystemY SystemIndex) can be a hyperlink that when clicked on using a cursor or other pointing device, can cause the full segment string to be displayed in the command line interface for possible execution. For example, if a user clicks on the SystemX hyped ink, the resulting command line can be “>t=db.t2(“SystemX”. The user can then either continue typing in more characters to further define the command or add parameters or press <ENTER> to execute the command.


It will also be appreciated that if more command segment matches are found by the system than can be displayed on the console 402, the system can present an indicator of too many matches to display on the console screen along with a mechanism for displaying additional pages of matches. It will also be appreciated that the term command segment is not limit to only command syntax but also includes any term that can be added to a command line such as commands, parameters, tokens, variables, limitations, and the like.



FIG. 4B is a diagram of an example computer console with a command line interface 400. In a continuation of an example from FIG. 4A, a user can further narrow the displayed matches by typing more characters into the command line interface in order to add more letters to “S,” such as “Sys,” followed by pressing the <tab> key as shown at 408. Because there are only three matches in the example with “Sys” (SystemX SystemY SystemIndex) and all three matches have a common command segment of “System,” the system completes the first portion of the command in the command line interface with “System, as shown at 410.


It will be appreciated that the system was able to determine that “System” should be displayed in the command line interface because all three matches (SystemX SystemY SystemIndex) to the user typed characters “Sys” have “System” as a common command segment stem, Accordingly, the system can deduce that the common portion, “System,” must be part of the full command segment.



FIG. 4C is a diagram of an example computer console with a command line interface 400. In a continuation of an example from FIG. 4B, a user can press the <tab> key as shown at 412 after the “System” segment is written into the command line interface (FIG. 4B410) by the system. Upon receiving the <tab> 412, the system can search for all matches to “System” and can display the matches SystemX SystemY SystemIndex) to the console in the form of hyperlinks as shown at 414.



FIG. 4D is a diagram of an example computer console with a command line interface 400. In a continuation of an example from FIG. 4C, a user can use a cursor 416 to click on one of the three presented choices (SystemX SystemY SystemIndex) 414. Upon receiving the cursor click, the system can acknowledge the cursor click as a selection of a particular hyped ink such as the SystemIndex hyperlink. The system can execute the hyperlink and complete the command segment with SystemIndex as shown at 418.


It will be appreciated that after the completion of the command segment a user can decide to either attempt to execute the command segment as a full command by pressing the <ENTER> key or add contiguously to the displayed command segment by typing one or more characters into the computer console command line interface after the displayed command segment.



FIG. 4E is a diagram of an example computer console with a command line interface 400. In a continuation of an example from FIG. 4D, a user can type one or more characters into the computer console command line interface after the “SystemIndex” command segment. For example, a user can type the three characters “.Wh” followed by pressing the <tab> key as shown at 420. Upon receiving the <tab> key, the system can search for all matches to “.Wh”. In this example, the system can narrow its search to command syntax because the system is alerted by the “.” that starts the three-character string that the suing that follows the “.” is a separate command. Accordingly, the system need only apply syntax rules for commands in its search of completion sources to complete the “Wh”. In this example, the system only finds the “Where” command as a possible segment completion choice. Having only found one choice, the system adds “Where” to the computer console command line interface as shown at 420.


It will be appreciated that numerous computer programming and scripting languages can use a command line interface for command input. It will also be appreciated that different languages may have different syntax indicators for starting a command or a command segment and that the invention is not limited to commands or command segments that begin with a “.”.



FIG. 4F is a diagram of an example computer console with a command line interface 400. In a continuation of an example from FIG. 4E, a user can complete the Where command by typing the characters “(“A>100”)” into the computer console command line interface as shown at 424. If a user has no further command or parameter segments to add to the command string, the user can then press the <ENTER> key to execute the completed command.


It will be appreciated that the user can also add more commands, parameters, variables, and tokens to the command line interface to further narrow the results instead of pressing the <ENTER> key after the “Where(“A>100”)” segment is added. Because each segment of the full command is treated individually, the user is not limited to a specific number of segments for the command completion process. A user can continue to type characters into the computer console command line interface and press the <tab> key iteratively to create a desired full command.



FIG. 5 is a diagram of an example flow chart for assisted completion of hyperlink command segments. Processing begins at 502, when the system monitors the computer console command line area for character input by a user. Processing continues to 504.


At 504, the system receives characters typed into the computer console command line interface input area. Processing continues to 506.


At 506, the system receives notification that the <tab> key was pressed. Processing continues to 508.


At 508, the system determines whether a common command segment for the received typed characters followed by a <tab> key exists by searching command segment sources for matches to the typed characters. If a common command segment exists, processing continues to 510. If a common command segment does not exist, processing continues to 512.


At 510, the system displays the common command segment substring in the computer console command line interface input area. Processing continues to 514.


At 512, the system displays a list of hyperlinks of all possible command segment matches. Processing continues to 514.


At 514, the system monitors for further input into the computer console command line interface input area or from the displayed hyperlink command segments area. Here the system is monitoring for one of four input events: the pressing of a designated hot key such as a <tab> key, the cursor or similar pointing device or function clicking on a hyperlink command segment in the displayed hyperlink command segments area, the pressing of an execution key such as an <ENTER> key, or the entering of a character. If a character is detected, processing returns to 502. If a designated hot key such as a <tab> key is detected, processing returns to 508. If an execution key such as an <ENTER> key is detected, processing continues to 516. If a cursor click or similar pointing device or function clicking on a hyperlink command segment in the displayed hyperlink command segments area is detected, processing continues to 518.


At 516, the command in the command line interface area is executed.


At 518, a notification that one of the hyperlinks was clicked or chosen by similar means is received. Processing continues to 520.


At 520, the hyperlinked command segment selected by a cursor click or similar means is displayed in the computer console command line input area. If there is already a displayed command segment in the computer console command line input area, the selected command segment is concatenated with the existing command segment. Processing returns to 514 to continue monitoring for input.


It will be appreciated that the modules, processes, systems, and sections described above can be implemented in hardware, hardware programmed by software, software instructions stored on a nontransitory computer readable medium or a combination of the above. A system as described above, for example, can include a processor configured to execute a sequence of programmed instructions stored on a nontransitory computer readable medium. For example, the processor can include, but not be limited to, a personal computer or workstation or other such computing system that includes a processor, microprocessor, microcontroller device, or is comprised of control logic including integrated circuits such as, for example, an Application Specific Integrated Circuit (ASIC), afield programmable gate array (FPGA), graphics processing unit (GPU), or the like. The instructions can be compiled from source code instructions provided in accordance with a programming language such as Java, C. C++, C#.net. assembly or the like. The instructions can also comprise code and data objects provided in accordance with, for example, the Visual Basic™ language, a specialized database query language, or another structured or object-oriented programming language. The sequence of programmed instructions, or programmable logic device configuration software, and data associated therewith can be stored in a nontransitory computer-readable medium such as a computer memory or storage device which may be any suitable memory apparatus, such as, but not limited to ROM, PROM, EEPROM, RAM, flash memory, disk drive and the like.


Furthermore, the modules, processes systems, and sections can be implemented as a single processor or as a distributed processor. Further, it should be appreciated that the steps mentioned above may be performed on a single or distributed processor (single and/or multi-core, or cloud computing system). Also, the processes, system components, modules, and sub-modules described in the various figures of and for embodiments above may be distributed across multiple computers or systems or may be co-located in a single processor or system. Example structural embodiment alternatives suitable for implementing the modules, sections, systems, means, or processes described herein are provided below.


The modules, processors or systems described above can be implemented as a programmed general purpose computer, an electronic device programmed with microcode, a hard-wired analog logic circuit, software stored on a computer-readable medium or signal, an optical computing device, a networked system of electronic and/or optical devices, a special purpose computing device, an integrated circuit device, a semiconductor chip, and/or a software module or object stored on a computer-readable medium or signal, for example.


Embodiments of the method and system (or their sub-components or modules), may be implemented on a general-purpose computer, a special-purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element, an ASIC or other integrated circuit, a digital signal processor, a hardwired electronic or logic circuit such as a discrete element circuit, a programmed logic circuit such as a PLD, PLA, FPGA, PAL, or the like. In general, any processor capable of implementing the functions or steps described herein can be used to implement embodiments of the method, system, or a computer program product (software program stored on a nontransitory computer readable medium).


Furthermore, embodiments of the disclosed method, system, and computer program product (or software instructions stored on a nontransitory computer readable medium) may be readily implemented, fully or partially, in software using, for example, object or object-oriented software development environments that provide portable source code that can be used on a variety of computer platforms. Alternatively, embodiments of the disclosed method, system, and computer program product can be implemented partially or fully in hardware using, for example, standard logic circuits or a VLSI design. Other hardware or software can be used to implement embodiments depending on the speed and/or efficiency requirements of the systems, the particular function, and/or particular software or hardware system, microprocessor, or microcomputer being utilized. Embodiments of the method, system, and computer program product can be implemented in hardware and/or software using any known or later developed systems or structures, devices and/or software by those of ordinary skill in the applicable art from the function description provided herein and with a general basic knowledge of the software engineering and computer networking arts.


Moreover, embodiments of the disclosed method, system, and computer readable media (or computer program product) can be implemented in software executed on a programmed general purpose computer, a special purpose computer, a microprocessor, or the like.


It is, therefore, apparent that there is provided, in accordance with the various embodiments disclosed herein, methods, systems and computer readable media for computer assisted completion of hyperlink command segments.


Application Ser. No. 15/154,974, entitled “DATA PARTITIONING AND ORDERING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No.15/154,975, entitled “COMPUTER DATA SYSTEM DATA SOURCE REFRESHING USING AN UPDATE PROPAGATION GRAPH” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154.979, entitled “COMPUTER DATA SYSTEM POSITION-INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,980, entitled “SYSTEM PERFORMANCE LOGGING OF COMPLEX REMOTE QUERY PROCESSOR QUERY OPERATIONS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,983, entitled “DISTRIBUTED AND OPTIMIZED GARBAGE COLLECTION OF REMOTE AND EXPORTED TABLE HANDLE LINKS TO UPDATE PROPAGATION GRAPH NODES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,984, entitled “COMPUTER DATA SYSTEM CURRENT ROW POSITION QUERY LANGUAGE CONSTRUCT AND ARRAY PROCESSING QUERY LANGUAGE CONSTRUCTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,985, entitled “PARSING AND COMPILING DATA SYSTEM QUERIES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,987, entitled “DYNAMIC FILTER PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,988, entitled “DYNAMIC JOIN PROCESSING USING REAL-TIME MERGED NOTIFICATION LISTENER” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,990, entitled “DYNAMIC TABLE INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,991, entitled “QUERY TASK PROCESSING BASED ON MEMORY ALLOCATION AND PERFORMANCE CRITERIA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,993, entitled “A MEMORY-EFFICIENT COMPUTER SYSTEM FOR DYNAMIC UPDATING OF JOIN PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,995, entitled “QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,996, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,997, entitled “DYNAMIC UPDATING OF QUERY RESULT DISPLAYS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,998, entitled “DYNAMIC CODE LOADING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser No. 15/154,999, entitled “IMPORTATION, PRESENTATION, AND PERSISTENT STORAGE OF DATA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,001, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,005, entitled “PERSISTENT QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,006, entitled “SINGLE INPUT GRAPHICAL USER INTERFACE CONTROL ELEMENT AND METHOD” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,007, entitled “GRAPHICAL USER INTERFACE DISPLAY EFFECTS FOR A COMPUTER DISPLAY SCREEN” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,009, entitled “COMPUTER ASSISTED COMPLETION OF HYPERLINK COMMAND SEGMENTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,010, entitled “HISTORICAL DATA REPLAY UTILIZING A COMPUTER SYSTEM” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,011, entitled “DATA STORE ACCESS PERMISSION SYSTEM WITH INTERLEAVED APPLICATION OF DEFERRED ACCESS CONTROL FILTERS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,012, entitled “REMOTE DATA OBJECT PUBLISHING/SUBSCRIBING SYSTEM HAVING A MULTICAST KEY-VALUE PROTOCOL” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


While the disclosed subject matter has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be, or are, apparent to those of ordinary skill in the applicable arts. Accordingly, Applicants intend to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of the disclosed subject matter.

Claims
  • 1. A system for computer processor assisted completion of hyperlink command segments, the system comprising: one or more hardware processors;a computer console coupled to the one or more hardware processors;a computer readable data storage device coupled to the one or more hardware processors, the computer readable data storage device having stored thereon software instructions that, when executed by the one or more hardware processors, cause the one or more hardware processors to perform operations including: (a) using the computer processor for monitoring for input in the computer console command line interface;(b) receiving by the computer processor one or more characters input into the computer console command line interface;(c) receiving by the computer processor a first designated hot key character input into the computer console command line interface;(d) upon receiving the first designated hot key character, using the computer processor for searching one or more potential command line completion sources in a computer memory for segment matches with the one or more received characters input into the computer console command line interface;(e) if a plurality of segment matches is found, determining whether the plurality of segment matches have a common segment stem;(f) if a common segment stem is found, displaying the common segment stem in the computer console command line interface and proceeding to step (j);(g) if a plurality of segment matches is found and no common segment stem is found, displaying as one or more hyperlinks in proximity to the computer console command line interface at least a portion of the plurality of segment matches found in the potential command line completion sources;(h) if a selection of one of the one or more hyperlinks in proximity to the computer console command line interface is received, displaying the selection of the one of the one or more hyperlinks in proximity to the computer console command line interface in the computer console command line interface;(i) if one or more characters are received, displaying the one or more characters in the computer console command line interface and proceeding to step (k);(j) using the computer processor for monitoring for character input into the computer console command line interface;(k) if a character is received that is not a second designated hot key character repeat steps (a) through (i);(l) if the second designated hot key character is received, execute command segments using the computer processor,wherein, after input of a first command is started, when the one or more characters input into the computer console command line interface indicate the start of a second command separate from the first command, the searching includes narrowing the searching to a command syntax completion source of the potential command line completion sources,wherein the selection of the one of the one or more hyperlinks is received when a user clicks on the one of the one or more hyperlinks, andwherein, when the plurality of segment matches includes too many matches to display, the displaying as one or more hyperlinks includes: displaying as the one or more hyperlinks a first portion of the plurality of segment matches;presenting an indicator of too many matches to display; anddisplaying an additional page of matches to display a second portion of the plurality of segment matches as one or more additional hyperlinks, the second portion consisting of one or more segment matches of the plurality of segment matches not included in the first portion of the plurality of segment matches.
  • 2. The system of claim 1, wherein potential command line completion sources include at least one source from a command history, a command syntax file, a database name space source, and a table name source.
  • 3. The system of claim 1, wherein the selection includes a cursor click operation.
  • 4. The system of claim 1, wherein the designated hot key character includes a <tab> key character.
  • 5. The system of claim 1, wherein displaying as one or more hyperlinks in proximity to the computer console command line interface any segment matches found in the potential command line completion sources includes displaying an indicator if one or more additional hyperlinks are available off-screen.
  • 6. The system of claim 1, wherein the user clicks on the one of the one or more hyperlinks by touching a touchscreen.
Parent Case Info

This application claims the benefit of U.S. Provisional Application No. 62/161,813, entitled “Computer Data System” and filed on May 14, 2015, which is incorporated herein by reference in its entirety.

US Referenced Citations (394)
Number Name Date Kind
5335202 Manning et al. Aug 1994 A
5452434 Macdonald Sep 1995 A
5469567 Okada Nov 1995 A
5504885 Alashqur Apr 1996 A
5530939 Mansfield et al. Jun 1996 A
5568632 Nelson Oct 1996 A
5673369 Kim Sep 1997 A
5701461 Dalal et al. Dec 1997 A
5701467 Freeston Dec 1997 A
5764953 Collins et al. Jun 1998 A
5787428 Hart Jul 1998 A
5806059 Tsuchida et al. Sep 1998 A
5859972 Subramaniam et al. Jan 1999 A
5875334 Chow et al. Feb 1999 A
5878415 Olds Mar 1999 A
5890167 Bridge et al. Mar 1999 A
5899990 Maritzen et al. May 1999 A
5920860 Maheshwari et al. Jul 1999 A
5943672 Yoshida Aug 1999 A
5960087 Tribble et al. Sep 1999 A
5991810 Shapiro et al. Nov 1999 A
5999918 Williams et al. Dec 1999 A
6006220 Haderle et al. Dec 1999 A
6032144 Srivastava et al. Feb 2000 A
6032148 Wilkes Feb 2000 A
6038563 Bapat et al. Mar 2000 A
6058394 Bakow et al. May 2000 A
6061684 Glasser et al. May 2000 A
6138112 Slutz Oct 2000 A
6266669 Brodersen et al. Jul 2001 B1
6289357 Parker Sep 2001 B1
6292803 Richardson et al. Sep 2001 B1
6304876 Isip Oct 2001 B1
6317728 Kane Nov 2001 B1
6327702 Sauntry et al. Dec 2001 B1
6336114 Garrison Jan 2002 B1
6353819 Edwards et al. Mar 2002 B1
6367068 Vaidyanathan et al. Apr 2002 B1
6389414 Delo et al. May 2002 B1
6389462 Cohen et al. May 2002 B1
6438537 Netz et al. Aug 2002 B1
6446069 Yaung et al. Sep 2002 B1
6460037 Weiss et al. Oct 2002 B1
6473750 Petculescu et al. Oct 2002 B1
6487552 Lei et al. Nov 2002 B1
6496833 Goldberg et al. Dec 2002 B1
6505189 Au et al. Jan 2003 B1
6505241 Pitts Jan 2003 B2
6510551 Miller Jan 2003 B1
6530075 Beadle et al. Mar 2003 B1
6538651 Hayman et al. Mar 2003 B1
6546402 Beyer et al. Apr 2003 B1
6553375 Huang et al. Apr 2003 B1
6584474 Pereira Jun 2003 B1
6604104 Smith Aug 2003 B1
6618720 Au et al. Sep 2003 B1
6631374 Klein et al. Oct 2003 B1
6640234 Coffen et al. Oct 2003 B1
6697880 Dougherty Feb 2004 B1
6701415 Hendren Mar 2004 B1
6714962 Helland et al. Mar 2004 B1
6725243 Snapp Apr 2004 B2
6732100 Brodersen et al. May 2004 B1
6745332 Wong et al. Jun 2004 B1
6748374 Madan et al. Jun 2004 B1
6748455 Hinson et al. Jun 2004 B1
6760719 Hanson et al. Jul 2004 B1
6775660 Lin et al. Aug 2004 B2
6785668 Polo et al. Aug 2004 B1
6795851 Noy Sep 2004 B1
6816855 Hartel et al. Nov 2004 B2
6820082 Cook et al. Nov 2004 B1
6829620 Hsing et al. Dec 2004 B2
6832229 Reed Dec 2004 B2
6851088 Conner et al. Feb 2005 B1
6882994 Yoshimura et al. Apr 2005 B2
6925472 Kong Aug 2005 B2
6934717 James Aug 2005 B1
6947928 Dettinger et al. Sep 2005 B2
6983291 Cochrane et al. Jan 2006 B1
6985895 Witkowski et al. Jan 2006 B2
6985899 Chan et al. Jan 2006 B2
6985904 Kaluskar et al. Jan 2006 B1
7020649 Cochrane et al. Mar 2006 B2
7024414 Sah et al. Apr 2006 B2
7031962 Moses Apr 2006 B2
7058657 Berno Jun 2006 B1
7089228 Arnold et al. Aug 2006 B2
7089245 George et al. Aug 2006 B1
7096216 Anonsen Aug 2006 B2
7103608 Ozbutun et al. Sep 2006 B1
7110997 Turkel et al. Sep 2006 B1
7127462 Hiraga et al. Oct 2006 B2
7146357 Suzuki et al. Dec 2006 B2
7149742 Eastham et al. Dec 2006 B1
7167870 Avvari et al. Jan 2007 B2
7171469 Ackaouy et al. Jan 2007 B2
7174341 Ghukasyan et al. Feb 2007 B2
7181686 Bahrs Feb 2007 B1
7188105 Dettinger et al. Mar 2007 B2
7200620 Gupta Apr 2007 B2
7216115 Walters et al. May 2007 B1
7216116 Nilsson et al. May 2007 B1
7225189 McCormack et al. May 2007 B1
7254808 Trappen et al. Aug 2007 B2
7257689 Baird Aug 2007 B1
7272605 Hinshaw et al. Sep 2007 B1
7308580 Nelson et al. Dec 2007 B2
7316003 Dulepet et al. Jan 2008 B1
7330969 Harrison et al. Feb 2008 B2
7333941 Choi Feb 2008 B1
7343585 Lau et al. Mar 2008 B1
7350237 Vogel et al. Mar 2008 B2
7380242 Alaluf May 2008 B2
7401088 Chintakayala et al. Jul 2008 B2
7426521 Harter Sep 2008 B2
7430549 Zane et al. Sep 2008 B2
7433863 Zane et al. Oct 2008 B2
7447865 Uppala et al. Nov 2008 B2
7478094 Ho et al. Jan 2009 B2
7484096 Garg et al. Jan 2009 B1
7493311 Cutsinger et al. Feb 2009 B1
7529734 Dirisala May 2009 B2
7529750 Bair May 2009 B2
7610351 Gollapudi et al. Oct 2009 B1
7620687 Chen et al. Nov 2009 B2
7624126 Pizzo et al. Nov 2009 B2
7627603 Rosenblum et al. Dec 2009 B2
7661141 Dutta et al. Feb 2010 B2
7664778 Yagoub et al. Feb 2010 B2
7672275 Yajnik et al. Mar 2010 B2
7680782 Chen et al. Mar 2010 B2
7711716 Stonecipher May 2010 B2
7711740 Minore et al. May 2010 B2
7761444 Zhang et al. Jul 2010 B2
7797356 Iyer et al. Sep 2010 B2
7827204 Heinzel et al. Nov 2010 B2
7827403 Wong et al. Nov 2010 B2
7827523 Ahmed et al. Nov 2010 B2
7882121 Bruno et al. Feb 2011 B2
7882132 Ghatare Feb 2011 B2
7904487 Ghatare Mar 2011 B2
7908259 Branscome et al. Mar 2011 B2
7908266 Zeringue et al. Mar 2011 B2
7930412 Yeap et al. Apr 2011 B2
7966311 Haase Jun 2011 B2
7966312 Nolan et al. Jun 2011 B2
7966343 Yang et al. Jun 2011 B2
7970777 Saxena et al. Jun 2011 B2
7979431 Qazi et al. Jul 2011 B2
7984043 Waas Jul 2011 B1
8019795 Anderson et al. Sep 2011 B2
8032525 Bowers et al. Oct 2011 B2
8037542 Taylor et al. Oct 2011 B2
8046394 Shatdal Oct 2011 B1
8046749 Owen et al. Oct 2011 B1
8055672 Djugash et al. Nov 2011 B2
8060484 Bandera et al. Nov 2011 B2
8171018 Zane et al. May 2012 B2
8180789 Wasserman et al. May 2012 B1
8196121 Peshansky et al. Jun 2012 B2
8209356 Roesler Jun 2012 B1
8286189 Kukreja et al. Oct 2012 B2
8321833 Langworthy et al. Nov 2012 B2
8332435 Ballard et al. Dec 2012 B2
8359305 Burke et al. Jan 2013 B1
8375127 Lita Feb 2013 B1
8380757 Bailey et al. Feb 2013 B1
8418142 Ao et al. Apr 2013 B2
8433701 Sargeant et al. Apr 2013 B2
8458218 Wildermuth Jun 2013 B2
8473897 Box et al. Jun 2013 B2
8478713 Cotner et al. Jul 2013 B2
8515942 Marum et al. Aug 2013 B2
8543620 Ching Sep 2013 B2
8553028 Urbach Oct 2013 B1
8555263 Allen et al. Oct 2013 B2
8560502 Vora Oct 2013 B2
8595151 Hao et al. Nov 2013 B2
8601016 Briggs et al. Dec 2013 B2
8631034 Peloski Jan 2014 B1
8650182 Murthy Feb 2014 B2
8660869 MacIntyre et al. Feb 2014 B2
8676863 Connell et al. Mar 2014 B1
8683488 Kukreja et al. Mar 2014 B2
8713518 Pointer et al. Apr 2014 B2
8719252 Miranker et al. May 2014 B2
8725707 Chen et al. May 2014 B2
8726254 Rohde et al. May 2014 B2
8745014 Travis Jun 2014 B2
8745510 D'Alo' et al. Jun 2014 B2
8751823 Myles et al. Jun 2014 B2
8768961 Krishnamurthy Jul 2014 B2
8793243 Weyerhaeuser et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806133 Hay et al. Aug 2014 B2
8812625 Chitilian et al. Aug 2014 B1
8838656 Cheriton Sep 2014 B1
8855999 Elliot Oct 2014 B1
8863156 Lepanto et al. Oct 2014 B1
8874512 Jin et al. Oct 2014 B2
8880569 Draper et al. Nov 2014 B2
8880787 Kimmel et al. Nov 2014 B1
8881121 Ali Nov 2014 B2
8886631 Abadi et al. Nov 2014 B2
8903717 Elliot Dec 2014 B2
8903842 Bloesch et al. Dec 2014 B2
8922579 Mi et al. Dec 2014 B2
8924384 Driesen et al. Dec 2014 B2
8930892 Pointer et al. Jan 2015 B2
8954418 Faerber et al. Feb 2015 B2
8959495 Chafi et al. Feb 2015 B2
8996864 Maigne et al. Mar 2015 B2
9031930 Valentin May 2015 B2
9077611 Cordray et al. Jul 2015 B2
9195712 Freedman et al. Nov 2015 B2
9298768 Varakin et al. Mar 2016 B2
9372671 Balan et al. Jun 2016 B2
9384184 Acuna Jul 2016 B2
20020002576 Wollrath et al. Jan 2002 A1
20020007331 Lo et al. Jan 2002 A1
20020054587 Baker et al. May 2002 A1
20020065981 Jenne et al. May 2002 A1
20020156722 Greenwood Oct 2002 A1
20030004952 Nixon et al. Jan 2003 A1
20030061216 Moses Mar 2003 A1
20030074400 Brooks et al. Apr 2003 A1
20030110416 Morrison et al. Jun 2003 A1
20030167261 Grust et al. Sep 2003 A1
20030182261 Patterson Sep 2003 A1
20030208505 Mullins et al. Nov 2003 A1
20030233632 Aigen et al. Dec 2003 A1
20040002961 Dettinger et al. Jan 2004 A1
20040111492 Nakahara et al. Jun 2004 A1
20040148630 Choi Jul 2004 A1
20040186813 Tedesco et al. Sep 2004 A1
20040216150 Scheifler et al. Oct 2004 A1
20040220923 Nica Nov 2004 A1
20040254876 Coval et al. Dec 2004 A1
20050015490 Saare et al. Jan 2005 A1
20050060693 Robison Mar 2005 A1
20050097447 Serra et al. May 2005 A1
20050102284 Srinivasan et al. May 2005 A1
20050102636 McKeon et al. May 2005 A1
20050131893 Glan Jun 2005 A1
20050132384 Morrison et al. Jun 2005 A1
20050138624 Morrison et al. Jun 2005 A1
20050165866 Bohannon et al. Jul 2005 A1
20050198001 Cunningham et al. Sep 2005 A1
20060074901 Pirahesh et al. Apr 2006 A1
20060085490 Baron et al. Apr 2006 A1
20060100989 Chinchwadkar et al. May 2006 A1
20060101019 Nelson et al. May 2006 A1
20060116983 Dettinger et al. Jun 2006 A1
20060116999 Dettinger et al. Jun 2006 A1
20060136361 Peri et al. Jun 2006 A1
20060173693 Arazi et al. Aug 2006 A1
20060195460 Nori et al. Aug 2006 A1
20060212847 Tarditi et al. Sep 2006 A1
20060218123 Chowdhuri et al. Sep 2006 A1
20060218200 Factor et al. Sep 2006 A1
20060230016 Cunningham et al. Oct 2006 A1
20060271510 Harward et al. Nov 2006 A1
20060277162 Smith Dec 2006 A1
20070011211 Reeves et al. Jan 2007 A1
20070027884 Heger et al. Feb 2007 A1
20070033518 Kenna et al. Feb 2007 A1
20070073765 Chen Mar 2007 A1
20070101252 Chamberlain et al. May 2007 A1
20070169003 Branda et al. Jul 2007 A1
20070256060 Ryu et al. Nov 2007 A1
20070258508 Werb et al. Nov 2007 A1
20070271280 Chandasekaran Nov 2007 A1
20070299822 Jopp et al. Dec 2007 A1
20080022136 Mattsson et al. Jan 2008 A1
20080033907 Woehler et al. Feb 2008 A1
20080046804 Rui et al. Feb 2008 A1
20080072150 Chan et al. Mar 2008 A1
20080120283 Liu et al. May 2008 A1
20080155565 Poduri Jun 2008 A1
20080168135 Redlich et al. Jul 2008 A1
20080235238 Jalobeanu Sep 2008 A1
20080263179 Buttner et al. Oct 2008 A1
20080276241 Bajpai et al. Nov 2008 A1
20080319951 Ueno et al. Dec 2008 A1
20090019029 Tommaney et al. Jan 2009 A1
20090037391 Agrawal et al. Feb 2009 A1
20090055370 Dagum et al. Feb 2009 A1
20090089312 Chi et al. Apr 2009 A1
20090248902 Blue Oct 2009 A1
20090254516 Meiyyappan et al. Oct 2009 A1
20090300770 Rowney et al. Dec 2009 A1
20090319058 Rovaglio et al. Dec 2009 A1
20090319484 Golbandi et al. Dec 2009 A1
20090327242 Brown et al. Dec 2009 A1
20100036801 Pirvali et al. Feb 2010 A1
20100047760 Best et al. Feb 2010 A1
20100049715 Jacobsen et al. Feb 2010 A1
20100161555 Nica et al. Jun 2010 A1
20100186082 Ladki et al. Jul 2010 A1
20100199161 Aureglia et al. Aug 2010 A1
20100205017 Sichelman et al. Aug 2010 A1
20100205351 Wiener et al. Aug 2010 A1
20100281005 Carlin et al. Nov 2010 A1
20100281071 Ben-Zvi et al. Nov 2010 A1
20110126110 Vilke et al. May 2011 A1
20110126154 Boehler May 2011 A1
20110153603 Adiba et al. Jun 2011 A1
20110161378 Williamson Jun 2011 A1
20110167020 Yang et al. Jul 2011 A1
20110194563 Shen et al. Aug 2011 A1
20110314019 Peris et al. Dec 2011 A1
20120110030 Pomponio May 2012 A1
20120144234 Clark et al. Jun 2012 A1
20120159303 Friedrich et al. Jun 2012 A1
20120191446 Binsztok et al. Jul 2012 A1
20120192096 Bowman Jul 2012 A1
20120197868 Fauser et al. Aug 2012 A1
20120209886 Henderson Aug 2012 A1
20120215741 Poole et al. Aug 2012 A1
20120221528 Renkes Aug 2012 A1
20120246052 Taylor et al. Sep 2012 A1
20120254143 Varma et al. Oct 2012 A1
20120259759 Crist et al. Oct 2012 A1
20120296846 Teeter Nov 2012 A1
20130041946 Joel et al. Feb 2013 A1
20130080514 Gupta Mar 2013 A1
20130086107 Genochio et al. Apr 2013 A1
20130166556 Baeumges et al. Jun 2013 A1
20130179460 Acuna Jul 2013 A1
20130185619 Ludwig Jul 2013 A1
20130191370 Chen et al. Jul 2013 A1
20130198232 Shamgunov et al. Aug 2013 A1
20130226959 Dittrich et al. Aug 2013 A1
20130246560 Feng et al. Sep 2013 A1
20130263123 Zhou et al. Oct 2013 A1
20130290243 Hazel et al. Oct 2013 A1
20130304725 Nee et al. Nov 2013 A1
20130304744 McSherry et al. Nov 2013 A1
20130311352 Kayanuma et al. Nov 2013 A1
20130311488 Erdogan et al. Nov 2013 A1
20130318129 Vingralek et al. Nov 2013 A1
20130346365 Kan et al. Dec 2013 A1
20140019494 Tang Jan 2014 A1
20140040203 Lu et al. Feb 2014 A1
20140059646 Hannel et al. Feb 2014 A1
20140082724 Pearson et al. Mar 2014 A1
20140136521 Pappas May 2014 A1
20140143123 Banke et al. May 2014 A1
20140149997 Kukreja et al. May 2014 A1
20140156618 Castellano Jun 2014 A1
20140173023 Varney et al. Jun 2014 A1
20140181036 Dhamankar et al. Jun 2014 A1
20140181081 Veldhuizen Jun 2014 A1
20140188924 Ma et al. Jul 2014 A1
20140195558 Murthy et al. Jul 2014 A1
20140201194 Reddy et al. Jul 2014 A1
20140215446 Araya et al. Jul 2014 A1
20140222768 Rambo et al. Aug 2014 A1
20140229506 Lee Aug 2014 A1
20140229874 Strauss Aug 2014 A1
20140244687 Shmueli et al. Aug 2014 A1
20140279810 Mann et al. Sep 2014 A1
20140280522 Watte Sep 2014 A1
20140282227 Nixon et al. Sep 2014 A1
20140282444 Araya et al. Sep 2014 A1
20140282540 Bonnet et al. Sep 2014 A1
20140297611 Abbour et al. Oct 2014 A1
20140317084 Chaudhry et al. Oct 2014 A1
20140324821 Meiyyappan et al. Oct 2014 A1
20140330700 Studnitzer et al. Nov 2014 A1
20140330807 Weyerhaeuser et al. Nov 2014 A1
20140344186 Nadler Nov 2014 A1
20140344391 Varney et al. Nov 2014 A1
20140359574 Beckwith Dec 2014 A1
20140372482 Martin et al. Dec 2014 A1
20140380051 Branish, II et al. Dec 2014 A1
20150019516 Wein et al. Jan 2015 A1
20150026155 Martin Jan 2015 A1
20150067640 Booker Mar 2015 A1
20150074066 Li et al. Mar 2015 A1
20150082218 Affoneh et al. Mar 2015 A1
20150088894 Czarlinska et al. Mar 2015 A1
20150095381 Chen et al. Apr 2015 A1
20150127599 Schiebeler May 2015 A1
20150172117 Dolinsky et al. Jun 2015 A1
20150188778 Asayag et al. Jul 2015 A1
20150205588 Bates et al. Jul 2015 A1
20150254298 Bourbonnais et al. Sep 2015 A1
20150304182 Brodsky et al. Oct 2015 A1
20160026442 Chhaparia Jan 2016 A1
20160065670 Kimmel et al. Mar 2016 A1
20160125018 Tomoda et al. May 2016 A1
20160253294 Allen Sep 2016 A1
Foreign Referenced Citations (13)
Number Date Country
2309462 Dec 2000 CA
1406463 Apr 2004 EP
1198769 Jun 2008 EP
2199961 Jun 2010 EP
2423816 Feb 2012 EP
2743839 Jun 2014 EP
2421798 Jun 2011 RU
0000879 Jan 2000 WO
0179964 Oct 2001 WO
2011120161 Oct 2011 WO
2012136627 Oct 2012 WO
WO-2014026220 Feb 2014 WO
2014143208 Sep 2014 WO
Non-Patent Literature Citations (92)
Entry
PowerShell Team, Intellisense in Windows PowerShell ISE 3.0, Jun. 12, 2012, Windows PowerShell Blog, pp. 1-6 Retrieved: https://blogs.msdn.microsoft.com/powershel1/2012/06/12/intellisense-in-windows-powershell-ise-3-0/.
“Change Data Capture”, Oracle Database Online Documentation 11g Release 1 (11.1), dated Apr. 5, 2016. Retreived from https://web.archive.org/web/20160405032625/http://docs.oracle.com/cd/B28359—01/server.111/b28313/cdc.htm.
“Chapter 24. Query access plans”, Tuning Database Performance, DB2 Version 9.5 for Linux, UNIX, and Windows, pp. 301-462, dated Dec. 2010. Retreived from http://public.dhe.ibm.com/ps/products/db2/info/vr95/pdf/en—US/DB2PerfTuneTroubleshoot-db2d3e953.pdf.
“Tracking Data Changes”, SQL Server 2008 R2, dated Sep. 22, 2015. Retreived from https://web.archive.org/web/20150922000614/https://technet.microsoft.com/en-us/library/bb933994(v=sql.105).aspx.
Borror, Jefferey A. “Q for Mortals 2.0”, dated Nov. 1, 2011. Retreived from http://code.kx.com/wiki/JB:QforMortals2/contents.
Gai, Lei et al. “An Efficient Summary Graph Driven Method for RDF Query Processing”, dated Oct. 27, 2015. Retreived from http://arxiv.org/pdf/1510.07749.pdf.
Lou, Yuan. “A Multi-Agent Decision Support System for Stock Trading”, IEEE Network, Jan./Feb. 2002. Retreived from http://www.reading.ac.uk/AcaDepts/si/sisweb13/ais/papers/journal12-A%20multi-agent%20Framework.pdf.
Palpanas, Themistoklis et al. “Incremental Maintenance for Non-Distributive Aggregate Functions”, Proceedings of the 28th VLDB Conference, 2002. Retreived from http://www.vldb.org/conf/2002/S22P04.pdf.
Wu, Buwen et al. “Scalable SPARQL Querying using Path Partitioning”, 31st IEEE International Conference on Data Engineering (ICDE 2015), Seoul, Korea, Apr. 13-17, 2015. Retreived from http://imada.sdu.dk/˜zhou/papers/icde2015.pdf.
“IBM Informix TimeSeries data management”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118072141/http://www-01.ibm.com/software/data/informix/timeseries/.
“IBM—What is HBase?”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906022050/http://www-01.ibm.com/software/data/infosphere/hadoop/hbase/.
“SAP HANA Administration Guide”, dated Mar. 29, 2016, pp. 290-294. Retrieved from https://web.archive.org/web/20160417053656/http://help.sap.com/hana/SAP—HANA—Administration—Guide—en.pdf.
“Oracle Big Data Appliance—Perfect Balance Java API”, dated Sep. 20, 2015. Retrieved from https://web.archive.org/web/20131220040005/http://docs.oracle.com/cd/E41604—01/doc.22/e41667/toc.htm.
“Oracle Big Data Appliance—X5-2”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906185409/http://www.oracle.com/technetwork/database/bigdataappliance/overview/bigdataappliance-datasheet-1883358.pdf.
“Sophia Database—Architecture”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118052919/http://sphia.org/architecture.html.
“Google Protocol RPC Library Overview”, dated Apr. 27, 2016. Retrieved from https://cloud.google.com/appengine/docs/python/tools/protorpc/ (last accessed Jun. 16, 2016).
“Maximize Data Value with Very Large Database Management by SAP® Sybase® IQ”, dated 2013. Retrieved from http://www.sap.com/bin/sapcom/en us/downloadasset.2013-06-jun-11-11.maximize-data-value-with-very-large-database-management-by-sap-sybase-iq-pdf.html.
“Microsoft Azure—Managing Access Control Lists (ACLs) for Endpoints by using PowerShell”, dated Nov. 12, 2014. Retrieved from https://web.archive.org/web/20150110170715/http://msdn.microsoft.com/en-us/library/azure/dn376543.aspx.
“IBM InfoSphere Biglnsights 3.0.0—Importing data from and exporting data to DB2 by using Sqoop”, dated Jan. 15, 2015. Retrieved from https://web.archive.org/web/20150115034058/http://www-01.ibm.com/support/knowledgecenter/SSPT3X—3.0.0/com.ibm.swg.im.infosphere.biginsights.import.doc/doc/data—warehouse—sqoop.html.
“GNU Emacs Manual”, dated Apr. 15, 2016, pp. 43-47. Retrieved from https://web.archive.org/web/20160415175915/http://www.gnu.org/software/emacs/manual/html—mono/emacs.html.
“Oracle® Big Data Appliance—Software User's Guide”, dated Feb. 2015. Retrieved from https://docs.oracle.com/cd/E55905—01/doc.40/e55814.pdf.
“About Entering Commands in the Command Window”, dated Dec. 16, 2015. Retrieved from https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/AutoCAD-Core/files/GUID-BB0C3E79-66AF-4557-9140-D31B4CF3C9CF-htm.html (last accessed Jun. 16, 2016).
“Use Formula AutoComplete”, dated 2010. Retrieved from https://support.office.com/en-us/article/Use-Formula-AutoComplete-c7c46fa6-3a94-4150-a2f7-34140c1ee4d9 (last accessed Jun. 16, 2016).
Mariyappan, Balakrishnan. “10 Useful Linux Bash—Completion Complete Command Examples (Bash Command Line Completion on Steroids)”, dated Dec. 2, 2013. Retrieved from http://www.thegeekstuff.com/2013/12/bash-completion-complete/ (last accessed Jun. 16, 2016).
Cheusheva, Svetlana. “How to change the row color based on a cell's value in Excel”, dated Oct. 29, 2013. Retrieved from https://www.ablebits.com/office-addins-blog/2013/10/29/excel-change-row-background-color/ (last accessed Jun. 16, 2016).
Jellema, Lucas. “Implementing Cell Highlighting in JSF-based Rich Enterprise Apps (Part 1)”, dated Nov. 2008. Retrieved from http://www.oracle.com/technetwork/articles/adf/jellema-adfcellhighlighting-087850.html (last accessed Jun. 16, 2016).
Adelfio et al. “Schema Extraction for Tabular Data on the Web”, Proceedings of the VLDB Endowment, vol. 6, No. 6. Apr. 2013. Retrieved from http://www.cs.umd.edu/˜hjs/pubs/spreadsheets-vldb13.pdf.
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/154,996.
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/155,010.
Allowance dated Dec. 19, 2016, in U.S. Appl. No. 15/155,001.
Allowance dated Dec. 22, 2016, in U.S. Appl. No. 15/155,011.
Allowance dated Dec. 7, 2016, in U.S. Appl. No. 15/154,985.
Allowance dated Feb. 1, 2017, in U.S. Appl. No. 15/154,988.
Allowance dated Jan. 30, 2017, in U.S. Appl. No. 15/154,987.
Allowance dated Nov. 17, 2016, in U.S. Appl. No. 15/154,991.
Allowance dated Nov. 21, 2016, in U.S. Appl. No. 15/154,983.
Allowance dated Nov. 8, 2016, in U.S. Appl. No. 15/155,007.
Allowance dated Oct. 11, 2016, in U.S. Appl. No. 15/155,007.
Notice of Allowance dated Oct. 21, 2016, in U.S. Appl. No. 15/154,999.
Smith, Ian. “Guide to Using SQL: Computed and Automatic Columns.” Rdb Jornal, dated Sep. 2008, retrieved Aug. 15, 2016, retrieved from the Internet <URL: http://www.oracle.com/technetwork/products/rdb/automatic-columns-132042.pdf>.
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.16.1” Dated May 11, 2015. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.16.1/index.html.
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.18.1” Dated May 3, 2016. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.18.1/index.html.
Ex Parte Quayle Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,999.
Final Office Action dated Dec. 19, 2016, in U.S. Appl. No. 15/154,995.
Final Office Action dated Jan. 27, 2017, in U.S. Appl. No. 15/154,980.
Final Office Action dated Jan. 31, 2017, in U.S. Appl. No. 15/154,996.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032582 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032584 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032588 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032593 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032597 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032599 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032605 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032590 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032592 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 4, 2016, in International Appln. No. PCT/US2016/032581 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032586 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032587 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032589 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032596 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032598 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032601 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032602 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032607 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032591 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032594 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032600 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032595 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032606 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032603 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032604 filed May 14, 2016.
Mallet, “Relational Database Support for Spatia-Temporal Data”, Technical Report TR 04-21, Sep. 2004, University of Alberta, Department of Computing Science.
Murray, Derek G. et al. “Naiad: a timely dataflow system.” SOSP '13 Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. pp. 439-455. Nov. 2013.
Non-final Office Action dated Aug. 12, 2016, in U.S. Appl. No. 15/155,001.
Non-final Office Action dated Aug. 16, 2016, in U.S. Appl. No. 15/154,993.
Non-final Office Action dated Aug. 19, 2016, in U.S. Appl. No. 15/154,991.
Non-final Office Action dated Aug. 25, 2016, in U.S. Appl. No. 15/154,980.
Non-final Office Action dated Aug. 26, 2016, in U.S. Appl. No. 15/154,995.
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,981.
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,985.
Non-final Office Action dated Nov. 17, 2016, in U.S. Appl. No. 15/154,999.
Non-final Office Action dated Oct. 27, 2016, in U.S. Appl. No. 15/155,006.
Non-final Office Action dated Oct. 7, 2016, in U.S. Appl. No. 15/154,998.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/154,979.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,011.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,012.
Non-final Office Action dated Sep. 14, 2016, in U.S. Appl. No. 15/154,984.
Non-final Office Action dated Sep. 16, 2016, in U.S. Appl. No. 15/154,988.
Non-final Office Action dated Sep. 22, 2016, in U.S. Appl. No. 15/154,987.
Non-final Office Action dated Sep. 26, 2016, in U.S. Appl. No. 15/155,005.
Non-final Office Action dated Sep. 29, 2016, in U.S. Appl. No. 15/154,990.
Non-final Office Action dated Sep. 8, 2016, in U.S. Appl. No. 15/154,975.
Related Publications (1)
Number Date Country
20160335246 A1 Nov 2016 US
Provisional Applications (1)
Number Date Country
62161813 May 2015 US