Embodiments described herein generally relate to computer hardware; specifically, the layout of the internal components of a computer.
Computer systems have internal components that may be laid out in a variety of configurations. Typical components common to computer systems can include one or more processors and supporting circuitry, peripheral interconnects such as Peripheral Component Interconnect Express (PCIe) slots, power supplies, and cooling fans. These components may exist in multiples. Some systems, especially systems intended to be used a servers, may have multiple processors and power supplies configured in a redundant fashion. Some systems favor a modular approach, where processors are installed onto cards that in turn can quickly plug into a backplane, allowing for easy upgrades or repairs. In some configurations, the backplane or backplanes may include peripheral interconnects to further ease upgrading or replacing a processor card.
One concern in system design is the electrical distance between components, such as a processor and a peripheral interconnect. Interconnect specifications may mandate a particular maximum electrical length between components, electrical length being the physical distance an electrical signal may travel over a wire or copper trace between its origination point and its destination. Greater electrical lengths may result in increasing losses in the electrical signal due to various factors, such as resistance of the conductor. Where electrical lengths exceed interconnect specifications, deployment and use of retimers, high-grade connectors and/or circuit boards, or other suitable devices may be necessary to ensure the integrity of the electrical signals. These devices may increase the cost of building a system and/or add complexity and points of failure.
Embodiments of the present disclosure are directed toward computer chassis with parallel backplanes that may include a first backplane with a first surface that can receive a first computing node. The computer chassis may further include a second backplane with a second surface that can receive a second computing node, and may include a chassis that encloses the first backplane, second backplane, first computing node, and second computing node. The first backplane and second backplane may be substantially parallel to each other, with the first surface facing the second surface, to create a space between the first backplane and second backplane. The first and second backplane may each include one or more peripheral connectors, and each computing node may be directly connected to a peripheral connector. One or more cooling fans may be disposed within the space to provide cooling airflow to the backplanes, computing nodes, and any peripherals connected to a peripheral connector. Other advantages may be realized, as discussed below in greater detail.
In the following description, various aspects of the illustrative implementations will be described using terms commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. However, it will be apparent to those skilled in the art that embodiments of the present disclosure may be practiced with only some of the described aspects. For purposes of explanation, specific numbers, materials, and configurations are set forth in order to provide a thorough understanding of the illustrative implementations. However, it will be apparent to one skilled in the art that embodiments of the present disclosure may be practiced without the specific details. In other instances, well-known features are omitted or simplified in order not to obscure the illustrative implementations.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, wherein like numerals designate like parts throughout, and in which is shown by way of illustration embodiments in which the subject matter of the present disclosure may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims and their equivalents.
For the purposes of the present disclosure, the phrase “A or B” means (A), (B), or (A and B). For the purposes of the present disclosure, the phrase “A, B, or C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B, and C).
The description may use perspective-based descriptions such as top/bottom, in/out, over/under, and the like. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of embodiments described herein to any particular orientation.
The description may use the phrases “in an embodiment,” or “in embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments of the present disclosure, are synonymous.
Referring to
First backplane 102 and second backplane 108 each may include a printed circuit board (PCB), and may be configured with one or more peripheral connectors 116. Each backplane 102 and 108 may further be equipped with one or more computing node connectors 118, to allow connection and swapping of computing nodes, including first computing node 106 and second computing node 112. For example, in
Disposing first backplane 102 and second backplane 108 so that first surface 104 faces second surface 110 may create an interior space 120, into which components of first and second computing nodes 106 and 112, as well as peripheral connectors 116 and any component(s) inserted into peripheral connector(s) 116, extend. One or more fans 122 may be inserted into interior space 120 between first backplane 102 and second backplane 108. These fans 122 may be oriented so as to move air across the various components of first and second computing nodes 106 and 112, first and second backplanes 102 and 108, and any other associated components and/or peripherals that may be positioned within interior space 120. It can be seen from the figures that the disclosed arrangement of first and second backplane 102 and 108 as well as first and second computing nodes 106 and 112 may provide a substantially clear interior space 120 that can facilitate relatively unobstructed and effective air flow, potentially enhancing cooling of the components of computer chassis 100.
Chassis 114 can be seen in
Fan 122 may be of a type commonly employed for computer cooling purposes, such as a brushless DC motor-driven fan, and may offer fixed or variable speeds. Multiple fans 122 may be deployed to span across the width of interior space 120. An example of such an arrangement can be seen in
Peripheral connectors 116 may be any connector suitable to allowing attachment of a peripheral device that is useable with one of the computing nodes 106 or 112. Examples of such devices include expansion cards, I/O cards, graphics processing cards, or any other card useful for the purposes for which computer 100 is employed. Each peripheral connector 116 may be an industry-standard connector, such as a Peripheral Component Interconnect Express (PCIe) connector, or another proprietary or standards-based connector.
Peripheral connectors 116 may support inserted devices in a substantially perpendicular direction extending from first surface 104 and second surface 110, which results in inserted devices extending from either the first or second surface 104, 110 to the second or first surface 110, 104, respectively. An example of this arrangement is seen in
Peripheral connectors 116 may interleave between each other. An example of this arrangement is visible in
First and second computing nodes 106 and 112 may be any module that may include components such as a central processing unit (processor), supporting circuitry, including northbridge and/or southbridge chipsets, and various associated components. In some embodiments, such associated components may include memory (both volatile storage such as RAM and non-volatile storage such as flash memory or ROM) and/or storage, such as one or more hard disk drives or solid state drives. The selection of associated components for a given computing node may depend upon the particular purpose for which the computing node is to be used and/or the types of components with which the computing node is equipped. Each computing node 106, 112 may be equipped with a computing node plug 120 that is configured to mate with a corresponding computing node connector 118. In some embodiments, each computing node may include substantially all components required for a functioning server computer. In other embodiments, each computing node may include only circuitry necessary to support one or more processors. In still other embodiments, each computing node may be application-specific, e.g. each node may be dedicated to a purpose, such as crypto-currency mining, graphics rendering, serving storage needs (such as in a SAN), etc.
Referring back to
As depicted in
It will be understood that blocks 406 and 408 may be repeated if multiple computing nodes are implemented.
The computing device 1500 may further include input/output (I/O) devices 1508 (such as a display (e.g., a touchscreen display), keyboard, cursor control, remote control, gaming controller, image capture device, and so forth) and communication interfaces 1510 (such as network interface cards, modems, infrared receivers, radio receivers (e.g., Bluetooth), and so forth). In some embodiments, the I/O devices 1508 may include various peripheral cards that are connected to peripheral connector 116, in accordance with various embodiments.
The communication interfaces 1510 may include communication chips (not shown) that may be configured to operate the device 1500 in accordance with a Global System for Mobile Communication (GSM), General Packet Radio Service (GPRS), Universal Mobile Telecommunications System (UMTS), High Speed Packet Access (HSPA), Evolved HSPA (E-HSPA), or Long-Term Evolution (LTE) network. The communication chips may also be configured to operate in accordance with Enhanced Data for GSM Evolution (EDGE), GSM EDGE Radio Access Network (GERAN), Universal Terrestrial Radio Access Network (UTRAN), or Evolved UTRAN (E-UTRAN). The communication chips may be configured to operate in accordance with Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Digital Enhanced Cordless Telecommunications (DECT), Evolution-Data Optimized (EV-DO), derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The communication interfaces 1510 may operate in accordance with other wireless protocols in other embodiments, such as, but not limited to, WiFi, Bluetooth, Near-Field Communications (NFC) or other wireless protocols now known or later developed.
The above-described computing device 1500 elements may be coupled to each other via system bus 1512, which may represent one or more buses. In the case of multiple buses, they may be bridged by one or more bus bridges (not shown). Each of these elements may perform its conventional functions known in the art. In particular, system memory 1504 and mass storage devices 1506 may be employed to store a working copy and a permanent copy of the programming instructions for the operation of the transmitter 102 of
The permanent copy of the programming instructions may be placed into mass storage devices 1506 in the factory, or in the field, through, for example, a distribution medium (not shown), such as a compact disc (CD), or through communication interface 1510 (from a distribution server (not shown)). That is, one or more distribution media having an implementation of the agent program may be employed to distribute the agent and to program various computing devices.
The number, capability, and/or capacity of the elements 1508, 1510, 1512 may vary, depending on whether computing device 1500 is used as a stationary computing device, such as a set-top box or desktop computer, or a mobile computing device, such as a tablet computing device, laptop computer, game console, or smartphone. Their constitutions are otherwise known, and accordingly will not be further described.
In embodiments, memory 1504 may include computational logic 1522 configured as part of a computing node 112, as described in reference to
In various implementations, the computing device 1500 may comprise one or more components of a data center, a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultra mobile PC, a mobile phone, or a digital camera. In further implementations, the computing device 1500 may be any other electronic device that processes data.
The following examples pertain to further embodiments.
Example 1 is a computer chassis apparatus comprising a first backplane with a first surface that can receive a first computing node; a second backplane with a second surface that can receive a second computing node; and a chassis that encloses the first backplane, second backplane, first computing node, and second computing node, wherein the first backplane and second backplane are substantially parallel to each other, with the first surface facing the second surface.
In Example 2, the subject matter of Example 1 can optionally include wherein the first backplane possesses a peripheral connector for accepting a peripheral card, the peripheral connector in electrical communication with the first computing node.
In Example 3, the subject matter of Example 2 can optionally include wherein the first backplane possesses a plurality of peripheral connectors; the first backplane can receive a plurality of computing nodes, the plurality of computing nodes including the first computing node; and one of the peripheral connectors is dedicated to the first computing node.
In Example 4, the subject matter of Example 2 or 3 can optionally include wherein each of the peripheral connectors is a Peripheral Component Interconnect Express (PCIe) slot.
In Example 5, the subject matter of Example 2 or 3 can optionally include wherein each of the plurality of computing nodes is directly electrically connected to at least one of the plurality of peripheral connectors.
In Example 6, the subject matter of Example 2 or 3 can optionally include wherein each of the plurality of computing nodes is electrically within 14 inches of one of the plurality of peripheral connectors.
In Example 7, the subject matter of any of Examples 1-3 can optionally include wherein the first and second backplane are spaced relative to each other to accommodate a fan disposed between the top surfaces of the first and second backplane.
In Example 8, the subject matter of Example 7 can optionally include wherein a fan is disposed between the top surfaces of the first and second backplane.
In Example 9, the subject matter of any of Examples 1-3 can optionally include wherein the first and second computing nodes each extend from the first and second backplanes, respectively, in a plane that is substantially parallel to the first and second surfaces, respectively.
Example 10 is a computer chassis, comprising a first interior surface that accepts a first backplane, the first backplane having a first surface that faces an interior space of the computer chassis; and a second interior surface parallel with and opposite the first interior surface, that accepts a second backplane, the second backplane having a second surface that faces the interior space of the computer chassis and is substantially parallel to the first surface, wherein each backplane receives a computing node.
In Example 11, the subject matter of Example 10 can optionally include wherein the first surface of the first backplane includes a peripheral connector.
In Example 12, the subject matter of Example 11 can optionally include wherein the peripheral connector is a PCIe slot.
In Example 13, the subject matter of Example 11 or 12 can optionally include wherein the peripheral connector is electrically within 14 inches from a computing node.
In Example 14, the subject matter of Example 11 or 12 can optionally include wherein the peripheral connector is in direct electrical communication with a computing node.
In Example 15, the subject matter of Example 11 or 12 can optionally include wherein the second surface of the second backplane includes a peripheral connector; and the peripheral connector of the first backplane and the peripheral connector of the second backplane are arranged so that a peripheral card inserted into the peripheral connector of the first backplane interleaves with a peripheral card inserted into the peripheral connector of the second backplane.
In Example 16, the subject matter of any of Examples 10-12 can optionally include wherein the first surface includes a first plurality of peripheral connectors and one of the first plurality of peripheral connectors is dedicated to a computing node attached to the first backplane.
In Example 17, the subject matter of any of Examples 10-12 can optionally include wherein a cooling fan is disposed in the interior space of the computer chassis between the first and second surfaces.
In Example 18, the subject matter of Example 17 can optionally include wherein the cooling fan is disposed in the interior space between the first and second backplanes, and a computing node attached to each of the first and second backplanes.
In Example 19, the subject matter of Example 17 can optionally include wherein the cooling fan is disposed to move air through the interior space of the computer chassis, between the first and second backplanes and computing nodes attached to each backplane.
In Example 20, the subject matter of any of Examples 10-12 can optionally include wherein a computing node attaches to the first backplane such that a plane defined by the computing node is in substantially the same plane as a plane defined by the first backplane.
Example 21 is a method for configuring a computer chassis, comprising positioning a first backplane with a first surface upon a first interior surface of a chassis, the first surface of the first backplane facing an interior space of the chassis; positioning a second backplane with a second surface upon a second interior surface of the chassis, the second interior surface being substantially parallel to the first interior surface, the second surface of the second backplane facing the interior space of the chassis and opposing the first surface of the first backplane; connecting a first computing node to the first backplane; and connecting a second computing node to the second backplane.
In Example 22, the subject matter of Example 21 can optionally include wherein the first surface of the first backplane includes a first plurality of peripheral connectors.
In Example 23, the subject matter of Example 22 can optionally include wherein the second surface of the second backplane includes a second plurality of peripheral connectors.
In Example 24, the subject matter of Example 23 can optionally include wherein peripheral cards plugged into the first plurality of peripheral connectors interleave with peripheral cards plugged into the second plurality of peripheral connectors.
In Example 25, the subject matter of any of Examples 22-24 can optionally include wherein one of the peripheral connectors is a PCIe slot.
In Example 26, the subject matter of any of Examples 22-24 can optionally include wherein each of the first plurality of peripheral connectors is electrically connected within 14 inches of the first computing node.
In Example 27, the subject matter of any of Examples 22-24 can optionally include wherein each of the first plurality of peripheral connectors is directly electrically connected to the first computing node.
In Example 28, the subject matter of any of Examples 21-24 can optionally include wherein connecting the first computing node to the first backplane and the second computing node to the second backplane causes each computing node to extend from the first and second backplanes, respectively, in a plane that is substantially parallel to the first and second surfaces, respectively.
In Example 29, the subject matter of any of Examples 21-24 can optionally include disposing a fan in the interior space between the first and second backplanes.