Computer data system position-index mapping

Information

  • Patent Grant
  • 9690821
  • Patent Number
    9,690,821
  • Date Filed
    Saturday, May 14, 2016
    8 years ago
  • Date Issued
    Tuesday, June 27, 2017
    7 years ago
Abstract
Described are methods, systems and computer readable media for position-index mapping in a computer data system.
Description

Embodiments relate generally to computer data systems, and more particularly, to methods, systems and computer readable media for position-index mapping.


Some conventional computer data systems may maintain data in one or more files that are indexed according to one or more key values. These conventional systems may store data in a relatively static form and that data may be copied to other tables or structures and indexed in those other tables as needed.


Some data systems may include data objects such as tables that include data from columns or other sources that may be referenced by other different tables or data objects. In such data systems, a need may exist to provide systems and methods for providing and maintaining a mapping between logical table indexes (or other data objects and data positions within columns or other data sources.


Embodiments were conceived in light of the above mentioned needs, problems and/or limitations, among other things.


Some implementations can include a system comprising one or more hardware processors and a computer readable data storage device coupled to the one or more hardware processors, the computer readable data storage device having stored thereon software instructions that, when executed by the one or more hardware processors, cause the one or more hardware processors to perform operations. The operations can include receiving an electronic message associated with a child table, the electronic message including one or more change notifications indicating a change in one or more corresponding parent tables of the child table. The operations can also include updating an index of the child table based on the received one or more change notifications. Where the index of the child table includes a mapping between one or more index values in the child table and corresponding positions in one or more data columns mapped by a columns source map of the child table, where the corresponding positions include positions for which data in the one or more data columns is valid for the child table.


The operations can further include, when the child table has one or more dependent tables that depend on data of the child table, generating one or more other electronic messages associated with the one or more dependent tables, the other electronic messages containing change notifications representing updates made to the child table. The operations can also include, when one or more other electronic messages are generated, providing the one or more other electronic messages to corresponding dependent tables.


The change notification can include one or more of an add, a modify, a delete or a reindex message associated with data in the child table that depends on data in one of the parent tables. The child table can include a dependency on data of the one or more parent tables.


The change notifications in the other electronic messages can include one or more of an add, a modify, a delete or a reindex message associated with data in the child table that depends on data in one of the parent tables. In some implementations, receiving the electronic message can include receiving an electronic message from a listener associated with the one or more parent tables. Providing the one or more other electronic messages to corresponding dependent tables can include causing a listener associated with the one or more dependent tables to be actuated. Some implementations can include another table having a same column source map as the child table and an index different from the index of the child table.


Some implementations can include a method comprising receiving an electronic message associated with a child table, the electronic message including one or more change notifications indicating a change in one or more corresponding parent tables of the child table. The method can also include updating an index of the child table based on the received one or more change notifications, where the index of the child table includes a mapping between one or more index values in the child table and corresponding positions in one or more data columns mapped by a columns source map of the child table, where the corresponding positions include positions for which data in the one or more data columns is valid for the child table.


The method can further include, when the child table has one or more dependent tables that depend on data of the child table, generating one or more other electronic messages associated with the one or more dependent tables, the other electronic messages containing change notifications representing updates made to the child table. The method can also include, when one or more other electronic messages are generated, providing the one or more other electronic messages to corresponding dependent tables.


The change notification can include one or more of an add, a modify, a delete or a reindex message associated with data in the child table that depends on data in one of the parent tables. The child table can include a dependency on data of the one or more parent tables.


The change notifications in the other electronic messages can include one or more of an add, a modify, a delete or a reindex message associated with data in the child table that depends on data in one of the parent tables. Receiving the electronic message can include receiving an electronic message from a listener associated with the one or more parent tables.


Providing the one or more other electronic messages to corresponding dependent tables can include causing a listener associated with the one or more dependent tables to be actuated. Some implementations can include another table having a same column source map as the child table and an index different from the index of the child table.


Some implementations can include a nontransitory computer readable medium having stored thereon software instructions that, when executed by one or more processors, cause the one or more processors to perform operations. The operations can include receiving an electronic message associated with a child table, the electronic message including one or more change notifications indicating a change in one or more corresponding parent tables of the child table. The operations can also include updating an index of the child table based on the received one or more change notifications, where the index of the child table includes a mapping between one or more index values in the child table and corresponding positions in one or more data columns mapped by a columns source map of the child table, where the corresponding positions include positions for which data in the one or more data columns is valid for the child table.


The operations can further include, when the child table has one or more dependent tables that depend on data of the child table; generating one or more other electronic messages associated with the one or more dependent tables, the other electronic messages containing change notifications representing updates made to the child table. The operations can also include, when one or more other electronic messages are generated, providing the one or more other electronic messages to corresponding dependent tables.


The change notification can include one or more of an add, a modify, a delete or a reindex message associated with data in the child table that depends on data in one of the parent tables. The child table can include a dependency on data of the one or more parent tables.


The change notifications in the other electronic messages can include one or more of an add, a modify, a delete or a reindex message associated with data in the child table that depends on data in one of the parent tables. Receiving the electronic message can include receiving an electronic message from a listener associated with the one or more parent tables. Some implementations can include another table having a same column source map as the child table and an index different from the index of the child table. Some implementations can include another table having a same index as the child table and a column source map different from the column source map of the child table.


In any of the above-mentioned implementations, updating the index can include maintaining strict ordering of the index. Also, any of the above-mentioned implementations can include maintaining a redirection index mapping an outer index to an inner index.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of an example computer data system showing an example data distribution configuration in accordance with some implementations.



FIG. 2 is a diagram of an example computer data system showing an example administration/process control arrangement in accordance with some implementations.



FIG. 3 is a diagram of an example computing device configured for position-index mapping in accordance with some implementations.



FIG. 4 is a diagram of an example data system table structure showing an index and a column source map in accordance with some implementations.



FIG. 5 is a diagram of an example data system table structure showing a plurality of indexes and column source maps in accordance with some implementations.



FIG. 6 is a diagram of an example index tree structure in accordance with some implementations.



FIG. 7 is a flowchart of an example position-index mapping process in accordance with some implementations.



FIG. 8 is a diagram of an example relationship between index values, column source logical positions, column source physical locations and index, and physical storage addresses in accordance with some implementations.





DETAILED DESCRIPTION

Reference may be made herein to the Java programming language, Java classes, Java bytecode and the Java Virtual Machine (JVM) for purposes of illustrating example implementations. It will be appreciated that implementations can include other programming languages (e.g., groovy, Scala, R, Go, etc.), other programming language structures as an alternative to or in addition to Java classes (e.g., other language classes, objects, data structures, program units, code portions, script portions, etc.), other types of bytecode, object code and/or executable code, and/or other virtual machines or hardware implemented machines configured to execute a data system query.



FIG. 1 is a diagram of an example computer data system and network 100 showing an example data distribution configuration in accordance with some implementations. In particular, the system 100 includes an application host 102, a periodic data import host 104, a query server host 106, a long-term file server 108, and a user data import host 110. While tables are used as an example data object in the description below, it will be appreciated that the data system described herein can also process other data objects such as mathematical objects (e.g., a singular value decomposition of values in a given range of one or more rows and columns of a table), TableMap objects, etc. A TableMap object provides the ability to lookup a Table by some key. This key represents a unique value (or unique tuple of values) from the columns aggregated on in a byExternal( ) statement execution, for example. A TableMap object can be the result of a byExternal( ) statement executed as part of a query. It will also be appreciated that the configurations shown in FIGS. 1 and 2 are for illustration purposes and in a given implementation each data pool (or data store) may be directly attached or may be managed by a file server.


The application host 102 can include one or more application processes 112, one or more log files 114 (e.g., sequential, row-oriented log files), one or more data log tailers 116 and a multicast key-value publisher 118. The periodic data import host 104 can include a local table data server, direct or remote connection to a periodic table data store 122 (e.g., a column-oriented table data store) and a data import server 120. The query server host 106 can include a multicast key-value subscriber 126, a performance table logger 128, local table data store 130 and one or more remote query processors (132, 134) each accessing one or more respective tables (136, 138). The long-term file server 108 can include a long-term data store 140. The user data import host 110 can include a remote user table server 142 and a user table data store 144. Row-oriented log files and column-oriented table data stores are discussed herein for illustration purposes and are not intended to be limiting. It will be appreciated that log files and/or data stores may be configured in other ways. In general, any data stores discussed herein could be configured in a manner suitable for a contemplated implementation.


In operation, the input data application process 112 can be configured to receive input data from a source (e.g., a securities trading data source), apply schema-specified, generated code to format the logged data as it's being prepared for output to the log file 114 and store the received data in the sequential, row-oriented log file 114 via an optional data logging process. In some implementations, the data logging process can include a daemon, or background process task, that is configured to log raw input data received from the application process 112 to the sequential, row-oriented log files on disk and/or a shared memory queue (e.g., for sending data to the multicast publisher 118). Logging raw input data to log files can additionally serve to provide a backup copy of data that can be used in the event that downstream processing of the input data is halted or interrupted or otherwise becomes unreliable.


A data log tailer 116 can be configured to access the sequential, row-oriented log file(s) 114 to retrieve input data logged by the data logging process. In some implementations, the data log taller 116 can be configured to perform strict byte reading and transmission (e.g., to the data import server 120). The data import server 120 can be configured to store the input data into one or more corresponding data stores such as the periodic table data store 122 in a column-oriented configuration. The periodic table data store 122 can be used to store data that is being received within a time period (e.g., a minute, an hour, a day, etc. and which may be later processed and stored in a data store of the long-term file server 108. For example, the periodic table data store 122 can include a plurality of data servers configured to store periodic securities trading data according to one or more characteristics of the data (e.g., a data value such as security symbol, the data source such as a given trading exchange, etc.).


The data import server 120 can be configured to receive and store data into the periodic table data store 122 in such a way as to provide a consistent data presentation to other parts of the system. Providing/ensuring consistent data in this context can include, for example, recording logged data to a disk or memory, ensuring rows presented externally are available for consistent reading e.g., to help ensure that if the system has part of a record, the system has all of the record without any errors), and preserving the order of records from a given data source. If data is presented to clients, such as a remote query processor (132, 134), then the data may be persisted in some fashion (e.g., written to disk).


The local table data server 124 can be configured to retrieve data stored in the periodic table data store 122 and provide the retrieved data to one or more remote query processors (132, 134) via an optional proxy.


The remote user table server (RUTS) 142 can include a centralized consistent data writer, as well as a data server that provides processors with consistent access to the data that it is responsible for managing. For example, users can provide input to the system by writing table data that is then consumed by query processors.


The remote query processors (132, 134) can use data from the data import server 120, local table data server 124 and/or from the long-term file server 108 to perform queries. The remote query processors (132, 134) can also receive data from the multicast key-value subscriber 126, which receives data from the multicast key-value publisher 118 in the application host 102. The performance table logger 128 can log performance information about each remote query processor and its respective queries into a local table data store 130. Further, the remote query processors can also read data from the RUTS, from local table data written by the performance logger, or from user table data read over NTS, for example.


It will be appreciated that the configuration shown in FIG. 1 is a typical example configuration that may be somewhat idealized for illustration purposes. An actual configuration may include one or more of each server and/or host type. The hosts/servers shown in FIG. 1 (e.g., 102-110, 120, 124 and 142) may each be separate or two or more servers may be combined into one or more combined server systems. Data stores can include local/remote, shared/isolated and/or redundant. Any table data may flow through optional proxies indicated by an asterisk on certain connections to the remote query processors. Also, it will be appreciated that the term “periodic” is being used for illustration purposes and can include, but is not limited to, data that has been received within a given time period (e.g., millisecond, second, minute, hour, day, week, month, year, etc.) and which has not yet been stored to a long-term data store (e.g., 140).



FIG. 2 is a diagram of an example computer data system 200 showing an example administration/process control arrangement in accordance with some implementations. The system 200 includes a production client host 202, a controller host 204, a GUI host or workstation 206, and query server hosts 208 and 210. It will be appreciated that there may be one or more of each of 202-210 in a given implementation.


The production client host 202 can include a batch query application 212 (e.g., a query that is executed from a command line interface or the like) and a real time query data consumer process 214 (e.g., an application that connects to and listens to tables created from the execution of a separate query). The batch query application 212 and the real time query data consumer 214 can connect to a remote query dispatcher 222 and one or more remote query processors (224, 226) within the query server host 1208.


The controller host 204 can include a persistent query controller 216 configured to connect to a remote query dispatcher 232 and one or more remote query processors 228-230. In some implementations, the persistent query controller 216 can serve as the “primary client” for persistent queries and can request remote query processors from dispatchers, and send instructions to start persistent queries. For example, a user can submit a query to the persistent query controller 216, and the persistent query controller 216 starts and runs the query every day. In another example, a securities trading strategy could be a persistent query. The persistent query controller can start the trading strategy query every morning before the market opened, for instance. It will be appreciated that 216 can work on times other than days. In some implementations, the controller may require its own clients to request that queries be started, stopped, etc. This can be done manually, or by scheduled (e.g., cron jobs). Some implementations can include “advanced scheduling” (e.g., auto-start/stop/restart, time-based repeat, etc.) within the controller.


The GUI/host workstation can include a user console 218 and a user query application 220. The user console 218 can be configured to connect to the persistent query controller 216. The user query application 220 can be configured to connect to one or more remote query dispatchers e.g., 232) and one or more remote query processors (228, 230).



FIG. 3 is a diagram of an example computing device 300 in accordance with at least one implementation. The computing device 300 includes one or more processors 302, operating system 304, computer readable medium 306 and network interface 308. The memory 306 can include position-index mapping application 310 and a data section 312 (e.g., for storing index data structures, column source maps, etc.).


In operation, the processor 302 may execute the application 310 stored in the memory 306. The application 310 can include software instructions that, when executed by the processor, cause the processor to perform operations for position-index mapping in accordance with the present disclosure (e.g., performing one or more of 702-706 described below).


The application program 310 can operate in conjunction with the data section 312 and the operating system 304.


in general, a data object, such as a table, can include an index and a column source map. The index can include information mapping logical data object index values to corresponding valid data positions within the column source(s) that make up the data object. The column source map can include mapping information mapping column names to associated column sources. Data objects such as tables typically reference column source data in columns sources indicated by the column source map. For example, column source data could reference a large column split over many files in many locations on disk, or it could refer to a small, in-RAM array. Primary tables, (i.e., tables that are sources of data) can have the ability to create change notifications, which can include one or more of an add message, a modify message, a delete message, and a reindex message (AMDR message) when their underlying data changes. Non-primary tables may generate change notification messages (e.g., AMDR, messages) in response to their inputs (primary or non-primary) changing.


A plurality of tables can point at a given column source. A given table may have no more claim to “ownership” of a commonly referenced column source than another table that also references that same commonly referenced column source. The “ownership” of the column source may be handled in some implementations via Java references and garbage collection.



FIG. 4 is a diagram of an example data system table structure 400 showing a table 402, having an index 404 and a column source map 406. The column source map 406 provides a mapping between column names of the table 402 and one or more column sources (408, 410). The index 404 provides a mapping between index values of the table 402 and corresponding valid data regions of the one or more column sources (408, 410). It will be appreciated that a column source may be assembled from data in multiple physical locations (e.g., a first section from location 1 and second section from location 2, etc.).



FIG. 5 is a diagram of an example data system table structure 500 having a first table 502 and a second table 504. In this example, the two tables (502, 504) share a common column source map 506 and each table (502, 504) has a respective index (508, 510). Each index (508, 510) provides a mapping for its corresponding table index values and valid data regions in one or more column sources (512, 514). The indexes (508, 510) may be the same or different depending on the tables (e.g., 502, 504) that the indexes correspond to. If the tables are the same, then the indexes may be the same. If the tables are different, then the indexes may be different, even when the two tables use a common column source map. Further, if table 2 (504) is derived from table 1 (502), the table 2 valid data region(s) will be a subset of the table 1 valid data region region(s).



FIG. 6 is a diagram of an example index tree structure 600 having a first range 602 of valid data positions (or “k” values) corresponding to table index values (or “i” values) and a second range 604 of valid data positions. The tree structure 600 shown in FIG. 6 is an example of a possible implementation for an index. It will be appreciated that other data structures can be used to store the index. The index may be in ascending order, where the order of the index can define how the table should be iterated.


In some implementations, the address space for disk-backed tables (or other generally slower storage devices can be a distinct concept from the tree structure used for index ranges in memory. Disk-backed tables can use ranges of indexes that can be thought of as being conceptually analogous to a multi-level page table used by virtual memory systems.


In some implementations, the index structure can include a list of non-negative 64-bit values. When two or more consecutive values are stored in the list, an optimization can be made that includes storing the beginning and end of the range. The end of the range is stored as the negation of the end. For example, an index of {0, 1, 2, 4, 6, 7} can be stored as {0, −2, 4, 6, −7}, which can reduce the memory footprint when an index has consecutive values, which may be common for many tables (e.g., the physical addressing described below).


As mentioned above, in some implementations the index is physically stored as a tree data structure. The index tree can include leaf nodes, which can contain a given number of “slots” (e.g., 64). Each node can contain a size and a count. The size can include the number of logical items, the count can include the number of filled slots. The slots are simply long values in the representation described above. Leaf nodes may be compressed or “packed” by storing an array of shorts or ints instead of longs with an offset/mask that is applied to the data items. This is useful, for example, when ranges of values within a single partition may be close together and storing those adjacent values as a short will reduce memory usage.


An interior node has pointers to a left and a right child, as well as the node's size, min, and max. This node configuration can permit traversal of the index to a particular position or key value efficiently.


Also, some implementations can provide for efficient index serialization when sending the indexes over the network or storing persistently. Each value can be stored as an offset from the last value (with negative numbers just a negated offset, to represent ranges). Further, the smallest data type required (e.g., bytes, shorts, ints or longs) can be used for the offsets, which can reduce the complexity/size of the index representation transmitted over a network. The example index of {0, 1, 2, 4, 6, 7} can be logically represented as {0, −2, 4, 6, −7}, and converted to offsets of {0, −2, 2, 2, −1}. With small numbers, the offsets/sizes may not provide as much benefit, however, when representing more complex address spaces, the offset/size optimizations can provide a, more significant benefit.



FIG. 7 is a flowchart of an example position-index mapping process 700 in accordance with some implementations. Processing begins at 702, where a table (e.g., a child table such as 402, 502, 504 etc. receives an electronic message containing one or more change notifications providing information about corresponding changes in one or more parent tables of the child table. Each change notification can include one or more of an add message, a modify message, a delete message, and a reindex message (or AMDR message). Each AMDR, message can include one or more index values and, optionally, one or more data values. In addition to AMDR messages, column sources can provide data values from a previous clock cycle (e.g., an immediately preceding clock cycle from the start of the instant clock cycle) via a function provided by column source data objects configured to store and provide data value(s) from a previous clock cycle. The previous clock cycle data values can be useful for efficiently computing update operations incrementally. The change notifications may be received via one or more listeners associated with the child table and a corresponding parent table. Processing continues to 704.


At 704, the child table index and calculated columns are updated based on the received change notifications to reflect changes in one or more parent tables that are relevant to data of those tables for which the child table has a dependency. Processing continues to 706.


At 706, the child table sends electronic change notifications (e.g., AMDR messages) to any dependent tables (i.e., child tables of the child table) to reflect the changes made to the child table that may be relevant to any dependent tables. The change notifications may be provided to dependent tables via actuation of a listener for a respective dependent table.


It will be appreciated that 702-706 may be repeated. For example, 702-706 may be repeated during each update cycle of a logical system clock in which one or more change notification messages for the child table are available.



FIG. 8 is a diagram of an example relationship 800 between index values 802, column source logical positions 804, column source physical locations and indexes 806, and physical storage addresses 808.


It will be appreciated that each of the stages shown in FIG. 8 can represent an address translation. For example, the index 802 provides a list of valid addresses, and a translation from a position, to those valid addresses.


A column source may be unaware of row positions, but may be aware of the logical address space of that column source. For example, in an ArrayBackedColumnSource, the address space could be a simple range from 0 . . . n−1 that matches the backing array.


Disk backed column sources typically may be divided into regions, with each region representing an internal data partition. For example, the column source could identify a partition (e.g., a set of column files) using the high-order bits of the logical address, and a row within that partition using the low-order bits of the logical address.


As these addresses may need translation, some implementations can include a RedirectedColumnSource, which can include an inner address space (e.g., matching some other wrapped column source) and an outer address space (e.g., matching the address space for the index that is referencing it). Two examples of RedirectedColumnSources include, but are not limited to: (1) the result table from a sort( ) operation, and (2) when performing an update( ) operation, the result table reuses the original column sources and index, but creates an ArrayBackedColumnSource to hold the results of the update operation, with a RedirectionIndex to map the potentially sparse address space of the outer index to the potentially denser address space of the inner index.


It will be appreciated that the modules, processes, systems, and sections described above can be implemented in hardware, hardware programmed by software, software instructions stored on a nontransitory computer readable medium or a combination of the above. A syste as described above, for example, can include a processor configured to execute a sequence of programmed instructions stored on a nontransitory computer readable medium. For example, the processor can include, but not be limited to, a personal computer or workstation or other such computing system that includes a processor, microprocessor, microcontroller device, or is comprised of control logic including integrated circuits such as, for example, an Application Specific Integrated Circuit (ASIC), a field programmable gate array (FPGA), a graphics processing unit (e.g., GPGPU or GPU) or the like. The instructions can be compiled from source code instructions provided in accordance with a programming language such as Java, C, C++, C#.net, assembly or the like. The instructions can also comprise code and data objects provided in accordance with, for example, the Visual Basic™ language, a specialized database query language, or another structured or object-oriented programming language. The sequence of programmed instructions, or programmable logic device configuration software, and data associated therewith can be stored in a nontransitory computer-readable medium such as a computer memory or storage device which may be any suitable memory apparatus, such as, but not limited to ROM, PROM, EEPROM, RAM, flash memory, disk drive and the like. The processor and/or computer readable medium can include photonics, spintronics, and/or quantum devices.


Furthermore, the modules, processes systems, and sections can be implemented as a single processor or as a distributed processor. Further, it should be appreciated that the steps mentioned above may be performed on a single or distributed processor (single and/or multi-core, or cloud computing system). Also, the processes, system components, modules, and sub-modules described in the various figures of and for embodiments above may be distributed across multiple computers or systems or may be co-located in a single processor or system. Example structural embodiment alternatives suitable for implementing the modules, sections, systems, means, or processes described herein are provided below.


The modules, processors or systems described above can be implemented as a programmed general purpose computer, an electronic device programmed with microcode, a hard-wired analog logic circuit, software stored on a computer-readable medium or signal, an optical computing device, a networked system of electronic and/or optical devices, a special purpose computing device, an integrated circuit device, a semiconductor chip, and/or a software module or object stored on a computer-readable medium or signal, for example.


Embodiments of the method and system (or their sub-components or modules), may be implemented on a general-purpose computer, a special-purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element, an ASIC or other integrated circuit, a digital signal processor, a hardwired electronic or logic circuit such as a discrete element circuit, a programmed logic circuit such as a PLD, PLA, FPGA, PAL, GP, GPU, or the like. In general, any processor capable of implementing the functions or steps described herein can be used to implement embodiments of the method, system, or a computer program product (software program stored on a nontransitory computer readable medium).


Furthermore, embodiments of the disclosed method, system, and computer program product (or software instructions stored on a nontransitory computer readable medium) may be readily implemented, fully or partially, in software using, for example, object or object-oriented software development environments that provide portable source code that can be used on a variety of computer platforms. Alternatively, embodiments of the disclosed method, system, and computer program product can be implemented partially or fully in hardware using, for example, standard logic circuits or a VLSI design. Other hardware or software can be used to implement embodiments depending on the speed and/or efficiency requirements of the systems, the particular function, and/or particular software or hardware system, microprocessor, or microcomputer being utilized. Embodiments of the method, system, and computer program product can be implemented in hardware and/or software using any known or later developed systems or structures, devices and/or software by those of ordinary skill in the applicable art from the function description provided herein and with a general basic knowledge of the software engineering and computer networking arts.


Moreover, embodiments of the disclosed method, system, and computer readable media (or computer program product) can be implemented in software executed on a programmed general purpose computer, a special purpose computer, a microprocessor, or the like.


It is, therefore, apparent that there is provided, in accordance with the various embodiments disclosed herein, methods, systems and computer readable media for position-index mapping.


Application Ser. No. 15/154,974, entitled “DATA PARTITIONING AND ORDERING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,975, entitled “COMPUTER DATA SYSTEM DATA SOURCE REFRESHING USING AN UPDATE PROPAGATION GRAPH” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,979, entitled “COMPUTER DATA SYSTEM POSITION-INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,980, entitled “SYSTEM PERFORMANCE LOGGING OF COMPLEX REMOTE QUERY PROCESSOR QUERY OPERATIONS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,983, entitled “DISTRIBUTED AND OPTIMIZED GARBAGE COLLECTION OF REMOTE AND EXPORTED TABLE HANDLE LINKS TO UPDATE PROPAGATION GRAPH NODES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,984, entitled “COMPUTER DATA SYSTEM CURRENT ROW POSITION QUERY LANGUAGE CONSTRUCT AND ARRAY PROCESSING QUERY LANGUAGE CONSTRUCTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,985, entitled “PARSING AND COMPILING DATA SYSTEM QUERIES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,987, entitled “DYNAMIC FILTER PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,988, entitled “DYNAMIC JOIN PROCESSING USING REAL-TIME MERGED NOTIFICATION LISTENER” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,990, entitled “DYNAMIC TABLE INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,991, entitled “QUERY TASK PROCESSING BASED ON MEMORY ALLOCATION AND PERFORMANCE CRITERIA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,993, entitled “A MEMORY-EFFICIENT COMPUTER SYSTEM FOR DYNAMIC UPDATING OF JOIN PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,995, entitled “QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,996, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,997, entitled “DYNAMIC UPDATING OF QUERY RESULT DISPLAYS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,998, entitled “DYNAMIC CODE LOADING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,999, entitled “IMPORTATION, PRESENTATION, AND PERSISTENT STORAGE OF DATA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,001, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,005, entitled “PERSISTENT QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,006, entitled “SINGLE INPUT GRAPHICAL USER INTERFACE CONTROL ELEMENT AND METHOD” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,007, entitled “GRAPHICAL USER INTERFACE DISPLAY EFFECTS FOR A COMPUTER DISPLAY SCREEN” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,009, entitled “COMPUTER ASSISTED COMPLETION OF HYPERLINK COMMAND SEGMENTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,010, entitled “HISTORICAL DATA REPLAY UTILIZING A COMPUTER SYSTEM” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,011, entitled “DATA STORE ACCESS PERMISSION SYSTEM WITH INTERLEAVED APPLICATION OF DEFERRED ACCESS CONTROL FILTERS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,012, entitled “REMOTE DATA OBJECT PUBLISHING/SUBSCRIBING SYSTEM HAVING A MULTICAST KEY-VALUE PROTOCOL” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


While the disclosed subject matter has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be, or are, apparent to those of ordinary skill in the applicable arts. Accordingly, Applicants intend to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of the disclosed subject matter.

Claims
  • 1. A system comprising: one or more hardware processors;a computer readable data storage device coupled to the one or more hardware processors, the computer readable data storage device having stored thereon software instructions that, when executed by the one or more hardware processors, cause the one or more hardware processors to perform operations including: receiving an electronic message associated with a child table, the electronic message including one or more change notifications indicating a change in one or more corresponding parent tables of the child table;updating an index of the child table based on the received one or more change notifications, where the index of the child table includes a mapping between one or more index values in the child table and corresponding positions in one or more data columns mapped by a columns source map of the child table, where the corresponding positions include positions for which data in the one or more data columns is valid for the child table;when the child table has one or more dependent tables that depend on data of the child table, generating one or more other electronic messages associated with the one or more dependent tables, the other electronic messages containing change notifications representing updates made to the child table; andwhen one or more other electronic messages are generated, providing the one or more other electronic messages to corresponding dependent tables.
  • 2. The system of claim 1, wherein updating the index includes maintaining strict ordering of the index.
  • 3. The system of claim 1, wherein the child table has a dependency on data of the one or more parent tables.
  • 4. The system of claim 1, further comprising another table having a same index as the child table and a column source map different from the column source map of the child table.
  • 5. The system of claim 1, wherein receiving the electronic message includes receiving an electronic message from a listener associated with the one or more parent tables.
  • 6. The system of claim 1, wherein providing the one or more other electronic messages to corresponding dependent tables includes causing a listener associated with the one or more dependent tables to be actuated.
  • 7. The system of claim 1, further comprising another table having a same column source map as the child table and an index different from the index of the child table.
  • 8. A method comprising: receiving an electronic message associated with a child table, the electronic message including one or more change notifications indicating a change in one or more corresponding parent tables of the child table;updating an index of the child table based on the received one or more change notifications, where the index of the child table includes a mapping between one or more index values in the child table and corresponding positions in one or more data columns mapped by a columns source map of the child table, where the corresponding positions include positions for which data in the one or more data columns is valid for the child table;when the child table has one or more dependent tables that depend on data of the child table, generating one or more other electronic messages associated with the one or more dependent tables, the other electronic messages containing change notifications representing updates made to the child table; andwhen one or more other electronic messages are generated, providing the one or more other electronic messages to corresponding dependent tables.
  • 9. The method of claim 8, wherein the change notification includes one or more of an add, a modify, a delete or a reindex message associated with data in the child table that depends on data in one of the parent tables.
  • 10. The method of claim 8, wherein the child table has a dependency on data of the one or more parent tables.
  • 11. The method of claim 8, further comprising maintaining a redirection index mapping an outer index to an inner index.
  • 12. The method of claim 8, wherein receiving the electronic message includes receiving an electronic message from a listener associated with the one or more parent tables.
  • 13. The method of claim 8, wherein providing the one or more other electronic messages to corresponding dependent tables includes causing a listener associated with the one or more dependent tables to be actuated.
  • 14. The method of claim 8, further comprising another table having a same column source map as the child table and an index different from the index of the child table.
  • 15. A nontransitory computer readable medium having stored thereon software instructions that, when executed by one or more processors, cause the one or more processors to perform operations including: receiving an electronic message associated with a child table, the electronic message including one or more change notifications indicating a change in one or more corresponding parent tables of the child table;updating an index of the child table based on the received one or more change notifications, where the index of the child table includes a mapping between one or more index values in the child table and corresponding positions in one or more data columns mapped by a columns source map of the child table, where the corresponding positions include positions for which data in the one or more data columns is valid for the child table;when the child table has one or more dependent tables that depend on data of the child table, generating one or more other electronic messages associated with the one or more dependent tables, the other electronic messages containing change notifications representing updates made to the child table; andwhen one or more other electronic messages are generated, providing the one or more other electronic messages to corresponding dependent tables.
  • 16. The nontransitory computer readable medium of claim 15, wherein the change notification includes one or more of an add, a modify, a delete or a reindex message associated with data in the child table that depends on data in one of the parent tables.
  • 17. The nontransitory computer readable medium of claim 15, wherein the child table has a dependency on data of the one or more parent tables.
  • 18. The nontransitory computer readable medium of claim 15, wherein the change notifications in the other electronic messages include one or more of an add, a modify, a delete or a reindex message associated with data in the child table that depends on data in one of the parent tables.
  • 19. The nontransitory computer readable medium of claim 15, wherein receiving the electronic message includes receiving an electronic message from a listener associated with the one or more parent tables.
  • 20. The nontransitory computer readable medium of claim 15, further comprising another table having a same column source map as the child table and an index different from the index of the child table.
Parent Case Info

This application claims the benefit of U.S. Provisional Application No. 62/161,813, entitled “Computer Data System” and filed on May 14, 2015, which is incorporated herein by reference in its entirety.

US Referenced Citations (393)
Number Name Date Kind
5335202 Manning et al. Aug 1994 A
5452434 Macdonald Sep 1995 A
5469567 Okada Nov 1995 A
5504885 Alashqur Apr 1996 A
5530939 Mansfield et al. Jun 1996 A
5568632 Nelson Oct 1996 A
5673369 Kim Sep 1997 A
5701461 Dalal et al. Dec 1997 A
5701467 Freeston Dec 1997 A
5764953 Collins et al. Jun 1998 A
5787428 Hart Jul 1998 A
5806059 Tsuchida et al. Sep 1998 A
5859972 Subramaniam et al. Jan 1999 A
5875334 Chow et al. Feb 1999 A
5878415 Olds Mar 1999 A
5890167 Bridge et al. Mar 1999 A
5899990 Maritzen et al. May 1999 A
5920860 Maheshwari et al. Jul 1999 A
5943672 Yoshida Aug 1999 A
5960087 Tribble et al. Sep 1999 A
5991810 Shapiro et al. Nov 1999 A
5999918 Williams et al. Dec 1999 A
6006220 Haderle et al. Dec 1999 A
6032144 Srivastava et al. Feb 2000 A
6032148 Wilkes Feb 2000 A
6038563 Bapat et al. Mar 2000 A
6058394 Bakow et al. May 2000 A
6061684 Glasser et al. May 2000 A
6138112 Slutz Oct 2000 A
6266669 Brodersen et al. Jul 2001 B1
6289357 Parker Sep 2001 B1
6292803 Richardson et al. Sep 2001 B1
6304876 Isip Oct 2001 B1
6317728 Kane Nov 2001 B1
6327702 Sauntry et al. Dec 2001 B1
6336114 Garrison Jan 2002 B1
6353819 Edwards et al. Mar 2002 B1
6367068 Vaidyanathan et al. Apr 2002 B1
6389414 Delo et al. May 2002 B1
6389462 Cohen et al. May 2002 B1
6438537 Netz et al. Aug 2002 B1
6446069 Yaung et al. Sep 2002 B1
6460037 Weiss et al. Oct 2002 B1
6473750 Petculescu et al. Oct 2002 B1
6487552 Lei et al. Nov 2002 B1
6496833 Goldberg et al. Dec 2002 B1
6505189 Au et al. Jan 2003 B1
6505241 Pitts Jan 2003 B2
6510551 Miller Jan 2003 B1
6530075 Beadle et al. Mar 2003 B1
6538651 Hayman et al. Mar 2003 B1
6546402 Beyer et al. Apr 2003 B1
6553375 Huang et al. Apr 2003 B1
6584474 Pereira Jun 2003 B1
6604104 Smith Aug 2003 B1
6618720 Au et al. Sep 2003 B1
6631374 Klein et al. Oct 2003 B1
6640234 Coffen et al. Oct 2003 B1
6697880 Dougherty Feb 2004 B1
6701415 Hendren Mar 2004 B1
6714962 Helland et al. Mar 2004 B1
6725243 Snapp Apr 2004 B2
6732100 Brodersen et al. May 2004 B1
6745332 Wong et al. Jun 2004 B1
6748374 Madan et al. Jun 2004 B1
6748455 Hinson et al. Jun 2004 B1
6760719 Hanson et al. Jul 2004 B1
6775660 Lin et al. Aug 2004 B2
6785668 Polo et al. Aug 2004 B1
6795851 Noy Sep 2004 B1
6816855 Hartel et al. Nov 2004 B2
6820082 Cook et al. Nov 2004 B1
6829620 Hsing et al. Dec 2004 B2
6832229 Reed Dec 2004 B2
6851088 Conner et al. Feb 2005 B1
6882994 Yoshimura et al. Apr 2005 B2
6925472 Kong Aug 2005 B2
6934717 James Aug 2005 B1
6947928 Dettinger et al. Sep 2005 B2
6983291 Cochrane et al. Jan 2006 B1
6985895 Witkowski et al. Jan 2006 B2
6985899 Chan et al. Jan 2006 B2
6985904 Kaluskar et al. Jan 2006 B1
7020649 Cochrane et al. Mar 2006 B2
7024414 Sah et al. Apr 2006 B2
7031962 Moses Apr 2006 B2
7058657 Berno Jun 2006 B1
7089228 Arnold et al. Aug 2006 B2
7089245 George et al. Aug 2006 B1
7096216 Anonsen Aug 2006 B2
7103608 Ozbutun et al. Sep 2006 B1
7110997 Turkel et al. Sep 2006 B1
7127462 Hiraga et al. Oct 2006 B2
7146357 Suzuki et al. Dec 2006 B2
7149742 Eastham et al. Dec 2006 B1
7167870 Avvari et al. Jan 2007 B2
7171469 Ackaouy et al. Jan 2007 B2
7174341 Ghukasyan et al. Feb 2007 B2
7181686 Bahrs Feb 2007 B1
7188105 Dettinger et al. Mar 2007 B2
7200620 Gupta Apr 2007 B2
7216115 Walters et al. May 2007 B1
7216116 Nilsson et al. May 2007 B1
7225189 McCormack et al. May 2007 B1
7254808 Trappen et al. Aug 2007 B2
7257689 Baird Aug 2007 B1
7272605 Hinshaw et al. Sep 2007 B1
7308580 Nelson et al. Dec 2007 B2
7316003 Dulepet et al. Jan 2008 B1
7330969 Harrison et al. Feb 2008 B2
7333941 Choi Feb 2008 B1
7343585 Lau et al. Mar 2008 B1
7350237 Vogel et al. Mar 2008 B2
7380242 Alaluf May 2008 B2
7401088 Chintakayala et al. Jul 2008 B2
7426521 Harter Sep 2008 B2
7430549 Zane et al. Sep 2008 B2
7433863 Zane et al. Oct 2008 B2
7447865 Uppala et al. Nov 2008 B2
7478094 Ho et al. Jan 2009 B2
7484096 Garg et al. Jan 2009 B1
7493311 Cutsinger et al. Feb 2009 B1
7529734 Dirisala May 2009 B2
7529750 Bair May 2009 B2
7610351 Gollapudi et al. Oct 2009 B1
7620687 Chen et al. Nov 2009 B2
7624126 Pizzo et al. Nov 2009 B2
7627603 Rosenblum et al. Dec 2009 B2
7661141 Dutta et al. Feb 2010 B2
7664778 Yagoub et al. Feb 2010 B2
7672275 Yajnik et al. Mar 2010 B2
7680782 Chen et al. Mar 2010 B2
7711716 Stonecipher May 2010 B2
7711740 Minore et al. May 2010 B2
7761444 Zhang et al. Jul 2010 B2
7797356 Iyer et al. Sep 2010 B2
7827204 Heinzel et al. Nov 2010 B2
7827403 Wong et al. Nov 2010 B2
7827523 Ahmed et al. Nov 2010 B2
7882121 Bruno et al. Feb 2011 B2
7882132 Ghatare Feb 2011 B2
7904487 Ghatare Mar 2011 B2
7908259 Branscome et al. Mar 2011 B2
7908266 Zeringue et al. Mar 2011 B2
7930412 Yeap et al. Apr 2011 B2
7966311 Haase Jun 2011 B2
7966312 Nolan et al. Jun 2011 B2
7966343 Yang et al. Jun 2011 B2
7970777 Saxena et al. Jun 2011 B2
7979431 Qazi et al. Jul 2011 B2
7984043 Waas Jul 2011 B1
8019795 Anderson et al. Sep 2011 B2
8032525 Bowers et al. Oct 2011 B2
8037542 Taylor et al. Oct 2011 B2
8046394 Shatdal Oct 2011 B1
8046749 Owen et al. Oct 2011 B1
8055672 Djugash et al. Nov 2011 B2
8060484 Bandera et al. Nov 2011 B2
8171018 Zane et al. May 2012 B2
8180789 Wasserman et al. May 2012 B1
8196121 Peshansky et al. Jun 2012 B2
8209356 Roesler Jun 2012 B1
8286189 Kukreja et al. Oct 2012 B2
8321833 Langworthy et al. Nov 2012 B2
8332435 Ballard et al. Dec 2012 B2
8359305 Burke et al. Jan 2013 B1
8375127 Lita Feb 2013 B1
8380757 Bailey et al. Feb 2013 B1
8418142 Ao et al. Apr 2013 B2
8433701 Sargeant et al. Apr 2013 B2
8458218 Wildermuth Jun 2013 B2
8473897 Box et al. Jun 2013 B2
8478713 Cotner et al. Jul 2013 B2
8515942 Marum et al. Aug 2013 B2
8543620 Ching Sep 2013 B2
8553028 Urbach Oct 2013 B1
8555263 Allen et al. Oct 2013 B2
8560502 Vora Oct 2013 B2
8595151 Hao et al. Nov 2013 B2
8601016 Briggs et al. Dec 2013 B2
8631034 Peloski Jan 2014 B1
8650182 Murthy Feb 2014 B2
8660869 Macintyre et al. Feb 2014 B2
8676863 Connell et al. Mar 2014 B1
8683488 Kukreja et al. Mar 2014 B2
8713518 Pointer et al. Apr 2014 B2
8719252 Miranker et al. May 2014 B2
8725707 Chen et al. May 2014 B2
8726254 Rohde et al. May 2014 B2
8745014 Travis Jun 2014 B2
8745510 D'Alo' et al. Jun 2014 B2
8751823 Myles et al. Jun 2014 B2
8768961 Krishnamurthy Jul 2014 B2
8788254 Peloski Jul 2014 B2
8793243 Weyerhaeuser et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806133 Hay et al. Aug 2014 B2
8812625 Chitilian et al. Aug 2014 B1
8838656 Cheriton Sep 2014 B1
8855999 Elliot Oct 2014 B1
8863156 Lepanto et al. Oct 2014 B1
8874512 Jin et al. Oct 2014 B2
8880569 Draper et al. Nov 2014 B2
8880787 Kimmel et al. Nov 2014 B1
8881121 Ali Nov 2014 B2
8886631 Abadi et al. Nov 2014 B2
8903717 Elliot Dec 2014 B2
8903842 Bloesch et al. Dec 2014 B2
8922579 Mi et al. Dec 2014 B2
8924384 Driesen et al. Dec 2014 B2
8930892 Pointer et al. Jan 2015 B2
8954418 Faerber et al. Feb 2015 B2
8959495 Chafi et al. Feb 2015 B2
8996864 Maigne et al. Mar 2015 B2
9031930 Valentin May 2015 B2
9077611 Cordray et al. Jul 2015 B2
9195712 Freedman et al. Nov 2015 B2
9298768 Varakin et al. Mar 2016 B2
9372671 Balan et al. Jun 2016 B2
9384184 Cervantes et al. Jul 2016 B2
20020002576 Wollrath et al. Jan 2002 A1
20020007331 Lo et al. Jan 2002 A1
20020054587 Baker et al. May 2002 A1
20020065981 Jenne et al. May 2002 A1
20020156722 Greenwood Oct 2002 A1
20030004952 Nixon et al. Jan 2003 A1
20030061216 Moses Mar 2003 A1
20030074400 Brooks et al. Apr 2003 A1
20030110416 Morrison et al. Jun 2003 A1
20030167261 Grust et al. Sep 2003 A1
20030182261 Patterson Sep 2003 A1
20030208505 Mullins et al. Nov 2003 A1
20030233632 Aigen et al. Dec 2003 A1
20040002961 Dettinger et al. Jan 2004 A1
20040111492 Nakahara et al. Jun 2004 A1
20040148630 Choi Jul 2004 A1
20040186813 Tedesco et al. Sep 2004 A1
20040216150 Scheifler et al. Oct 2004 A1
20040220923 Nica Nov 2004 A1
20040254876 Coval et al. Dec 2004 A1
20050015490 Saare et al. Jan 2005 A1
20050060693 Robison et al. Mar 2005 A1
20050097447 Serra et al. May 2005 A1
20050102284 Srinivasan et al. May 2005 A1
20050102636 McKeon et al. May 2005 A1
20050131893 Glan Jun 2005 A1
20050132384 Morrison et al. Jun 2005 A1
20050138624 Morrison et al. Jun 2005 A1
20050165866 Bohannon et al. Jul 2005 A1
20050198001 Cunningham et al. Sep 2005 A1
20060074901 Pirahesh et al. Apr 2006 A1
20060085490 Baron et al. Apr 2006 A1
20060100989 Chinchwadkar et al. May 2006 A1
20060101019 Nelson et al. May 2006 A1
20060116983 Dettinger et al. Jun 2006 A1
20060116999 Dettinger et al. Jun 2006 A1
20060136361 Peri et al. Jun 2006 A1
20060173693 Arazi et al. Aug 2006 A1
20060195460 Nori et al. Aug 2006 A1
20060212847 Tarditi et al. Sep 2006 A1
20060218123 Chowdhuri et al. Sep 2006 A1
20060218200 Factor et al. Sep 2006 A1
20060230016 Cunningham et al. Oct 2006 A1
20060271510 Harward et al. Nov 2006 A1
20060277162 Smith Dec 2006 A1
20070011211 Reeves et al. Jan 2007 A1
20070027884 Heger et al. Feb 2007 A1
20070033518 Kenna et al. Feb 2007 A1
20070073765 Chen Mar 2007 A1
20070101252 Chamberlain et al. May 2007 A1
20070169003 Branda et al. Jul 2007 A1
20070256060 Ryu et al. Nov 2007 A1
20070258508 Werb et al. Nov 2007 A1
20070271280 Chandasekaran Nov 2007 A1
20070299822 Jopp et al. Dec 2007 A1
20080022136 Mattsson et al. Jan 2008 A1
20080033907 Woehler et al. Feb 2008 A1
20080046804 Rui et al. Feb 2008 A1
20080072150 Chan et al. Mar 2008 A1
20080120283 Liu et al. May 2008 A1
20080155565 Poduri Jun 2008 A1
20080168135 Redlich et al. Jul 2008 A1
20080235238 Jalobeanu et al. Sep 2008 A1
20080263179 Buttner et al. Oct 2008 A1
20080276241 Bajpai et al. Nov 2008 A1
20080319951 Ueno et al. Dec 2008 A1
20090019029 Tommaney et al. Jan 2009 A1
20090037391 Agrawal et al. Feb 2009 A1
20090055370 Dagum et al. Feb 2009 A1
20090089312 Chi et al. Apr 2009 A1
20090248902 Blue Oct 2009 A1
20090254516 Meiyyappan et al. Oct 2009 A1
20090300770 Rowney et al. Dec 2009 A1
20090319058 Rovaglio et al. Dec 2009 A1
20090319484 Golbandi et al. Dec 2009 A1
20090327242 Brown et al. Dec 2009 A1
20100036801 Pirvali et al. Feb 2010 A1
20100047760 Best et al. Feb 2010 A1
20100049715 Jacobsen et al. Feb 2010 A1
20100161555 Nica et al. Jun 2010 A1
20100186082 Ladki et al. Jul 2010 A1
20100199161 Aureglia et al. Aug 2010 A1
20100205017 Sichelman et al. Aug 2010 A1
20100205351 Wiener et al. Aug 2010 A1
20100281005 Carlin et al. Nov 2010 A1
20100281071 Ben-Zvi et al. Nov 2010 A1
20110126110 Vilke et al. May 2011 A1
20110126154 Boehler et al. May 2011 A1
20110153603 Adiba et al. Jun 2011 A1
20110161378 Williamson Jun 2011 A1
20110167020 Yang et al. Jul 2011 A1
20110194563 Shen et al. Aug 2011 A1
20110314019 Peris Dec 2011 A1
20120110030 Pomponio May 2012 A1
20120144234 Clark et al. Jun 2012 A1
20120159303 Friedrich et al. Jun 2012 A1
20120191446 Binsztok et al. Jul 2012 A1
20120192096 Bowman et al. Jul 2012 A1
20120197868 Fauser et al. Aug 2012 A1
20120209886 Henderson Aug 2012 A1
20120215741 Poole et al. Aug 2012 A1
20120221528 Renkes Aug 2012 A1
20120246052 Taylor et al. Sep 2012 A1
20120254143 Varma et al. Oct 2012 A1
20120259759 Crist et al. Oct 2012 A1
20120296846 Teeter Nov 2012 A1
20130041946 Joel et al. Feb 2013 A1
20130080514 Gupta et al. Mar 2013 A1
20130086107 Genochio et al. Apr 2013 A1
20130166556 Baeumges et al. Jun 2013 A1
20130179460 Cervantes et al. Jul 2013 A1
20130185619 Ludwig Jul 2013 A1
20130191370 Chen et al. Jul 2013 A1
20130198232 Shamgunov et al. Aug 2013 A1
20130226959 Dittrich et al. Aug 2013 A1
20130246560 Feng et al. Sep 2013 A1
20130263123 Zhou et al. Oct 2013 A1
20130290243 Hazel et al. Oct 2013 A1
20130304725 Nee et al. Nov 2013 A1
20130304744 McSherry et al. Nov 2013 A1
20130311352 Kayanuma et al. Nov 2013 A1
20130311488 Erdogan et al. Nov 2013 A1
20130318129 Vingralek et al. Nov 2013 A1
20130346365 Kan et al. Dec 2013 A1
20140019494 Tang Jan 2014 A1
20140040203 Lu et al. Feb 2014 A1
20140059646 Hannel et al. Feb 2014 A1
20140082724 Pearson et al. Mar 2014 A1
20140136521 Pappas May 2014 A1
20140143123 Banke et al. May 2014 A1
20140149997 Kukreja et al. May 2014 A1
20140156618 Castellano Jun 2014 A1
20140173023 Varney et al. Jun 2014 A1
20140181036 Dhamankar et al. Jun 2014 A1
20140181081 Veldhuizen Jun 2014 A1
20140188924 Ma et al. Jul 2014 A1
20140195558 Murthy et al. Jul 2014 A1
20140201194 Reddy et al. Jul 2014 A1
20140215446 Araya et al. Jul 2014 A1
20140222768 Rambo et al. Aug 2014 A1
20140229506 Lee Aug 2014 A1
20140229874 Strauss Aug 2014 A1
20140244687 Shmueli et al. Aug 2014 A1
20140279810 Mann et al. Sep 2014 A1
20140280522 Watte Sep 2014 A1
20140282227 Nixon et al. Sep 2014 A1
20140282444 Araya et al. Sep 2014 A1
20140282540 Bonnet et al. Sep 2014 A1
20140297611 Abbour et al. Oct 2014 A1
20140317084 Chaudhry et al. Oct 2014 A1
20140330700 Studnitzer et al. Nov 2014 A1
20140330807 Weyerhaeuser et al. Nov 2014 A1
20140344186 Nadler Nov 2014 A1
20140344391 Varney et al. Nov 2014 A1
20140372482 Martin et al. Dec 2014 A1
20140380051 Branish, II et al. Dec 2014 A1
20150019516 Wein et al. Jan 2015 A1
20150026155 Martin Jan 2015 A1
20150067640 Booker et al. Mar 2015 A1
20150074066 Li et al. Mar 2015 A1
20150082218 Affoneh et al. Mar 2015 A1
20150088894 Czarlinska et al. Mar 2015 A1
20150095381 Chen et al. Apr 2015 A1
20150127599 Schiebeler May 2015 A1
20150172117 Dolinsky et al. Jun 2015 A1
20150188778 Asayag et al. Jul 2015 A1
20150205588 Bates et al. Jul 2015 A1
20150254298 Bourbonnais et al. Sep 2015 A1
20150304182 Brodsky et al. Oct 2015 A1
20160026442 Chhaparia Jan 2016 A1
20160065670 Kimmel et al. Mar 2016 A1
20160125018 Tomoda et al. May 2016 A1
20160253294 Allen et al. Sep 2016 A1
Foreign Referenced Citations (13)
Number Date Country
2309462 Dec 2000 CA
1406463 Apr 2004 EP
1198769 Jun 2008 EP
2199961 Jun 2010 EP
2423816 Feb 2012 EP
2743839 Jun 2014 EP
2421798 Jun 2011 RU
0000879 Jan 2000 WO
0179964 Oct 2001 WO
2011120161 Oct 2011 WO
2012136627 Oct 2012 WO
WO-2014026220 Feb 2014 WO
2014143208 Sep 2014 WO
Non-Patent Literature Citations (93)
Entry
“IBM Informix TimeSeries data management”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118072141/http://www-01.ibm.com/software/data/informix/timeseries/.
“IBM—What is HBase?”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906022050/http://www-01.ibm.com/software/data/infosphere/hadoop/hbase/.
“SAP HANA Administration Guide”, dated Mar. 29, 2016, pp. 290-294. Retrieved from https://web.archive.org/web/20160417053656/http://help.sap.com/hana/SAP—HANA—Administration—Guide—en.pdf.
“Oracle Big Data Appliance—Perfect Balance Java API”, dated Sep. 20, 2015. Retrieved from https://web.archive.org/web/20131220040005/http://docs.oracle.com/cd/E41604—01/doc.22/e41667/toc.htm.
“Oracle Big Data Appliance—X5-2”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906185409/http://www.oracle.com/technetwork/database/bigdata-appliance/overview/bigdataappliance-datasheet-1883358.pdf.
“Sophia Database—Architecture”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118052919/http://sphia.org/architecture.html.
“Google Protocol RPC Library Overview”, dated Apr. 27, 2016. Retrieved from https://cloud.google.com/appengine/docs/python/tools/protorpc/ (last accessed Jun. 16, 2016).
“Maximize Data Value with Very Large Database Management by SAP® Sybase® IQ”, dated 2013. Retrieved from http://www.sap.com/bin/sapcom/en—us/downloadasset.2013-06-jun-11-11.maximize-data-value-with-very-large-database-management-by-sap-sybase-iq-pdf.html.
“Microsoft Azure—Managing Access Control Lists (ACLs) for Endpoints by using PowerShell”, dated Nov. 12, 2014. Retrieved from https://web.archive.org/web/20150110170715/http://msdn.microsoft.com/en-us/library/azure/dn376543.aspx.
“IBM InfoSphere BigInsights 3.0.0—Importing data from and exporting data to DB2 by using Sqoop”, dated Jan. 15, 2015. Retrieved from https://web.archive.org/web/20150115034058/http://www-01.ibm.com/support/knowledgecenter/SSPT3X—3.0.0/com.ibm.swg.im.infosphere.biginsights.import.doc/doc/data—warehouse—sqoop.html.
“GNU Emacs Manual”, dated Apr. 15, 2016, pp. 43-47. Retrieved from https://web.archive.org/web/20160415175915/http://www.gnu.org/software/emacs/manual/html—mono/emacs.html.
“Oracle® Big Data Appliance—Software User's Guide”, dated Feb. 2015. Retrieved from https://docs.oracle.com/cd/E55905—01/doc.40/e55814.pdf.
“About Entering Commands in the Command Window”, dated Dec. 16, 2015. Retrieved from https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/AutoCAD-Core/files/GUID-BB0C3E79-66AF-4557-9140-D31B4CF3C9CF-htm.html (last accessed Jun. 16, 2016).
“Use Formula AutoComplete”, dated 2010. Retrieved from https://support.office.com/en-us/article/Use-Formula-AutoComplete-c7c46fa6-3a94-4150-a2f7-34140c1ee4d9 (last accessed Jun. 16, 2016).
Mariyappan, Balakrishnan. “10 Useful Linux BashCompletion Complete Command Examples (Bash Command Line Completion on Steroids)”, dated Dec. 2, 2013. Retrieved from http://www.thegeekstuff.com/2013/12/bash-completion-complete/ (last accessed Jun. 16, 2016).
Cheusheva, Svetlana. “How to change the row color based on a cell's value in Excel”, dated Oct. 29, 2013. Retrieved from https://www.ablebits.com/office-addins-blog/2013/10/29/excel-change-row-background-color/ (last accessed Jun. 16, 2016).
Jellema, Lucas. “Implementing Cell Highlighting in JSF-based Rich Enterprise Apps (Part 1)”, dated Nov. 2008. Retrieved from http://www.oracle.com/technetwork/articles/adf/jellema-adfcellhighlighting-087850.html (last accessed Jun. 16, 2016).
Adelfio et al. “Schema Extraction for Tabular Data on the Web”, Proceedings of the VLDB Endowment, vol. 6, No. 6. Apr. 2013. Retrieved from http://www.cs.umd.edu/˜hjs/pubs/spreadsheets-vldb13.pdf.
“Change Data Capture”, Oracle Database Online Documentation 11g Release 1 (11.1), dated Apr. 5, 2016. Retreived from https://web.archive.org/web/20160405032625/http://docs.oracle.com/cd/B28359—01/server.111/b28313/cdc.htm.
“Chapter 24. Query access plans”, Tuning Database Performance, DB2 Version 9.5 for Linux, UNIX, and Windows, pp. 301-462, dated Dec. 2010. Retreived from http://public.dhe.ibm.com/ps/products/db2/info/vr95/pdf/en—US/DB2PerfTuneTroubleshoot-db2d3e953.pdf.
“Tracking Data Changes”, SQL Server 2008 R2, dated Sep. 22, 2015. Retreived from https://web.archive.org/web/20150922000614/https://technet.microsoft.com/en-us/library/bb933994(v=sql.105).aspx.
Borror, Jefferey A. “Q for Mortals 2.0”, dated Nov. 1, 2011. Retreived from http://code.kx.com/wiki/JB:QforMortals2/contents.
Gai, Lei et al. “An Efficient Summary Graph Driven Method for RDF Query Processing”, dated Oct. 27, 2015. Retreived from http://arxiv.org/pdf/1510.07749.pdf.
Lou, Yuan. “A Multi-Agent Decision Support System for Stock Trading”, IEEE Network, Jan./Feb. 2002. Retreived from http://www.reading.ac.uk/AcaDepts/si/sisweb13/ais/papers/journal12-A%20multi-agent%20Framework.pdf.
Palpanas, Themistoklis et al. “Incremental Maintenance for Non-Distributive Aggregate Functions”, Proceedings of the 28th VLDB Conference, 2002. Retreived from http://www.vldb.org/conf/2002/S22P04.pdf.
Wu, Buwen et al. “Scalable SPARQL Querying using Path Partitioning”, 31st IEEE International Conference on Data Engineering (ICDE 2015), Seoul, Korea, Apr. 13-17, 2015. Retreived from http://imada.sdu.dk/˜zhou/papers/icde2015.pdf.
Ex Parte Quayle Action mailed Aug. 8, 2016, in U.S. Appl. No. 15/154,999.
Final Office Action mailed Dec. 19, 2016, in U.S. Appl. No. 15/154,995.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032582 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032584 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032588 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032593 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032597 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032599 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032605 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032590 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032592 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 4, 2016, in International Appln. No. PCT/US2016/032581 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032586 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032587 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032589 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032596 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032598 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032601 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032602 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032607 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032591 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032594 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032600 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032595 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032606 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032603 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032604 filed May 14, 2016.
Mallet, “Relational Database Support for Spatio-Temporal Data”, Technical Report TR 04-21, Sep. 2004, University of Alberta, Department of Computing Science.
Non-final Office Action mailed Aug. 12, 2016, in U.S. Appl. No. 15/155,001.
Non-final Office Action mailed Aug. 16, 2016, in U.S. Appl. No. 15/154,993.
Non-final Office Action mailed Aug. 19, 2016, in U.S. Appl. No. 15/154,991.
Non-final Office Action mailed Aug. 25, 2016, in U.S. Appl. No. 15/154,980.
Non-final Office Action mailed Aug. 26, 2016, in U.S. Appl. No. 15/154,995.
Non-final Office Action mailed Aug. 8, 2016, in U.S. Appl. No. 15/154,983.
Non-final Office Action mailed Aug. 8, 2016, in U.S. Appl. No. 15/154,985.
Non-final Office Action mailed Nov. 17, 2016, in U.S. Appl. No. 15/154,999.
Non-final Office Action mailed Oct. 13, 2016, in U.S. Appl. No. 15/155,009.
Non-final Office Action mailed Oct. 27, 2016, in U.S. Appl. No. 15/155,006.
Non-final Office Action mailed Oct. 7, 2016, in U.S. Appl. No. 15/154,998.
Non-final Office Action mailed Sep. 1, 2016, in U.S. Appl. No. 15/155,011.
Non-final Office Action mailed Sep. 1, 2016, in U.S. Appl. No. 15/155,012.
Non-final Office Action mailed Sep. 14, 2016, in U.S. Appl. No. 15/154,984.
Non-final Office Action mailed Sep. 16, 2016, in U.S. Appl. No. 15/154,988.
Non-final Office Action mailed Sep. 22, 2016, in U.S. Appl. No. 15/154,987.
Non-final Office Action mailed Sep. 26, 2016, in U.S. Appl. No. 15/155,005.
Non-final Office Action mailed Sep. 29, 2016, in U.S. Appl. No. 15/154,990.
Non-final Office Action mailed Sep. 8, 2016, in U.S. Appl. No. 15/154,975.
Non-final Office Action mailed Sep. 9, 2016, in U.S. Appl. No. 15/154,996.
Non-final Office Action mailed Sep. 9, 2016, in U.S. Appl. No. 15/155,010.
Notice of Allowance mailed Dec. 19, 2016, in U.S. Appl. No. 15/155,001.
Notice of Allowance mailed Dec. 7, 2016, in U.S. Appl. No. 15/154,985.
Notice of Allowance mailed Nov. 17, 2016, in U.S. Appl. No. 15/154,991.
Notice of Allowance mailed Nov. 21, 2016, in U.S. Appl. No. 15/154,983.
Notice of Allowance mailed Nov. 8, 2016, in U.S. Appl. No. 15/155,007.
Notice of Allowance mailed Oct. 11, 2016, in U.S. Appl. No. 15/155,007.
Notice of Allowance mailed Oct. 21, 2016, in U.S. Appl. No. 15/154,999.
PowerShell Team, Intellisense in Windows PowerShell ISE 3.0, dated Jun. 12, 2012, Windows PowerShell Blog, pp. 1-6 Retrieved: https://biogs.msdn.microsoft.com/powershell/2012/06/12/intellisense-in-windows-powershell-ise-3-0/.
Smith, Ian. “Guide to Using SQL: Computed and Automatic Columns.” Rdb Jornal, dated Sep. 2008, retrieved Aug. 15, 2016, retrieved from the Internet <URL: http://www.oracle.com/technetwork/products/rdb/automatic-columns-132042.pdf>.
Final Office Action mailed Jan. 27, 2017, in U.S. Appl. No. 15/154,980.
Final Office Action mailed Jan. 31, 2017, in U.S. Appl. No. 15/154,996.
Murray, Derek G. et al. “Naiad: a timely dataflow system.” SOSP '13 Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. pp. 439-455. Nov. 2013.
Notice of Allowance mailed Dec. 22, 2016, in U.S. Appl. No. 15/155,011.
Notice of Allowance mailed Feb. 1, 2017, in U.S. Appl. No. 15/154,988.
Notice of Allowance mailed Jan. 30, 2017, in U.S. Appl. No. 15/154,987.
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.16.1” Dated May 11, 2015. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.16.1/index.html.
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.18.1” Dated May 3, 2016. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.18.1/index.html.
Non-final Office Action mailed Feb. 8, 2017, in U.S. Appl. No. 15/154,997.
Related Publications (1)
Number Date Country
20160335297 A1 Nov 2016 US
Provisional Applications (1)
Number Date Country
62161813 May 2015 US