This invention relates to computer-guided surgery in general, and more particularly to computer-guided surgery for orienting the acetabular cup in the pelvis during total hip replacement surgery.
Joint replacement surgery seeks to replace portions of a joint with prosthetic components so as to provide long-lasting function and pain-free mobility.
One joint which is commonly replaced, in whole or in part, is the hip joint. The hip joint is located at the junction of the femur and the pelvis. More particularly, and looking now at
During total hip replacement surgery, and looking now at
In a partial hip replacement surgery, only one of the operative elements of the hip joint may be replaced, e.g., the head of the femur.
The present invention will hereinafter be discussed in the context of a total hip replacement surgery, however, it should also be appreciated that the present invention may be equally applicable to a partial hip replacement surgery (e.g., a unipolar hip replacement surgery, a bipolar hip replacement surgery, etc.) or a resurfacing procedure, etc.
In order to replace the head of the femur with the femoral prosthesis, the head of the femur is first distracted from the acetabulum so as to expose the femoral head. Then an osteotomy is performed on the femoral neck so as to remove the neck and head of the femur from the remainder of the femur. Next, the proximal end of the intramedullary canal is prepared so as to receive the stem of the femoral prosthesis. More particularly, a rasp, reamer, broach, etc. is used to hollow out, clean and enlarge the intramedullary canal of the femur so as to create a cavity to receive the stem of the femoral prosthesis. Then the stem of the femoral prosthesis is inserted into the intramedullary canal so that the ball of the femoral prosthesis is appropriately presented to the acetabular cup. Typically, the ball of the femoral prosthesis is formed separately from the stem of the femoral prosthesis, and it is united with the stem of the femoral prosthesis at the time of use. Furthermore, it should also be appreciated that during the surgery itself, it is common to temporarily position a trial stem or broach in the femur, attach a trial ball or equivalent element, and then temporarily reduce the joint so as to confirm the reconstruction before the actual prosthetic stem is secured in position within the femur.
In order to replace the native acetabulum with the prosthetic acetabular cup, the native acetabulum is first prepared to receive the prosthetic acetabular cup. This generally involves reaming an appropriate seat in the pelvis to receive the prosthetic acetabular cup. Then the prosthetic acetabular cup is installed in the pelvis, and the distraction released, so that the ball of the femoral prosthesis can be seated in the acetabular cup. In this respect it will be appreciated that the prosthetic acetabular cup typically comprises a metal cup and a liner made out of a polymer or a ceramic or a metal. The metal cup is configured so as to seat in the pelvis and oseointegrate into the host bone, and the liner is configured so as to provide a low-friction seat for the ball of the femoral prosthesis.
During seating of the acetabular cup in the pelvis, it is important that the acetabular cup be set in the pelvis with the proper positioning, i.e., at the proper location and with the proper orientation. Such proper positioning is important in order to (i) avoid impingement between the rim of the cup and the femoral prosthesis as the joint is moved through a range of motions, since such impingement can result in a reduced range of motion, excessive wear, joint failure and/or substantial pain for the patient, and (ii) avoid dislocation of the ball of the femoral prosthesis from the acetabular cup as the joint is moved through a range of motions, since such dislocation can result in damage to the anatomy, joint failure and/or substantial pain for the patient.
In many cases, the surgeon seats the prosthetic acetabular cup in the pelvis “by eye”, and thereafter confirms the proper disposition of the cup when the distracted joint is subsequently reduced. However, this approach relies heavily on the anatomical view available to, and appreciated by, the surgeon, and errors in cup orientation (i.e., tilt) may not be discovered until after the surgery has been completed, since such errors in cup orientation can be difficult to detect interoperatively, even with the use of X-rays.
For this reason, various computer-guided systems have been developed to assist the surgeon in the proper placement of the acetabular cup during total hip replacement surgery. However, such computer-guided systems frequently require that a CT scan be made of the patient in advance of the procedure so as to determine the geometry of the acetabulum/pelvis. Furthermore, such computer-guided systems typically require the registration of pelvic anatomical landmarks (e.g., the pubic tubercles and the anterior/superior iliac spines), and the registration of femoral anatomical landmarks, with trackers (e.g., optical, electric/magnetic field, etc.). However, in practice, one or more of these pelvic anatomical landmarks can be difficult to acquire. Furthermore, the trackers must typically be applied to both the pelvis and the femur during the surgery itself so as to track the dispositions of these body parts during the surgery. These requirements can add to the cost of the procedure, can lengthen the time required for the procedure, and can be inconvenient for the surgeon (e.g., such as where the surgeon must work around optical trackers protruding into the surgical field).
Accordingly, there is a need for a new and improved computer-guided system for orienting the acetabular cup in the pelvis during total hip replacement surgery, wherein the requirement for a pre-operative CT scan is eliminated, and wherein the requirement for the acquisition of pelvic landmarks is eliminated.
In addition, there is also a need for a new and improved computer-guided system which can be used to orient prosthetic components other than the acetabular cup, e.g., a computer-guided system which can be used to orient a femoral component.
Furthermore, there is also a need for a new and improved computer-guided system which can be used to orient prosthetic components for joints other than the hip, e.g., a computer-guided system which can be used to orient prosthetic components in the knee.
And there is a need for a new and improved computer-guided system which can be used to determine and adjust the position of substantially any two interacting components in space.
These and other objects are addressed by the provision and use of the present invention, which comprises a new and improved computer-guided system for orienting the acetabular cup in the pelvis during total hip replacement surgery, wherein the requirement for a pre-operative CT scan is eliminated (but may still be provided if desired), and wherein the requirement for the acquisition of pelvic landmarks is eliminated (but may still be provided if desired).
More particularly, with the present invention, the surgeon first sets the prosthetic acetabular cup into the pelvis in the conventional manner (e.g., “by eye”). The surgeon then uses the new computer-guided system of the present invention to: (i) detect the current spatial relationship between the acetabular cup and the femur using kinematic action; (ii) compare the current spatial relationship between the acetabular cup and the femur to the desired (i.e., “ideal”) spatial relationship between the acetabular cup and the femur (e.g., so as to minimize the aforementioned impingement and dislocation problems); and (iii) adjust the current orientation of the acetabular cup with a device so as to set the acetabular cup with the desired orientation.
Significantly, this is achieved without requiring a pre-operative CT scan (although one may still be provided if desired), and without requiring the acquisition of pelvic landmarks (although they may still be provided if desired).
In addition, the present invention also provides a new and improved computer-guided system which can be used to orient prosthetic components other than the acetabular cup, e.g., a computer-guided system which can be used to orient a femoral component.
Furthermore, the present invention also provides a new and improved computer-guided system which can be used to orient prosthetic components for joints other than the hip, e.g., a computer-guided system which can be used to orient prosthetic components in the knee.
And the present invention also provides a new and improved computer-guided system which can be used to determine and adjust the position of substantially any two interacting components in space.
In one preferred form of the invention, there is provided a method for determining the orientation of a first object in space, wherein the first object is interactive with a second object, the method comprising the steps of:
using kinematic action to generate a first data set reflective of the current spatial relationship between the first object and the second object; and
comparing the first data set with a database of known data sets reflective of known spatial relationships between the first object and the second object in space so as to identify the current orientation of the first object in space.
In another form of the present invention there is provided a system for determining the orientation of a first object in space wherein the first object is interactive with a second object, the system comprising:
apparatus configured to use kinematic action to generate a first data set reflective of the current spatial relationship between the first object and the second object; and
apparatus for comparing the first data set with a database of known data sets reflective of known spatial relationships between the first object and the second object in space so as to identify the current orientation of the first object in space.
In another form of the present invention there is provided an acetabular cup comprising:
a hollow cup having an outer surface for attachment to the pelvis and an inner surface for receiving a ball of a femur;
the outer surface comprising longitudinal ridges for permitting selective movement of the cup relative to the pelvis.
These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts, and further wherein:
The present invention comprises a new and improved computer-guided system for orienting the acetabular cup in the pelvis during total hip replacement surgery, wherein the requirement for a pre-operative CT scan is eliminated (but may still be provided if desired), and wherein the requirement for the acquisition of pelvic landmarks is eliminated (but may still be provided if desired).
More particularly, with the present invention, the surgeon first sets the prosthetic acetabular cup into the pelvis in the conventional manner (e.g., “by eye”). The surgeon then uses the new computer-guided system of the present invention to: (i) detect the current spatial relationship between the acetabular cup and the femur using kinematic action; (ii) compare the current spatial relationship between the acetabular cup and the femur to the desired (i.e., “ideal”) spatial relationship between the acetabular cup and the femur (e.g., so as to minimize the aforementioned impingement and dislocation problems); and (iii) adjust the current orientation of the acetabular cup with a device so as to set the acetabular cup with the desired orientation.
Significantly, this is achieved without requiring a pre-operative CT scan (although one may still be provided if desired), and without requiring the acquisition of pelvic landmarks (although they may still be acquired if desired).
In addition, the present invention also provides a new and improved computer-guided system which can be used to orient prosthetic components other than the acetabular cup, e.g., a computer-guided system which can be used to orient a femoral component.
Furthermore, the present invention also provides a new and improved computer-guided system which can be used to orient prosthetic components for joints other than the hip, e.g., a computer-guided system which can be used to orient prosthetic components in the knee.
And the present invention also provides a new and improved computer-guided system which can be used to determine and adjust the position of substantially any two interacting components in space.
(i) Detecting the Current Spatial Relationship Between the Acetabular Cup and the Femur Using Kinematic Action
The present invention detects the current spatial relationship between the acetabular cup and the femur after the cup has been set in the pelvis by the surgeon. This is done by kinematic action.
More particularly, and looking now at
Sensor 12 on impinger 5 may comprise one or more standard optical or electric/magnetic field sensors of the sort which can indicate absolute position (and hence the change in absolute position, i.e., motion) in a standard 3D coordinate system.
Alternatively, and more preferably, sensor 12 on impinger 5 may comprise one or more accelerometers, inclinometers, gyroscopes, magnetic compasses, cameras, etc., or a combination of the foregoing, which can indicate motion in a standard 3D coordinate system.
In either case, sensor 12 on impinger 5 is used to track the motion of impinger 5 within the standard 3D coordinate system.
In accordance with the present invention, and looking now at
More particularly, after impinger 5 has been set on broach 10 and ball 6 of impinger 5 seated in acetabular cup 15, impinger 5 is moved about so that its neck 7 repeatedly engages, or “impinges”, the rim of the acetabular cup so as to explore the range of motion permitted between impinger 5 and the acetabular cup. As this occurs, sensor 12 records the motion of impinger 5 so as to generate a data set, or data cloud, representative of the range of motion permitted between impinger 5 and acetabular cup 15. This data cloud has a unique configuration depending on the orientation of the acetabular cup relative to the dynamically moving impinger.
By forming neck 11 of impinger 5 with a complex geometric configuration (e.g., hexagonal, as shown in
More particularly, the femur (with tracked impinger 5 attached) is moved so as to establish an initial impingement point between impinger 5 and prosthetic acetabular cup 15. The position of impinger at this first impingement point is identified by sensor 12 (e.g., the optical tracker, electric/magnetic field tracker, accelerometers, inclinometers, etc.) and recorded. Then the femur is moved dynamically through a range of motions so as to allow impinger 5 to engage acetabular cup 15 at a plurality of other impingement points along the rim of the acetabular cup. As each impingement occurs, the location of impinger 5 is recorded by the sensor. This process is repeated until a sufficient number of impingement points have been identified, and the corresponding position of impinger 5 recorded, so that a data cloud can be generated which is representative of the range of motion permitted between the impinger and the acetabular cup, when those components are in a particular relationship to one another.
In essence, as each impingement point is identified and the corresponding location of the impinger recorded, a “data point” is created. These data points together form a data cloud containing all of the identified impingement points, which essentially identifies the range of motion permitted between the impinger and the acetabular cup, for the given spatial relationship existing between those components.
(ii) Comparing the Current Spatial Relationship Between the Acetabular Cup and the Femur to the Desired (i.e., “Ideal”) Spatial Relationship Between the Acetabular Cup and the Femur
Next, the current spatial relationship between the acetabular cup and the femur is compared with the desired (i.e., “ideal”) spatial relationship between the cup and the femur, to determine if, and how, the acetabular cup should be moved (i.e., re-oriented) so as to achieve the desired (i.e., “ideal”) orientation for the acetabular cup.
More particularly, as noted above, the data cloud generated by moving impinger 5 so that it impinges upon acetabular cup 15 at a plurality of locations yields a data cloud which has a unique geometry reflecting the range of movement permitted by the current spatial relationship between the acetabular cup and the impinger (which is attached to the femur). As a result, this data cloud can be compared against a database of data clouds of known ranges of motion for given acetabular cup orientations in an idealized joint so as to identify the current orientation of the acetabular cup in the operative field. This database of data clouds of known acetabular cup orientations may be generated by computer simulations that are performed in a virtual environment, or by experimentally deriving the data in a laboratory environment (e.g., in a cadaver lab), etc. See, for example,
Various methods can be used to compare the patient-specific data cloud against the pre-recorded data clouds in the database so as to determine the relative orientation of the acetabular cup vis-à-vis the femur. These methods include, but are not limited to, mathematical and statistical methods, shape fitting/recognition methods, etc.
As a result of the foregoing, the current orientation of the acetabular cup can be determined, and hence any necessary adjustment to the current orientation of the acetabular cup can be determined.
(iii) Adjusting the Current Orientation of the Acetabular Cup with a Device so as to Set the Acetabular Cup with the Desired Orientation
Once the current orientation of the acetabular cup has been compared to the desired (i.e., “ideal”) orientation of the acetabular cup, so that it is known if, and how, the cup should be re-oriented in order to achieve the desired cup orientation, a device may be mounted to impinger 5 so as to urge the cup into the desired orientation. More particularly, and looking now at
The impactor itself comprises a body 40 which is generally circular in shape and comprises a plurality of impacting units 45 along its perimeter for engaging appropriate portions of the acetabular cup and urging the cup into the desired orientation. Impacting units 45 preferably comprise impacting pads 50 which are mounted on actuating rods 55. Actuating rods 55 move impacting pads 50 away from body 40 of the impactor so as to selectively engage specific portions of the rim of the acetabular cup and thereby urge the cup into the proper orientation. Actuating rods 55 may be actuated pneumatically, e.g., via a pneumatic hose 56.
Using the acquired information about the positions of the acetabular cup and the femur, the impactor is able to actuate the actuating rods and drive their respective impacting pads as appropriate so as to properly orient the acetabular cup vis-à-vis the femur, and hence vis-à-vis the pelvis.
Once the acetabular cup has been moved into the desired orientation, the impactor can be removed from the impinger, and then the impinger can be removed from the broach or femoral stem, whereupon the hip replacement surgery can be completed in the conventional manner.
In another form of the present invention, a novel prosthetic acetabular cup is provided, wherein the novel prosthetic cup has a configuration which facilitates proper orienting of the cup using the impactor. More particularly, the novel acetabular cup comprises a geometry which allows rigid, but adjustable, orienting within the acetabulum. More particularly, and looking now at
It should be appreciated that the present invention also provides a new and improved computer-guided system which can be used to orient prosthetic components other than the acetabular cup, e.g., the present invention can be used to orient a femoral component for the hip.
Furthermore, the present invention can also be used to orient prosthetic components for joints other than the hip, e.g., the present invention provides a computer-guided system which can be used to orient prosthetic components in the knee.
And the present invention can be used to determine and adjust the position of substantially any two interacting components in space.
Thus it will be seen that the present invention provides a new and unique method for accurately identifying the orientation of linked objects in space. This new method uses highly accurate computer simulations that are performed in a virtual environment, or uses experimentally-derived laboratory data, allowing complete data collection of all possible orientations of the linked objects in question when subjected to movement. These orientation data sets (e.g., data clouds) are then stored for later use as a reference for relating the data obtained in the “real world” when kinematically moving the linked objects relative to each other (or relative to a fixed standard). The “real world” data so obtained, when compared to the reference “simulation data” (or experimentally-derived data) can reliably “solve for” (i.e., indicate) the true orientation of the linked objects in space to one another, which in many cases could not otherwise be obtained. The aforementioned kinematic motions of the objects create the large data sets that increase the accuracy of this method over other, more conventional “static” methods.
Furthermore, it will be appreciated that once the true orientation of the linked objects in space has been determined, forces can be applied to one or more of the objects so as to re-orient them.
This new and robust functionality has usefulness in many applications, e.g., such as the aforementioned acetabular cup orientation obtained by using the impinger device. Furthermore, the method of the present invention can be used to place an acetabular cup in the pelvis with no impactor device. And the method of the present invention can be used to determine the proper orientation of implants in, for example, the knee joint, and allows intra-operative real-time modification that improves the restoration of more normal knee kinematics. Many other applications will be apparent to those skilled in the art in view of the present disclosure.
It should be understood that many additional changes in the details, operation, steps and arrangements of elements, which have been herein described and illustrated in order to explain the nature of the present invention, may be made by those skilled in the art while still remaining within the principles and scope of the invention.
This patent application: (i) claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 61/069,267, filed Mar. 13, 2008 by Robert C. Thornberry for COMPUTER-GUIDED SYSTEM FOR ORIENTING THE ACETABULAR CUP IN THE ACETABULUM DURING TOTAL HIP REPLACEMENT SURGERY (Attorney's Docket No. TBERRY-1 PROV); and (ii) claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 61/134,994, filed Jul. 16, 2008 by Robert C. Thornberry for COMBINED USE OF SIMULATION AND NAVIGATION TO DEMONSTRATE HIP KINEMATICS (Attorney's Docket No. TBERRY-2 PROV). The two above-identified patent applications are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61069267 | Mar 2008 | US | |
61134994 | Jul 2008 | US |