The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an exemplary embodiment when read in conjunction with the accompanying drawings, wherein:
With reference now to the figures and in particular with reference to
With reference now to the figures,
In the depicted example, server 104 and server 106 connect to network 102 along with storage unit 108. In addition, clients 110, 112, and 114 connect to network 102. These clients 110, 112, and 114 may be, for example, personal computers or network computers. In the depicted example, server 104 provides data, such as boot files, operating system images, and applications to clients 110, 112, and 114. Clients 110, 112, and 114 are clients to server 104 in this example. Network data processing system 100 may include additional servers, clients, and other devices not shown.
In the depicted example, network data processing system 100 is the Internet with network 102 representing a worldwide collection of networks and gateways that use the Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate with one another. At the heart of the Internet is a backbone of high-speed data communication lines between major nodes or host computers, consisting of thousands of commercial, governmental, educational and other computer systems that route data and messages. Of course, network data processing system 100 also may be implemented as a number of different types of networks, such as for example, an intranet, a local area network (LAN), or a wide area network (WAN).
With reference now to
In the depicted example, data processing system 200 employs a hub architecture including a north bridge and memory controller hub (MCH) 202 and a south bridge and input/output (I/O) controller hub (ICH) 204. Processor 206, main memory 208, and graphics processor 210 are coupled to north bridge and memory controller hub 202. Graphics processor 210 may be coupled to the MCH through an accelerated graphics port (AGP), for example.
In the depicted example, local area network (LAN) adapter 212 is coupled to south bridge and I/O controller hub 204 and audio adapter 216, keyboard and mouse adapter 220, modem 222, read only memory (ROM) 224, universal serial bus (USB) ports and other communications ports 232, and PCI/PCIe devices 234 are coupled to south bridge and I/O controller hub 204 through bus 238, and hard disk drive (HDD) 226 and CD-ROM drive 230 are coupled to south bridge and I/O controller hub 204 through bus 240. PCI/PCIe devices may include, for example, Ethernet adapters, add-in cards, and PC cards for notebook computers. PCI uses a card bus controller, while PCIe does not. ROM 224 may be, for example, a flash binary input/output system (BIOS). Hard disk drive 226 and CD-ROM drive 230 may use, for example, an integrated drive electronics (IDE) or serial advanced technology attachment (SATA) interface. A super I/O (SIO) device 236 may be coupled to south bridge and I/O controller hub 204.
An operating system runs on processor 206 and coordinates and provides control of various components within data processing system 200 in
Instructions for the operating system, the object-oriented programming system, and applications or programs are located on storage devices, such as hard disk drive 226, and may be loaded into main memory 208 for execution by processor 206. The processes of the illustrative embodiments may be performed by processor 206 using computer implemented instructions, which may be located in a memory such as, for example, main memory 208, read only memory 224, or in one or more peripheral devices.
The hardware in
In some illustrative examples, data processing system 200 may be a personal digital assistant (PDA), which is generally configured with flash memory to provide non-volatile memory for storing operating system files and/or user-generated data. A bus system may be comprised of one or more buses, such as a system bus, an I/O bus and a PCI bus. Of course the bus system may be implemented using any type of communications fabric or architecture that provides for a transfer of data between different components or devices attached to the fabric or architecture. A communications unit may include one or more devices used to transmit and receive data, such as a modem or a network adapter. A memory may be, for example, main memory 208 or a cache such as found in north bridge and memory controller hub 202. A processing unit may include one or more processors or CPUs. The depicted examples in
Turning to
Application programming interface (API) 306 allows the user of the system, an individual, or a software routine, to invoke system capabilities using a standard consistent interface without concern for how the particular functionality is implemented. Network access software 308 represents any software available for allowing the system to access a network. This access may be to a network, such as a local area network (LAN), wide area network (WAN), or the Internet. With the Internet, this software may include programs, such as Web browsers. Application software 310 represents any number of software applications designed to react to data through the communications port to provide the desired functionality the user seeks. Applications at this level may include those necessary to handle data, video, graphics, photos or text, which can be accessed by users of the Internet. The mechanism of the present invention may be implemented within communications software 304 in these examples.
Exemplary embodiments provide a computer implemented method, system and computer usable program code for rendering of messages in a data processing system. More particularly, exemplary embodiments provide a computer implemented method, system and computer usable program code for managing server-based rendering of messages in a data processing system within a heterogeneous environment.
According to exemplary embodiments, a secondary document, referred to herein as a “secondary web page” is associated with a primary document, referred to herein as a “primary web page” on which a rendered message is to be displayed. A source object of the secondary web page is updated with information regarding the message to be rendered, and the information is transmitted to a remote location using the secondary web page. Message code is received from the remote location that includes the message to be rendered and message rendering instructions, and the received message code is processed to render the message for display on the primary web page.
According to exemplary embodiments, the secondary web page is provided by background connection to a server, and can be associated with the primary web page by being embedded in the primary web page, by being positioned adjacent to the primary web page or in another suitable manner. According to an exemplary embodiment, connection to the server can be initiated by a Java applet embedded into a web page or by Javascript code or another scripting language, such as VBScript (Virtual Basic Scripting), running on a client browser. This can be achieved without the entire viewable page refreshing.
According to an exemplary embodiment, the background connection to the server is initiated using an IFRAME (inline frame) object, although it should be understood that other mechanisms can also be used. The IFRAME object serves as a secondary web page embedded within the primary web page, and provides the advantage that it can be hidden on the client browser's primary web page:
The IFRAME object is referenced by an ID tag via the Javascript function:
The Javascript code on the web page can directly access this function, while an embedded Java applet can use the LiveScript JSObject method exec( ) to access DOM (Document Object Model) elements on the primary Web page. When a message that resides on the server needs to be displayed in the client browser, Javascript code running in the browser updates the source of the document content for the hidden IFRAME object:
The browser processes the URL and contacts the Web server to retrieve the new content. As will be described in greater detail hereinafter, the retrieved content can contain the message text as well as additional Javascript code that can interact with the primary web page to render and display the message.
On the Web server side, a Java servlet, JSP (Java server page), script or equivalent can respond to an incoming request. In this example, an implementation with a Java servlet is illustrated. Through the incoming request, the parameters can be passed in through the URL query string. This can be composed of:
The servlet takes these parameters and looks up the corresponding message in a message catalog. It then inserts any specified parameters and passes the result into a rendering engine (i.e. JSP) that can format the output (i.e. HTML) for the requester.
There are several ways that this representation can be returned to the requester:
On server 420, servlet/JSP or script 422 looks up the appropriate message from message catalog 424 as shown by arrows 434, inserts parameters and renders HTML/Javascript code. The HTML/Javascript code containing the message rendering instructions is returned to the client browser's hidden IFRAME 416 as shown by arrow 436.
The browser then processes the returned HTML/Javascript to provided displayed message 418 as shown by arrow 438. Depending on what the HTML/Javascript contains, the browser can:
On the server, a servlet/JSP or script then looks up the appropriate message from a message catalog in the server (Step 508), inserts parameters and renders HTML/Javascript code (Step 510). The HTML/Javascript code containing the message rendering instructions is then returned to the hidden IFRAME in the browser (Step 512). The browser processes the returned HTML/Javascript depending on what the HTML/Javascript contains. As described previously, the processing can include one of using the object ID of the target element in the primary web page to display the rendered message (Step 514a); use the object ID of the target element within the hidden IFRAME (secondary web page) to render the message, and notify the primary web page to display the rendered message (Step 514b); or store the rendered message in a Javascript variable in the hidden IFRAME, and notify the primary web page so that it can access the variable to display the rendered message (Step 514c). After processing the HTML/Javascript in one of these manners, the method ends.
Exemplary embodiments thus provide a computer implemented method, system and computer usable program code for rendering messages in a data processing system. A computer implemented method for rendering a message in a data processing system includes updating a source object of a secondary web page associated with a primary web page with information regarding a message to be rendered. The information is transmitted to a remote location using the secondary web page. Message code is received from the remote location that includes the message to be rendered and message rendering instructions, and the received message code is processed to render the message for display on the primary web page.
The invention can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment containing both hardware and software elements. In a preferred embodiment, the invention is implemented in software, which includes but is not limited to firmware, resident software, microcode, etc.
Furthermore, the invention can take the form of a computer program product accessible from a computer-usable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this description, a computer-usable or computer readable medium can be any tangible apparatus that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk-read only memory (CD-ROM), compact disk-read/write (CD-R/W) and DVD.
A data processing system suitable for storing and/or executing program code will include at least one processor coupled directly or indirectly to memory elements through a system bus. The memory elements can include local memory employed during actual execution of the program code, bulk storage, and cache memories which provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution.
Input/output or I/O devices (including but not limited to keyboards, displays, pointing devices, etc.) can be coupled to the system either directly or through intervening I/O controllers.
Network adapters may also be coupled to the system to enable the data processing system to become coupled to other data processing systems or remote printers or storage devices through intervening private or public networks. Modems, cable modem and Ethernet cards are just a few of the currently available types of network adapters.
The description of the present invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiment was chosen and described in order to best explain the principles of the invention, the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.