The present disclosure is comprised in the field of air traffic simulators. More particularly, the present disclosure relates to a method and system that use historical data to deploy a simulator in a particular airspace region.
The deployment of air traffic simulator in a particular airspace region (e.g., airport, sector, flight information region (FIR)) requires firstly a description in terms of routes, waypoints, runways, departure and landing procedures, or terrain obstacles and secondly a manual calibration of the traffic simulation to create the rules that applies to that region in certain conditions.
Currently, when an air-traffic simulator is deployed, all the simulation rules and parameters need to be adjusted manually by means of creating and running different simulated scenarios that mimic or not real traffic. As a result, the deployment of a simulator is a time-consuming task that needs a great deal of resources. It demands a constant interaction of a simulator operator with ATCos (Air Traffic Controllers) to identify rules followed to adjust the traffic flow according to changing environmental conditions or the capacity of the airport. Then the simulator operator needs to manually code all the different rules from scratch and set all the different simulator parameters to the particular airspace region. Apart from time and cost, unrealistic setups and sensitivity to errors are other significant drawbacks of this manual solution. Therefore, there is a need for a solution to facilitate the deployment of an air traffic simulator in an airspace region.
The present disclosure refers to a computer-implemented method and system to deploy an air traffic management (ATM) simulator making use of historical data related to airspace activity.
A quick setup of the ATM simulator can be achieved by automatically identifying parameters and rules that are undetermined. Two types of rules can be defined.
ATCo rules represent ATCo interventions on the future flown trajectory. They can be applied to a set of flights under a certain circumstance and they are mainly used for deconfliction and sequencing. An example of an ATCo rule would be “reduce speed to 200 knots when reaching waypoint QRT”
Operational Context rules are related to the airspace layout. They mainly affect the available routes and airport configuration, stablishing which routes, runways or procedures can be used by the different flights from those published in the aviation charts and included in the operational context model used by the simulator. Examples of operational context rules are “runway 33L available for departure aircraft from 09:00 AM until 14:00 PM”, “route ABC unavailable from 13:00 PM until 21:00 PM on date 10 Oct. 2015”, or “airport LEMD in West configuration from 13:00 PM until 18:00 PM”. In many cases, operational context rules are in place due to some weather condition (e.g., wind changes, storms) or some external condition that obliges to close or modify the current predefined airspace (e.g., war condition in an area, congestion in a sector).
A parameter of the ATM simulator refers to different configuration setups that apply to all the flights in all the simulations, independently on the scenario run or reconstructed.
Examples of these parameters could be the taxiing speed for the different aircraft types or the minimum separation distance used for sequencing and conflict detection.
By obtaining these parameters and rules from available historical data, interactions of the simulator operator with the ATCo may be favorably avoided.
Historical data can be retrieved from a plurality of sources depending on the type. The present disclosure proposes retrieving information (variables associated with trajectory and aircraft states) from these sources in order to obtain historical data set that apply to the airspace region and processing said historical data set to infer rules and parameters used by the ATM simulator. The historical data set is statistically analyzed for modelling the airspace region and the airport, thus relationships between variables of the historical data set can be identified to determine a parameter value or rule for configuring the ATM simulator.
Advantageously new features may be implemented, in addition to identification of rules and automatic setup of simulator parameters, links between changes in the traffic and environmental conditions and adjustment in the simulation parameters may be offered.
These and other features, functions, and advantages that have been discussed can be achieved independently in various embodiments or may be combined in yet other embodiments further details of which can be seen with reference to the following description and drawings.
A series of drawings which aid in better understanding the disclosure and which are expressly related with an embodiment of said disclosure, presented as a non-limiting example thereof, are very briefly described below.
Embodiments of systems and methods for setting up an ATM simulator are described herein. One skilled in the art will understand that the present disclosure may have additional features or may be practiced without several of the details shown in the following description.
In most cases, airspace constraints can be classified as those coming from the ATCo's instructions and those coming from the airspace structure. The airspace constraints due to the airspace structure are referred to as operational context.
Operational context includes waypoints, legs, routes, aerodromes, SIDs (Standard Instrument Departure), STARs (Standard Terminal Arrival Route), runways, altitude and speed constraints, etc. Operational context may be considered static.
ATCo's instructions are normally related to ensure the safe and efficient flow of aircraft (e.g., busy period with traffic coming from a particular airspace region; changes in the weather conditions; emergency situation with a particular runway blocked, etc). ATCo's instructions usually modify intended aircraft trajectories.
The term trajectory is used to describe the set of all aircraft states throughout the flight, typically assuming discrete time intervals between successive states and with the aircraft state including not only the three-dimensional position of the aircraft's center of mass but also other variables of interest, such as time, longitude, latitude, pressure altitude, calibrated airspeed, true airspeed, ground speed, rate of climb, heading, bank angle, instantaneous mass, engine thrust, flown distance, geometric flight path angle, Mach number, flap setting, landing gear, speed brakes, fuel flow, kg/min, geometric altitude, wind components (North, East), bearing (track angle), and aerodynamic flight path angle.
Trajectory data can be obtained among other sources from radar tracks, ADS-B (Automatic Dependent Surveillance-Broadcast) or OAR and ANSPs (Air Navigation Service Providers).
The flight plan is the standard way for describing the aircraft's intended (i.e. nominal) trajectory.
Flight plans provide with basic information such as estimated departure time and estimated arrival time, cruising speed, departure and arrival airports, estimated time en-route or type of aircraft. There are likely to be many aircraft trajectories that would satisfy a given flight plan.
Flight plans are usually available from ANSPs, Airlines or Eurocontrol.
Deviations in the execution of respective flight plans are useful to identify an intervention by the ATCo (i.e. airspeed/altitude schedules, path shortening, path stretching and holding pattern instances). Thus, frequent interventions (having a frequency over a threshold) may be implemented as a rule in the set-up of the ATM simulator.
In
The system 100 further comprises an extracting module 144 for extracting a set of undetermined parameters and rules 112 for configuring an ATM simulator 114 in an airport. The inferring module 140 configured to statistically analyze the historical data set for modelling the airspace region and the airport to identify relationships between variables of the historical data set during the time interval relating to at least one undetermined parameter or rule 112, wherein the inferring module 140 is further configured to determine a parameter value 160 or rule 150 or 170 for configuring the ATM simulator corresponding with the at least one identified relationship. For example, the inferring module 140 may identifying at least one relationship between historical data of aircraft speed and aircraft distance from the runway as obtained from the historical data set, and determine an ATC rule associated with a maximum aircraft speed for an aircraft that is within 20 NM of the runway, where the ATC rule for maximum aircraft speed, corresponding with the at least one identified relationship between aircraft speed and distance from the runway, is used for configuring the ATM simulator. The extracting module 144, retrieving module 142 and inferring module 140 may comprises a module that is executed or implemented in computer system, and may be implemented as program code, hardware, or a combination of the program code and hardware. For example, the modules may be implemented in program code configured to run on hardware, such as a processor unit that executes program instructions stored on a memory device coupled to the processor.
The input elements of the system 100 are:
Aircraft tracks 122, aircraft performance 108 and weather information 110 are used to reconstruct the full aircraft state for each trajectory (speeds, thrust setting, rate of climb, etc.).
A template 112 is obtained by an extracting module 144 from the ATM simulator 114 (this is done once). The template 112 may include all the possible parameters 170, ATCo rules 160, operational context rules 150 that can be specified in the setup.
The parameters and rules of this template 112 may be advantageously specified using the same elements and variables that are used to build the operational context 102b and the reconstructed trajectories 106. This is needed for the machine learning algorithm within the inferring module 140.
Using the flight plans 104, weather conditions 110 at a given time interval, aircraft performance model 108 and completed operational context 120b, the inferring module 140 computes the nominal trajectories and compares them in all the variables to the reconstructed trajectories.
According to defined threshold, different rules may be used to match the nominal trajectories with the reconstructed trajectories. Those rules that are consistently repeated under equivalent conditions (e.g., weather, aircraft type, route, waypoint, . . . ) will be part of either ATCo rules (if the rule is affecting directly the trajectory) or operational context rule (if the rule affect the airport layout, such as changes in the runway configuration. Also, parameters may be identified, for instance the minimum separation distance applied to the different aircraft categories.
Accordingly, historical trajectory data may be obtained through a trajectory reconstruction module 130. The trajectory reconstruction module 130 infers trajectories from several sources. Specifically, aircrafts tracks 122, flight plans 104, aircraft performances 108 and weather conditions 110 may be employed to this purpose.
As to the sources, aircraft tracks 122 can be obtained from ADS-B reports. Weather conditions 110 (pressure, temperature, wind, etc) are normally key information that may be obtained from different sources. Principally, two authorities provide such information: the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Global Weather System (GFS) of the National Oceanic and Atmospheric Administration (NOAA). Flight plans 104 are available from ANSPs. Aircraft performances 108 are also obtainable from databases (internet, manufactures, ANSP's). Performances information may include thrust, climb speeds, drag or maximum speed of aircrafts.
Optionally, an operational context builder module 120 may be also part of the system. The operational context builder module 120 may enrich the published operational context 102 of a given airport through reconstructed trajectory information 106 to provide a completed operational context 120b. In this regard, the completed operational context 120b may include non-published (or non-public available) procedures applied consistently at the airport, for example new SIDs or STARs procedures.
The operational context builder module 120 provides the inferring module 140 with the completed operational context 102b along with the reconstructed trajectories 106.
When possible, information from nominal flight plans 110, aircraft performances 108 and weather database 116 is also used as an input for the inferring module 140.
Nominal flight plans 104, aircraft performances 108 and weather conditions 110 are of use not only to reconstruct trajectories but also to infer rules and parameters for setting-up the ATM simulator.
Depending on the type of simulator, specific parameters and rules are required. These may be specified as a template to be fulfilled.
The inferring module 140 can infer a rule by applying machine learning techniques or pattern recognition.
Typical parameters that are needed to set up and deploy an ATM simulator are: the airport layout (number, position and direction of the runways), SIDs and STARs definitions or holding areas.
Typical ATCo rules are: “merge all the traffic from a particular direction to a metering fix”, or “change the runway configuration depending on the weather”. The parameters and rules obtainable depend on the amount of available information.
More complex rules require more information and statistical analysis. For instance, some of the variables below are included in parentheses since they may be considered for deducing more complex rules, whereas they may put aside for deducing simpler rules.
For a better understanding of the disclosure, reference is made to
Historical data proceeds from ADS-B reports collected in the airport A during a 72-hour window (period between DAY 1 at 00:00 AM and DAY 4 at 00:00 UTC).
ADS-B Reports
These reports are originated from the ADS-B equipped/enabled aircraft flying within the range of the ADS-B receiver equipment (approx. 200 nmi). As such, the ADS-B pool of data may include reports from many aircraft that are not flying into/from this airport (flights en-route within range, flights bound to/from nearby airports, etc.), and exclude all information about non-ADS-B equipped/enabled aircraft. It is assumed that the reference ADS-B dataset used includes all aircraft flying in and out of this airport during the time interval of interest.
ADS-B reports include information about the aircraft state. In particular, the following information is collected from the ADS-B reports:
ADS-B reports are broadcast by aircraft approximately every 5 seconds, although many reports can go missing depending on atmospheric conditions and distance to the receiver, among other factors.
Flight Plans
Flight plans indicate estimated departure time and estimated arrival time, cruising speed, departure and arrival airports, estimated time en-route or type of aircraft.
Among the items included in the flight plan is information related to both horizontal and vertical profiles. The sequence of waypoints and the alternative aerodromes are considered horizontal-profile inputs, whereas the desired cruise altitude and speed are related to the vertical profile.
Trajectories Extraction
In a first step, tracks of all the flights contained in the ADS-B data pool of reports are univocally identified and extracted. Only track reports 122 corresponding to flights that are indeed flying into/from this airport A are selected. These track reports 122 are the key inputs to a second processing step of trajectory reconstruction by the trajectory reconstruction module 130.
Univocally identifying and extracting the set of track reports 122 corresponding to each flight may be accomplished by indexing the pool of ADS-B reports by aircraft type and call sign. All track reports 122 having such identical attributes are grouped as corresponding to the same flight. The timestamp history of each candidate group of tracks reports is then analyzed, and each candidate group is split into separate sub-groups at the occurrence of time gaps larger than a given specification (300 sec for this example).
The resulting groups of tracks are then cropped to include reports with positions no further than 200 NM from this airport. Selection of flights flying into/from the airport A is accomplished by retaining only those groups of tracks that would have at least one sample within a 4 NM radius area from the airport A and at most 1000 m above the airport elevation, and another sample farther than 40 NM from the airport A. The resulting tracks were then cropped to altitudes greater than or equal to 1000 m.
Composition
As a result, a total of 1074 flights with corresponding ADS-B tracks are identified as flying into/from the airport A during the 72-hour target window: 537 arrivals and 537 departures.
The pie charts in
Weather Conditions
During the target Window northerly winds blow from DAY-1 00:00 UTC to DAY-2 20:31 UTC, whereas southerly winds blow from DAY-2 20:31 UTC to DAY-4 00:00 UTC.
ATCo Rules and Operational Context Rules
The airport A operates either employing one single runway for both arrivals and departures, or one runway for arrivals and the other for departures. This is shown in a table in
Parameters 170: 1 parameter was identified
1. Minimum aircraft separation is 5 NM
ATC rules 160: 1 rule was identified
Operational Context Rules 150: Three rules were identified
Accordingly, by extracting aircraft speed from performance data 108 and aircraft distance from aircraft tracks 122, the computer implemented method can determine relationships between variables by identifying at least one relationship between aircraft speed and aircraft distance from the runway as obtained from the historical data set, and can determine a parameter value or rule by determining an ATC rule 160 associated with a maximum aircraft speed for an aircraft that is within 20 NM of the runway, where the ATC rule 160 corresponding with the at least one identified relationship is used for configuring the ATM simulator.
A second brief example is presented below. Only arriving traffic in another airport, namely airport “B” in a given runway is analyzed during a 5-day period to deduce some rules and parameters for setting up an ATM simulator. Reference is made to
Parameters 170:
Minimum aircraft separation is 5 NM
ATC rules 160:
Aircraft from Origin 1 assigned 83% of the time to STAR and 17% of the time to STAR
Aircraft from Origin 2 assigned 93% of the time to STAR 6, 3% of the time to STAR 3 and 4% of the time to STAR 4.
The rest of the equivalent rules can be derived from
Operational Context Rules 150:
STAR 48 only available from 24:00 to 08:00.
STAR 58 only available from 24:00 to 08:00.
Number | Date | Country | Kind |
---|---|---|---|
15382542 | Nov 2015 | EP | regional |