The invention refers to a computer implemented method for storing data in and retrieving data from a data storage system, to a computer program product for storing data in and retrieving data from a data storage system and to such data storage systems implementing aforesaid method.
The present invention is relevant for the field of data bases, especially data base systems handling huge numbers of data. In this connection the patent applications WO 02/061612 A2 and WO 02/061613 A2 disclose—amongst others—such data base systems, data structures used therein and query optimizers for such data base systems. The disclosure of both these applications is incorporated herein by reference. These applications especially reflect storage and query strategies based on balanced binary trees.
Furtheron reference is made to European patent application No. 03 015 365.4 (prior art according to article 54(3) EPC), which basically discloses the method of storing certain query results as bitmaps, which is a very simple and machine-oriented strategy of storing data. Again the contents of this older patent application is incorporated herein by reference.
It is an object of the invention to provide a method for storing data in and retrieving data from a data storage system, an according computer program product and data storage system, which effectively reduce the processing time of a query to be handled by the data storage system.
This object is met by a computer implemented method for storing data in and retrieving data from a data storage system according to the invention, comprising the steps of
The object is further met by a computer program product for storing data in and retrieving data from a data storage system comprising a plurality of instructions which, when loaded into a memory of the data storage system, cause at least one processor of the data storage system to execute the steps of aforesaid computer implemented method.
Furtheron this object is met by a data storage system comprising
The advantages of the invention are caused by the fact that basically the calculation of bitmaps can be rather extensive and time-consuming especially in case that a query condition refers to a range of a data attribute, since first all the available bitmaps in the relevant substructure must be combined with OR and then in the resulting bitmap the bits for the remaining nodes representing aforesaid tree structure of the data storage must be set.
Inasmuch it makes sense not to delete such extensively—and thus expensively—calculated bitmaps immediately after the processing of a query but to keep them at least for a while in the data storage system. This is achieved by storing such calculated bitmap data structures in a cache memory of said data storage system. In case of later queries, which include the defined query condition represented by the cache-stored bitmap data structure the data storage system is able to access to said calculated bitmap data structure and to process said second query including the defined query condition. Accordingly the calculation and handling time for recalculating said bitmap data structure is saved.
The bitmap cache memory according to the invention solves the problem that many users of data storage systems often change just one condition within a series of queries including several conditions from one query step to the next query step. For example after the query “color=red AND XSEXF=1 AND BIRTHDT>1960” in the next step the query is “color=green AND XSEXF=1 AND BIRTHDT>1960”, i.e. only the first condition was changed. For the execution of this next query all three conditions must be executed again, but at this second time the dynamically calculated bitmap for “BIRTHDT>1960” already exists and is stored in the cache memory, it need not be calculated again. The query can thus be processed much faster.
In practice the appearance of identical individual conditions in sequential queries is much more probable than the re-appearance of an entire query with N conditions. Inasmuch it is not worth keeping the bitmap for a complete query but it makes sense to keep the bitmaps for each individual condition in the cache memory, whenever they are not already stored in an attribute tree structure as static bitmaps.
The invention also meets the problems of repeatedly used identical parts of queries, which e.g. occur when a user begins with one condition in a query, restricts the result with a second condition, then with a third condition etc. The search is restricted more and more with new conditions, but as the previous conditions do not change the formerly calculated bitmaps stored in the cache memory can be used and only the results of the new condition have to be calculated.
At the nodes 2 representing the color attributes “red”, “blue”, “green”, “yellow” etc. there are attached so-called rings 5 which represent data elements having the same value, like “green” at the node 2G. This master node 2G plus the further five nodes 6 in the ring 5 have the same attribute value “green”. Each individual node 2G, 6 of the ring 5 represents exactly one dataset, in which the attribute color with the value “green” appears. The same principle applies for the other color values and in general for any other attribute for which the same value can appear repeatedly. These other rings 5′ are represented as circle in
In this connection attention is to be drawn to the fact that in such tree structures nodes may have no rings, e.g. if the node represents a unique attribute, like a single costumer number in a client administration program. On the other hand there may be attribute trees with a small number of large rings, e.g. data structures which represent flags—such as the gender—, countries and the like. In this case most of the nodes are not found in the tree branches, but in the rings that are attached to the master nodes of the tree.
Now the storage and processing of queries is more effective in case when large rings are replaced by bitmaps. This is shown in
The discrimination between small and large rings is based on runtime measurements for example during startup or also during the runtime of the data storage system and the according computer program. These measurements are intended to determine the number of datasets from which bitmaps for logical combinations are more economical than other query strategies, like the so-called guide mechanism. Reference is made to aforesaid European patent application No. 03 015 365.4.
For few hits, bitmaps are almost empty and thus uneconomical. For a high number of hits, the guide mechanism is uneconomical because too many guide instances must be individually created and combined. The system can determine the break-even point for the number of elements in a ring and replace all rings that contain more than the break-even number of elements by the bitmaps 7Cr, 7Cb, 7Cy (see
Now to give an example, in a bitmap 7Cr for the attribute “color” with the value “red” the bitmap reflects, whether the color “red” appears (bit value=1) or not (bit value=0) in a certain dataset.
Now
As explained in the previous applications taken into reference the three attributes color, gender and birthdate are arranged in respective attribute trees with element counters which easily and fast give the number of hits for each individual condition. In the example query the number of hits for condition 1 is 590,000, for condition 2 is 3,675,713 and for condition 3 is 2,970,876. The number of hits concerning all three conditions is high enough to evaluate the query with the help of bitmaps.
In this connection the bitmaps 7Cr, 7G for color=“red” on the one hand and XSEXF=“1” on the other hand are static bitmaps which are already existing and stored in an according memory of the data storage system.
Now as is shown in
For the third condition, a start pointer 9 from anchor 4 is used in the attribute tree 1 for the birthdate BIRTHDT to identify one or more subtrees 8 with valid hits for the condition “>1960”. To fulfill this condition all nodes lying to the right of the node with the value “1960” are to be found and associated to bitmaps, or to rings so small that a bitmap is not effective. Finally a node might have no ring, because the relevant value appears only once.
Now to create a bitmap 7B (
In this way finally three bitmaps 7Cr, 7G, 7B are reached, one for each condition, as is shown in
Now as can readily be realized in connection with the static bitmaps 7Cr, 7G on the one hand and the dynamic bitmap 7B on the other hand there might be the problem that calculating the dynamic bitmap 7B for the condition “>1960” is runtime-consuming and extensive. Now in case the query just alters the condition 1 from color=“red” to color=“green” the extensive process to determining the dynamic bitmap for the condition “>1960” must be repeated. This is avoided by the invention inasmuch, as the dynamic bitmap 7B is stored in a cache memory (not shown) of the data storage system. Thus the dynamically calculated resulting bitmap 7B for the condition “>1960” is not just “thrown away”, but kept for a while to be used in future queries.
This calculated bitmap data structure is preferably linked to an attribute tree representing a data entity of said attribute, like the subtree 8 of the attribute tree 1 in
Now to determine the frequency of use of a certain dynamic bitmap cache stored in an according memory the method according to the invention uses a linear list preferably following an LRU-(least-recently-used-)principle, in which the most frequently used bitmaps can be found at the top of the list and the less frequently used bitmaps go steadily down the list until they reach the end and are removed from the list. This LRU-list is superimposed onto the above mentioned treelike search structure so a fast access to the system and to the cache memory is guaranteed.
Number | Date | Country | Kind |
---|---|---|---|
03 017 247.2 | Jan 2003 | EP | regional |