This invention pertains to computer systems and, more particularly, to a pointer device, commonly referred to as a mouse, which is used to control a visual pointer on a display of a computer system.
A computer system includes many components, such as the central processing unit (or processor); temporary memory for storing program instructions (like random access memory, or RAM); a permanent storage device (such as a hard disk); and a variety of user interface devices, such as a video display, a keyboard, and a pointing device which controls the movement of a graphical pointer on the display. The graphical pointer permits selecting certain areas on the screen, such as words in a text-only display or icons in a more complicated graphical user interface (GUI). The user selects an area by placing the graphical pointer over the area (i.e., moving the physical pointing device) and then clicking one or more buttons on the pointing device. The graphical pointer also assists performing other operations using the graphical pointer besides simple selection, such as “drag and drop” operations.
The pointing device, often referred to as a “mouse,” may come in a variety of physical embodiments. The most familiar design is a hand-held controller having a ball therein which extends partially through a hole in the bottom of the unit, so that the unit can be pushed along a flat surface to cause the ball to roll. Transducers within the unit (such as optical transducers) convert the motion of the ball to electrical signals which are transmitted to the processor or to a controller circuit connected to the processor, which, in turn, decodes those signals to determine how the graphical pointer on the display should be manipulated. Other physical embodiments of pointer devices include electrically sensitive pads, joysticks, and joystick-type actuators, a track ball, etc.
Because of the general acceptance and use of computers for countless operations, they appear in use for an increasing number of different work and entertainment environments. This includes harsh environments that may include dampness, wetness, damaging gases, heavy particulate matter and other types of environments. Within these environments, such pointing devices may be or become inoperative due to such environmental the environment constituents entering their mechanical, electrical, and electronic portions. Accordingly, there is a need for a mouse or pointing device that can survive such harsh environments.
Problems with the various different types of pointer devices presently available for harsh environments include the fact that users expect to use a device that is in form and function similar to a standard computer mouse. When new users attempt to operate pointing devices other than a standard mouse, inevitably inaccuracies and mistakes often occur in the control of the pointing operation. For example, known pointing devices for harsh environment take the form of an inductive joystick with no moving contacts. With such a device, the mouse cursor speed may be proportional to displacement of the joystick. Such devices attempt, but fail, to provide both speed and precision control until the user masters the operation of the new and different device.
With a normal computer mouse, there is no “learning curve” for an operator to climb in performing the pointing function. Accordingly, there is a need for a mouse computing device that is of a normal or generally accepted form and function for operation in harsh environments.
While computer device designers have attempted to produce a mouse pointing device for use in harsh environments, none has yet overcome the problems of protecting the mouse circuitry without presenting to the user a still different or awkward device. This is true, not only in the use of the mouse, but also in its manufacture.
Clearly, over the many years of computer mouse design and development, many evolutions of ergonomic improvements have arisen. Unfortunately, today's computer mouse for harsh environment include none of these ergonomic improvements.
Moreover, the few harsh environment or rugged computer mouse designs that do exist still fail to take into considerations the manufacturing improvements that have arisen over the years to produce such devices. For example, rugged computer mouse designs use a fully encapsulating cover that includes complicated manufacturing and design process such as requiring that a protective covering be molded to the mouse base. Such considerations add, unnecessarily, to the manufacturing costs of such devices.
Accordingly, there is a need for a rugged computer mouse that includes an ergonomic design for the benefit of the user. Still, there is the need for rugged computer mouse that, while overcoming the difficulties presently unsolved by the computer industry after so many years of computer use, may be manufactured with a minimal variation manufacturing processes presently employed by the computer industry.
It is, therefore, one object of the present invention to provide a hand-held pointer device for a computer system capable of operating in harsh environments.
It is another object of the present invention to provide such a pointer device that is of a normal or generally accepted form and function for operation in harsh environments.
It is yet another object of the present invention to provide a rugged computer mouse that includes an ergonomic design.
Still another object of the present invention is to provide a rugged computer mouse that may be manufactured with a minimal variation in the manufacturing processes presently employed by the computer industry.
The foregoing objects are achieved in a hand-held mouse generally comprising a computer mouse for selecting a visual object indicated by a location of a graphical pointer on a computer display. The computer mouse includes generally a pliable cover formed as a single unit that forms a generally impenetrable surface having a seal edge. The seal edge includes a trench. The surface has formed thereon at least one mouse control button region corresponding to a location of a pressure sensitive mouse control button. An ergonomically formed frame provides structural support and includes at least one pressure sensitive mouse button, which the mouse control button region covers. A mouse control circuit resides beneath the ergonomically formed frame and includes a mouse control button circuit that is responsive to pressure applied to the pressure sensitive mouse button. The mouse control circuit also includes a movement sensor and circuitry for relating the position of the computer mouse to the position of the graphical pointer. A base securely receives the mouse control circuit, the frame, and the pliable cover and comprises a ridge. The ridge inserts into the trough of the pliable cover and together with the pliable cover forms a generally impenetrable casing surrounding the frame, and the mouse control circuit.
The present invention may further provide an opening within the pliable cover for receiving a communications cable connecting between the mouse control circuit and an associated computer. The opening and communications cable associate so as to form a generally impenetrable seal protecting the mouse control circuit from a harsh environment. Moreover, the base may include transparent lens for communicating optical signals from the movement sensor and circuitry. The lens is formed so as to minimize or substantially eliminate the potential buildup of residue from the harsh environment.
The present invention, therefore, provides a rugged computer mouse for use with a computer in a waterproof and sealed structure that is chemical resistant. Moreover, the present invention provides these advantages without the need for a specially-designed rubber molding that occurs only through the use of an additional complicated manufacturing process. The rugged computer mouse of the present embodiment may be washed down with water or sterilized with disinfectant without damage and provides an attractive pointing device for use with a computer in harsh industrial environments, hospital and health care institutions, laboratory situations and food service and manufacturing applications.
The above as well as additional objectives, features, and the advantages of the present invention will become apparent in the following detailed written description.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives, and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
Although described with particular reference to a personal computer, the claimed subject matter can be implemented in any information technology system in which it is necessary or desirable to achieve rapid and efficient use of memory resources during processing operations.
Those with skill in the computing arts will recognize that the disclosed embodiments have relevance to a wide variety of computing environments in addition to those specific examples described below. In addition, the methods of the disclosed invention can be implemented in software, hardware, or a combination of software and hardware. The hardware portion may be implemented using specialized logic; the software portion can be stored in a memory and executed by a suitable instruction execution system such as a microprocessor, personal computer or mainframe.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
With reference to
Computing system 10 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by the computing system 10 and includes both volatile and nonvolatile media, and removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer memory includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computing system 10.
The system memory 30 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 31 and random access memory (RAM) 32. A basic input/output system 33 (BIOS), containing the basic routines that help to transfer information between elements within computing system 10, such as during start-up, is typically stored in ROM 31. RAM 132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 20. By way of example, and not limitation,
Computing system 10 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media, discussed above and illustrated in
A user may enter commands and information into the computing system 10 through input devices such as a tablet, or electronic digitizer, 64, a microphone 63, a keyboard 62 and pointing device 61, commonly referred to as a mouse, trackball or touch pad. In particular, the present embodiment provides a novel rugged computer mouse 110, as described in detail below, that operates in an Other input devices (not shown) may include a joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 20 through a user input interface 60 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel port, game port or a universal serial bus (USB).
A monitor 91 or other type of display device is also connected to the system bus 21 via an interface, such as a video interface 90. The monitor 91 may also be integrated with a touch-screen panel or the like. Note that the monitor and/or touch screen panel can be physically coupled to a housing in which the computing system 10 is incorporated, such as in a tablet-type personal computer. In addition, computers such as the computing system 10 may also include other peripheral output devices such as speakers 97 and printer 96, which may be connected through an output peripheral interface 94 or the like.
Computing system 10 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computing system 80. The remote computing system 80 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computing system 10, although only a memory storage device 81 has been illustrated in
The computer system 10 of
The rugged computer mouse 110, thus, includes mouse control button regions 114 and 116, and an optical sensor 132. When computer mouse 110 is pushed along a relatively flat surface, the computer mouse 110 movements are sensed and appropriate signals are generated and sent to the computer system via cable 122 (transmission can also be wireless, e.g., radio wave or infrared). The signals are typically sensed by an input/output (I/O) controller that is connected to the computer's central processing unit (CPU). The CPU interprets the signals and sends appropriate data to a display adapter, which then causes “movement” of the graphical pointer on the display.
Mouse movement, measured in units called “mickies,” is a constant of the mouse itself. A certain mouse movement distance always results in the same number of mickies being reported to the host system. Software commonly allows the user to adjust the sensitivity (i.e., speed) of the graphical pointer, such that it may be slowed down to allow finer movements or sped up to move the pointer more quickly across the display screen, by programming different pointer movement rates for a certain number of mickies. A similar software adjustment can provide for “acceleration” of the graphical pointer, i.e., moving the graphical pointer even more quickly, based on the length of time that the mouse is being moved along a given direction.
To achieve these functions, base 128 includes pin receptor 258, 260, and 262 that align with corresponding pin collars 198, 200, and 202 for receiving associated pins 160, 162, and 164. Cable harness 264 receives and cooperates with collar 124 for securing cable 122 in place and preventing tension arising from the movement of computer mouse 110 and associated with the pulling of cable 122 from affecting the electrical connection between communication and control electronics 242 and the associate computer system. Circuit board alignment pins 266, 268, 270, and 272 correspond to positioning recesses 256 and pin position apertures 248 and 250 of circuit board 152 for positioning circuit board 152. Support rib 157 surround the inner portion of base 154 to accommodate the outer surface of frame 150 and form a coupling with trough 170 of cover 112.
Lens recess 158 receives and makes possible a sealed interface with optical lens 156 (
Cover 112 is preferably formed of a silicone rubber and forms a liquid and gas impenetrable seal around frame 150. Lens 156 permits the transmission of laser or other light to reflective surface for indicating movement of computer mouse 110 over a surface. Outer seal 130 includes a silicon rubber webbing form that not only forms a waterproof seal, but also provides a mechanical snap or friction fit for cover 112. In addition, the mating between Lens 156 is formed, in the present embodiment, to be of a circular shape. For providing the desired impenetrable seal, a double-sided adhesive tape bonds lens 156 to lens recess 158. Lens region 132 is formed to permit cleaning by way of flushing or other means. This prevents the buildup of bacteria or residues that would, if allowed to accumulate, adversely affect computer mouse 110 operation.
Trough 170 possesses the attractive aspect of having a depth sufficient to maximize the surface area of silicon adhesive during the coupling of base 154 with cover 112. That is, for the present embodiment, trough 170 is a small deeper and wider than the depth of support rib 257 on base 128.
The present embodiment may be used in association with an elastomeric keyboard that fits within a standard notebook computer using a novel keyboard switch matrix interconnect structure together with a back-lighting architecture for illuminating the individual keys of the elastomeric keyboard. Such a keyboard is described and claimed in U.S. Pat. No. 6,057,517 issued on May 2, 2000 to inventor Steven H. Meyer, and assigned to Texas Industrial Peripherals, now known as iKey, Ltd., the common owner of this patent application (hereinafter the “'517 Patent”).
The '517 Patent, which is here expressly incorporated by reference, describes and claims an elastomeric keyboard incorporating a novel interconnect and back-lighting architecture of the present invention includes a printed circuit board and a novel multi-layer membrane switch matrix interconnect structure. The printed circuit board contains a control circuit for powering and controlling the back-lighting of the elastomeric keyboard. The electrical components which make up the control circuit are mounted on a top side of the printed circuit board. The multi-layer switch matrix interconnect structure contains multiple holes arranged to coincide with the components of said control circuit. The multi-layer switch matrix interconnect structure also contains a number of electrical connectors, a number of conductive contacts, and a number of electrical nets for electrically connecting the conductive contacts to each other and to the electrical connectors.
To further illustrate some features of the reference keyboard
While various embodiments of the present embodiment have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims. Thus, the breadth and scope of the present embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.