1. Field of the Invention
The present invention relates to a computer program product in which a game program is recorded whereby the game develops as a moving body moves on a course formed in a virtual space, in response to manipulation by a player.
2. Description of the Related Art
Conventionally, game apparatuses are proposed whereby, for a virtual vehicle running on a course formed in a virtual space, the pitch angle, yaw angle, roll angle, running speed, acceleration, etc. of the vehicle are simulated from its movement, acceleration, road surface resistance, centrifugal force, moment of inertia, etc., in response to the player's inputted manipulations of the steering wheel, accelerator, brakes, gear shift, etc. By displaying the resulting vehicle movement on the game screen, a racing game is developed. In such racing games, sidewalls are provided, such as fences, guard rails, concrete walls, etc. on the edge of the course, as the vehicles race along on the course.
However, with conventional game equipment, as shown in
For this reason, conventional game equipment is programmed such that, in the case that vehicle 40 comes into contact with sidewall 51, the speed of vehicle 40 decelerates.
However, if for the purpose of detering the above mentioned “insider technique,” vehicle speed is caused to decelerate suddenly when vehicle 40 contacts sidewall 51, that can cause the fresh feeling of the game to be lost and is thus undesirable. In particular, if, to control use of the above-mentioned insider technique by advanced players, a sudden and large deceleration is applied as the penalty when the sidewall is contacted, beginners will be negatively impacted. Beginners, because of their undeveloped skill level, may contact the sidewall through a mistake in vehicle operation. Thus, if even in such cases beginners are subjected to the same kind of penalty, that may cause them to lose their zest for game play. Thus, what is desired is development of a technology which controls the insider technique of advanced players, while maintaining exciting race development to stimulate the enthusiasm of beginners for the game play, even though they are not skilled in operation. In addition, even in cases where a shortcut is taken, driving off the course, if sudden deceleration is applied as the penalty, as described above, that results in spoiling the player's enthusiasm for play.
To deal with this, the present invention, for a game which has a moving body moving on a course formed in a virtual space, in response to manipulation by a player, provides a computer program product in which a game program is recorded which enables a penalty to be assessed when the moving body contacts the sidewall at the edge of the course, such penalty being applied through an appropriate means without causing sudden deceleration and without spoiling beginners' enthusiasm for play.
The computer program product of the present invention which seeks to solve the above-mentioned problem is a computer program product in which a program for causing execution of game processing by a computer system is recorded on a computer-readable recording medium. The above-mentioned computer program is one which causes execution of the following steps: the step of causing a moving body to move on a course formed in a virtual space, in response to manipulation by a player; the step of determining the total amount of running load to be applied to above-mentioned moving body when above-mentioned moving body contacts the partition-indicating body formed at the edge of the course to separate the area within the course from the area outside; and the step of dividing above-mentioned running load on a per unit time basis or per unit distance basis and allocating the divided load for each unit time or unit distance over a specific time or specific distance when above-mentioned moving body moves after contacting the partition-indicating body. In this way, if a moving body moving on a course contacts the sidewall at the edge of the course, it is possible to apply a penalty to the player, without a sudden deceleration.
Below, embodiments are described while referring to the figures.
Operating signals are sent from input equipment 20 to main CPU 31 via bus arbiter 33. Main CPU 31 loads the game program from program memory 34 which stores the game program and develops the game in work memory 32. Then, based on each kind of operating signal outputted from input equipment 20 via bus arbiter 33, the image of the vehicle body which is to be formed in the virtual space is converted into an image as viewed from a specified viewpoint and plotting commands are issued to rendering processor 25. Rendering processor 35, following the plotting commands issued by main CPU 31, performs polygon rendering and, by means of double buffering, stores image data in frame memory 36 and also reads image data from frame memory 36, performs D/A conversion and displays the result on display 11. Audio processor 37, following sound commands issued from main CPU 31, generates sound data, writes it into audio memory 38, and also reads audio data from audio memory 38, performs D/A conversion and outputs the result from speaker 16.
On the other hand, in the case that vehicle 40, running on course 50, does not contact sidewall 51, that is, when (S11: NO), RS>0, then (S12: YES) and RSd is deducted from vehicle speed V and RSd is deducted from RS (S13). Because steps S10 through S14 are executed for each frame, once vehicle 40 collides with sidewall 51, processing step S13 is repeated for each frame until RS becomes 0, and upon each repetition, RSd is subtracted from V. If the time for RS to reach 0 is set at t, the steps S10 through S14 will be repeated 60 t times.
An explanation of above-mentioned deceleration processing with reference to
In this way, when vehicle 40 contacts sidewall 51, the deceleration resistance which vehicle 40 receives is applied by being allocated to each frame across 60 t frames. As a result, a penalty can be assessed while avoiding sudden deceleration caused by collision with sidewall 51 and without consequently losing the freshness of the race game.
Note that in the above-mentioned example, a configuration was shown in which a fixed amount of speed was subtracted from vehicle speed in each frame unit, as an example, but the present invention is not limited to this. For example, acceleration could be reduced by making it so that even if the player pushed on the accelerator, vehicle 40 would not accelerate for a set time interval; an upper limit could be placed on movement acceleration; the road surface resistance of course 50 could be increased; air resistance could be increased; the running functionality of vehicle 40 could be reduced; or, through any other means, a configuration could be made which applies a running load during a fixed time interval. In addition, in the above-mentioned example, a case was shown in which a running load was applied, allocated to each frame (each time unit), spanning 60 t frames, but the present invention is not limited to this. For example, a configuration could be made in which the total amount of running load was divided and allocated to each distance unit traveled by the moving body. In addition, it is not necessary that the running load (the divided running load units) applied to the moving body all be applied uniformly; it may instead be arranged that the running load applied to moving body 40 immediately after moving body 40's contact with sidewall 51 is made to be large, and each time moving body 40 moves for a certain number of time units (or over a certain number of distance units), the running load is gradually decreased.
Further, as a variation of the above-described embodiment, main CPU 31 may configured to determine player skill level from player's lap time, number of crashes, number of times another vehicle is overtaken, average speed, vehicle speed when it contacts sidewall 51 (or when the vehicle runs off the course), angle of impact when it collides with sidewall 51, angle at which it runs off the course whenever that event occurs, etc. Then the CPU may be configured to determine the value of RS, the deceleration parameter, and t, the time until RS goes to 0, based on that skill level.
Main CPU 31 can change the degree of the penalty depending on skill level by establishing large values of RS and t for the case that an advanced player contacts sidewall 51 or runs off the course and small values of RS and t for the case of a beginner. To do this, the CPU considers as “advanced players” those “players who have the best lap time,” “players who have a small number of crashes,” “players who often overtake other vehicles,” “players with high average speed,” “players whose vehicle speed is high when they contact sidewall 51 (or, when they run off the course),” “players whose speed is high when cornering,” “players whose angle of impact with the sidewall is shallow,” and “players who have a high running position or ranking when several players race.” In this way, the CPU functions as a skill level determining means and a running load determining means, and in the case that player skill level is above a certain level, that player is judged an “advanced player,” while in the case that player skill level does not meet that level, that player is judged a “beginning player.” Then the CPU determines the running load depending on the skill level of the player.
In addition, in the above-mentioned example, deceleration processing for the case that vehicle 40 contacts sidewall 51 was explained, but the present patent is not limited to this; deceleration processing can also be applied to the case that vehicle 40 runs off the course. In this case the conditions must be established that no sidewall 51 is provided on course 50 and vehicle 40 can run outside the course. In a race game, if an advanced player, trying to shorten his lap time, intentionally (or a beginner, through mistaken operation of the steering wheel) short cuts the inside of the corner and runs outside of course 50, main CPU 31 calculates the running distance, from the travel path which vehicle 40 ran outside the course, and also calculates, from the number of frames plotted, the running time. Main CPU 31 functions as a running load determining means and determines, from the running distance and running time which occurred outside the course, values for RS and t which are the deceleration parameters.
These deceleration parameters should make the running load bigger the longer the running distance and running time occurring outside the course, thus applying a larger penalty to the player, so it is preferable that the values of RS and t should both be set to large values. Additionally, the difference between the running distance of vehicle 40 when it ran on the short cut and shortest distance on the course connecting the two endpoints of the course part which was bypassed may be found and the values of RS and t set corresponding to the size of that difference. When vehicle 40 returns to the course, main CPU 31 divides deceleration resistance RSd on a per-frame basis an applies it to vehicle 40 in each frame until RS reaches 0. The specific steps of deceleration processing are done in the same manner as the example explained above (
In addition, the game program which performs the above-mentioned deceleration processing can be recorded in a computer-readable recording medium and distributed in the market. As examples of this kind of recording medium, there are optical recording media (recording media from which data may be read optically, such as CD-RAM, CD-ROM, DVD-RAM, DVD-ROM, DVD-R, PD disk, MD disk, MO disk, etc.); magnetic recording media (recording media from which data may be read magnetically, such as flexible disk, magnetic card, magnetic tape, etc.); memory cartridges having memory elements (semiconductor memory elements such as DRAM's, and high dielectric memory elements, such as FRAM's); etc.
In addition, this kind of game program can be delivered “on-demand” from a network server, such as a Web server, etc., in response to a request from a client device (personal computer, game machine, portable information terminal, etc.) connected to the Internet or to an open network, such as a packet communication network, etc. Further, as for types of games, these need not be limited to car race games, but the invention may also be applied to motorbike races, bicycle races, motor boat races, etc. As for types of moving bodies, these may include vehicles in which people ride, such as automobiles, motorbikes, bicycles, boats, airplanes, space craft, ships, wagons, tractors, tanks, etc., but may also include people, animals, monsters, spacemen, plants, fish, birds and insects, and also characters representing them, etc. In this way, any character which can run on a course formed in any desired virtual space on land, in water, in the ground, in space, etc. is acceptable.
By means of this invention, in the event that a moving body, moving on a course formed in a virtual space contacts the sidewall at the edge of the course or runs off the course, the penalty assessed to the player can be divided and applied on a per unit time basis. As a result, the same penalty amount as with conventional games can be gradually applied, without a sudden deceleration, and in this way the “insider techniques” of advanced players can be effectively controlled without spoiling the play enthusiasm of beginners.
Number | Date | Country | Kind |
---|---|---|---|
2001-285963 | Sep 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3120389 | Lombard | Feb 1964 | A |
3171215 | Glass et al. | Mar 1965 | A |
4148485 | Rains | Apr 1979 | A |
4210084 | Peltie | Jul 1980 | A |
4349744 | Reuther et al. | Sep 1982 | A |
4439989 | Yamakawa | Apr 1984 | A |
4500868 | Tokitsu et al. | Feb 1985 | A |
4679789 | Okada | Jul 1987 | A |
5269687 | Mott et al. | Dec 1993 | A |
5368484 | Copperman et al. | Nov 1994 | A |
5607308 | Copperman et al. | Mar 1997 | A |
5623642 | Katz et al. | Apr 1997 | A |
5625575 | Goyal et al. | Apr 1997 | A |
5683082 | Takemoto et al. | Nov 1997 | A |
5785630 | Bobick et al. | Jul 1998 | A |
5921780 | Myers | Jul 1999 | A |
5959613 | Rosenberg et al. | Sep 1999 | A |
6053815 | Hara et al. | Apr 2000 | A |
6067096 | Nagle | May 2000 | A |
6171186 | Kurosawa et al. | Jan 2001 | B1 |
6203426 | Matsui et al. | Mar 2001 | B1 |
6213878 | Setsumasa et al. | Apr 2001 | B1 |
6222546 | Yokoyama et al. | Apr 2001 | B1 |
6222554 | Berry et al. | Apr 2001 | B1 |
6244959 | Miyamoto et al. | Jun 2001 | B1 |
6278439 | Rosenberg et al. | Aug 2001 | B1 |
6288727 | Akemann | Sep 2001 | B1 |
6366845 | Kannonji | Apr 2002 | B1 |
6417854 | Isowaki et al. | Jul 2002 | B1 |
6422939 | Koyama et al. | Jul 2002 | B1 |
6652376 | Yoshida et al. | Nov 2003 | B1 |
6679702 | Rau | Jan 2004 | B1 |
6752716 | Nishimura et al. | Jun 2004 | B1 |
20010008847 | Miyamoto et al. | Jul 2001 | A1 |
20010016518 | Nishiumi et al. | Aug 2001 | A1 |
20030153374 | Gilmore | Aug 2003 | A1 |
20040113932 | Rosenberg et al. | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
1152729 | Jun 2004 | CN |
1 029 569 | Aug 2000 | EP |
1029569 | Aug 2000 | EP |
08-332280 | Dec 1996 | JP |
11-114225 | Apr 1999 | JP |
1999-45467 | Jun 1999 | KR |
Number | Date | Country | |
---|---|---|---|
20030073473 A1 | Apr 2003 | US |