The present disclosure relates to data centers and data center cooling systems, such as data center cooling systems having computer room air conditioners.
This section provides background information related to the present disclosure which is not necessarily prior art.
A data center is a room containing a collection of electronic equipment, such as computer servers. Data centers and the equipment contained therein typically have optimal environmental operating conditions, temperature and humidity in particular. A climate control system is utilized to maintain the proper temperature and humidity in the data center.
It should be understood that data center 100 may not have a raised floor 110 nor plenum 114. In this case, the CRAC's 116 would draw in through an air inlet (not shown) heated air from the data center, cool it, and exhaust it from an air outlet 117 shown in phantom in
In the example data center 100 shown in
CRACs 116 may be chilled water CRACs or direct expansion (DX) CRACs. CRACs 116 are coupled to a heat rejection device 124 that provides cooled liquid to CRACs 116. Heat rejection device 124 is a device that transfers heat from the return fluid from CRACs 116 to a cooler medium, such as outside ambient air. Heat rejection device 124 may include air or liquid cooled heat exchangers. Heat rejection device 124 may be a building chilled water system in which case chilled water is the cooled liquid provided to CRACs 116 and CRACs 116 may be chilled water air conditioning systems having chilled water valves. The chilled water valves may be on/off valves or be variable valves, such as capacity modulated valves. Heat rejection device 124 may also be a refrigeration condenser system, in which case a refrigerant is provided to CRACs 116 and CRACs 116 may be phase change refrigerant air conditioning systems having refrigerant compressors, such as a DX system. Each CRAC 116 may include a control module 125 that controls the CRAC 116.
In an aspect, CRAC 116 includes a variable capacity compressor and may for example include a variable capacity compressor for each DX cooling circuit of CRAC 116. It should be understood that CRAC 116 may, as is often the case, have multiple DX cooling circuits. In an aspect, CRAC 116 includes a capacity modulated compressor type of compressor or a 4-step semi-hermetic compressor, such as those available from Emerson Climate Technologies, Liebert Corporation or the Carlyle division of United Technologies. CRAC 116 may also include one or more air moving units 119, such as fans or blowers. The air moving units 119 may be provided in CRACs 116 or may additionally or alternatively be provided in supply air plenum 114 as shown in phantom at 121. Air moving units 119, 121 may illustratively have variable speed drives.
A typical CRAC 200 having a typical chilled water cooling circuit is shown in
A typical CRAC 300 having a typical DX cooling circuit is shown in
Cooling coils 204, 304 are typically fin-and-tube evaporator coils and are used to both cool and dehumidify the air passing through them. Typically, CRAC's such as CRAC's 200, 300 are designed so that the sensible heat ratio (“SHR”) is typically between 0.85 to 0.95.
A system known as the GLYCOOL free-cooling system is available from Liebert Corporation of Columbus, Ohio. In this system, a second cooling coil, known as a “free cooling coil,” is added to a CRAC having a normal glycol system. This second coil is added in the air stream ahead of the upstream cooling coil. During colder months, the glycol solution returning from the outdoor drycooler is routed to the second cooling coil and becomes the primary source of cooling to the data center. At ambient temperatures below 35 deg. F. (Fahrenheit), the cooling capacity of the second cooling coil is sufficient to handle the total cooling needs of the data center and substantially reduces energy costs since the compressor of the CRAC need not be run. The second or free cooling coil does not provide 100% sensible cooling and has an airside pressure drop similar to the downstream cooling coil.
Server temperature deltas have been increasing, and in some cases have increased from the 10-20 deg. F. range to over 30 deg. F. A server temperature delta is the difference between the inlet and outlet (or exhaust) temperatures of the air circulated through the server to cool it. This increase in server temperature deltas has in turn increased the temperature difference across the CRACs. The temperature difference across the CRAC is the difference in temperature between the air being drawn into the cooling coil of the CRAC and the cooled air exiting the CRAC. The temperature difference across a typical chilled water CRAC and a typical DX CRAC is about 20 deg. F. If the temperature difference across the CRAC is less than the server temperature delta, then the air flow to the server must be increased to provide the requisite cooling for the server. This will generate excessive air flow bypass that will return to the CRAC, wasting some of the cooling. Additionally, as server loads have increased, the proportion of sensible heat load in the data center has increased compared to the latent heat load, thus increasing the sensible heat ratio (SHR) requirements.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
In accordance with an aspect of the present disclosure, a computer room air conditioner (“CRAC”) has a cabinet having an air inlet through which return air from an area is drawn and an air outlet through which air cooled by the CRAC is exhausted. An air moving unit is disposed in the cabinet as are a plurality of cooling coils, which are in separate cooling circuits. The cooling coils are arranged so that the air passes through the cooling coils in serial fashion, that is, first through an upstream cooling coil and then through a downstream cooling cool. If there are more than two cooling circuits, then the air passes in turn through each subsequent downstream cooling coil of each subsequent downstream cooling circuit. Each upstream cooling coil acts as a pre-cooler to the subsequent downstream cooling coil. The CRAC includes a controller that controls the cooling provided by the cooling circuits. The controller controls the cooling provided by at least the most upstream cooling circuit so that it provides only sensible cooling. That is, the cooling provided by the most upstream cooling circuit is controlled so that is it provides one hundred percent sensible cooling. In an aspect, the most upstream cooling circuit is used to provide all the cooling.
In an aspect, the most downstream cooling circuit is controlled to provide any additional sensible cooling that may be needed as well as any latent (dehumidification) that may be needed and all the cooling circuits upstream of the most downstream cooling circuit are controlled to provide only sensible cooling. In an aspect, the most downstream cooling circuit is used to provide all the cooling and is controlled to provide sensible cooling and such latent cooling that may be needed.
In an aspect, at least the most upstream cooling coil is a microchannel cooling coil and at least the most downstream cooling coil is a fin-and-tube cooling coil.
In an aspect, the cooling coils are fin-and-tube cooling coils.
In an aspect, the cooling coils are microchannel cooling coils.
In an aspect, the cooling coil of the most upstream cooling circuit is positioned at the air inlet of the CRAC. In aspect, the cooling coil of the most upstream cooling circuit is positioned at an inlet of the cooling coil of the next downstream cooling circuit.
In an aspect, the most upstream cooling circuit is a pumped refrigerant cooling circuit. In an aspect, the most upstream cooling circuit is a chilled water cooling circuit. In an aspect, the most upstream cooling circuit is a DX cooling circuit. In an aspect, the most downstream downstage cooling circuit is a DX cooling circuit. In an aspect, the most downstream cooling circuit is a chilled water cooling circuit. In an aspect, the most downstream downstage cooling circuit is a pumped refrigerant cooling circuit.
In an aspect, the downstream cooling coil is disposed in the cabinet and the upstream cooling coil is in an air inlet plenum outside the cabinet which is coupled to the air inlet of the cabinet.
In an aspect, the upstream cooling circuit cools air passing through the upstream cooling coil sufficiently so that a cooling capacity of the downstream cooling circuit is sufficient to reduce a temperature of the air passing through the downstream cooling to below a dew point of the air to provide latent cooling.
In an aspect, the upstream cooling circuit increases a temperature delta across the computer room air conditioner by at least ten degrees Fahrenheit.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
It should be understood that upstream cooling circuit 401 can be other than a pumped refrigerant cooling circuit, such as a chilled water cooling circuit or a DX refrigeration circuit. It should be understood that downstream cooling circuit 402 can be other than a DX refrigeration circuit, such as a chilled water cooling circuit or a pumped refrigerant cooling circuit.
Condenser 408 of upstream cooling circuit 401 may in particular preferably be a building chilled water heat rejection device as described above with regard to heat rejection device 124 of
CRAC 400 includes a controller 420 that controls cooling circuits 401, 402. Controller 420 controls upstream cooling circuit 401 so that it provides one-hundred percent sensible cooling. It does so by controlling the temperature of the cooling fluid (such as a phase change refrigerant) flowing in upstream cooling circuit 401 so that when it passes through upstream cooling coil 404 of upstream cooling circuit 401, the temperature of the refrigerant is above the dew point of the air flowing through upstream cooling coil 404. The air flowing through upstream cooling coil 404 is typically the return air from the area being cooled by CRAC 400 that is drawn into CRAC 400 through the return air inlet of CRAC 400. In an aspect, controller 420 controls downstream cooling circuit 402 to provide any additional sensible cooling that may be needed as well as any latent cooling that may be needed. In some cases, upstream cooling circuit 401 can provide all the sensible cooling required and if no latent cooling is required, upstream cooling circuit 401 then provides all the cooling and controller 420 controls upstream and downstream cooling circuits 401, 402 so that upstream cooling circuit provides all the cooling, which is only sensible cooling. In other cases, downstream cooling circuit 402 provides additional sensible cooling and/or latent cooling, depending on whether additional sensible cooling is needed, whether latent cooling is needed, or whether both latent cooling and additional sensible cooling are needed and is controlled accordingly by controller 420. In yet other cases, such as where the total cooling load is light and latent cooling is needed, the downstream cooling circuit 402 can be used to provide all the cooling and is controlled accordingly by controller 420 which also controls upstream cooling circuit 401 so that it is not providing cooling.
In an aspect, upstream cooling coil 404 of upstream cooling circuit 401 is a microchannel cooling coil. Upstream cooling coil 404 may illustratively be a microchannel heat exchanger of the type described in U.S. Ser. No. 12/388,102 filed Feb. 18, 2009 for “Laminated Manifold for Microchannel Heat Exchanger” the entire disclosure of which is incorporated herein by reference. Upstream cooling coil 404 may illustratively be a MCHX microchannel heat exchanger available from Liebert Corporation of Columbus, Ohio. While one advantage of using a microchannel cooling coil for cooling coil 404 of upstream cooling circuit 401 is that microchannel cooling coils have air side pressure drops across them that are significantly less than fin-and-tube cooling coils having comparable cooling capacity, it should be understood that cooling coil 404 can be other than a microchannel cooling coil, and may for example be a fin-and-tube cooling coil.
In an aspect, downstream cooling coil 412 of downstream cooling circuit 402 is a fin-and-tube cooling coil. It should be understood, however, that downstream cooling coil 412 can be other than a fin-and-tube cooling coil, and may for example be a microchannel cooling coil. In this case, both the upstream and downstream cooling circuits 401, 402 are operated to provide sensible cooling only.
In the embodiment shown in
It should be understood that upstream cooling coil could be disposed inside an air inlet plenum 512 outside of cabinet 500 that is coupled to return air inlet 502 of cabinet 500, as shown in phantom in
By providing upstream cooling circuit 401 with cooling coil 404 that pre-cools the air before it flows into cooling coil 412 of downstream cooling circuit 402, the maximum temperature delta of CRAC 400 can be increased thus increasing the cooling capacity of CRAC 400. For example, a typical CRAC having a DX refrigeration circuit may have a maximum temperature delta of about 20 deg. F. Upstream cooling circuit 401 with cooling coil 404 may illustratively be configured to add an additional ten deg. F of temperature delta across the CRAC, increasing the maximum temperature delta across the CRAC to about thirty deg. F.
Upstream cooling circuit 401 may be a retrofit kit for existing CRACs, or may be installed during the manufacture of the CRAC. In this regard, by adding upstream cooling circuit 401 to a CRAC that otherwise is unable to provide latent cooling to dehumidify the air, the cooling circuit of the CRAC, which will then be a downstream cooling circuit, may then be able to provide latent cooling. For example, the temperature of the air entering a CRAC may be sufficiently high that the cooling circuit of the CRAC is not able to provide sufficient cooling to reduce the temperature of the air as it passes through the cooling cool of this cooling circuit to below the dew point, and thus CRAC is not able to provide latent cooling. By adding upstream cooling circuit 401, the air is pre-cooled before it reaches the cooling coil of the cooling circuit of the CRAC, which is now a downstream cooling circuit. Since the temperature of the air entering the cooling coil of the downstream cooling circuit has been lowered, the downstream cooling circuit then has sufficient cooling capacity to reduce the temperature of the air passing through its cooling coil to below a dewpoint of the air and can thus provide latent cooling. In this regard, upstream cooling circuit 401 cools the air passing through upstream cooling coil 404 sufficiently so that a cooling capacity of downstream cooling circuit 402 is sufficient to reduce a temperature of the air passing through downstream cooling coil 408 to below a dew point of the air to provide latent cooling.
In a an aspect, a CRAC with both upstream cooling circuit 401 and downstream cooling circuit 402 can be optimally controlled by controller 420 to use the most efficient of the upstream cooling circuit 401 and downstream cooling circuit 402 based on heat load and environmental conditions.
It should be understood that the CRAC can have more than two cooling circuits.
Spatially relative terms, such as “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the invention, and all such modifications are intended to be included within the scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/346,951 filed on May 21, 2010. The entire disclosure of the above application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61346951 | May 2010 | US |