The present invention relates to a computer system capable of executing volume mobility securely and a volume migration control method using such a computer system.
Recently, the scale of a storage system for a computer system has been expanding due to an increase of an amount of information to be processed by an information processing system. A storage system in which a plurality of storage devices are arrayed is known as an example of the above-mentioned storage system. With the storage system, data is stored in an array system by a storage controller processing data from a host computer.
Information processing systems are exposed to various security threats and storage systems are no exception. Therefore, it is necessary to always prepare for the various threats such as data theft, unauthorized access, falsification, and data destruction. Regarding security systems associated with the storage system, there are upper-level-application-side security at a host computer and storage side security. A security function on the storage system side is enhanced in order to reduce the burden on the high-level applications.
Even if the security function on the storage system side is enhanced, a storage-drive-based encryption function would possibly face data leakage due to a theft or taking out of the storage drives from a chassis of the storage system. So, a storage-controller-based encryption function is provided instead of or together with the storage-drive-based encryption function. When data is stored in the storage drive by using the above-mentioned encryption function, the storage controller can directly encrypt data and store the encrypted data in the storage drive. Then, since an encryption key is managed by the storage controller, even if the storage drive is taken out for the purpose of, for example, device maintenance, the encryption key will not exist in the storage drive itself and it is difficult to carry out unauthorized analysis of data, thereby realizing a data leakage countermeasure of a high security level.
A secret key that is required for data encryption and decoding is commonly stored as a file by a security administrator or managed by a server that performs key management services (KMS). The KMS manages secret key generation, issue, backup, and recovery in an integrated manner.
Incidentally, a conventional example of a storage system equipped with the storage-controller-based encryption function is described in, for example, Japanese Patent Application Laid-Open (Kokai) Publication No. 2010-33319.
In a cloud environment, a volume mobility function migrating volumes out of the storage system is required. For example, the volume mobility function that would not stop a host computer(s) along with VM (virtual machine) migration between host computers or resource load distribution between storage systems is desirable. Specified storage functions such as data migration between a plurality of volumes, data replication, and volume addition to a pool are realized by volume migration.
However, if an administrator of the storage system migrates a volume, to which a data encryption function is set, to an object to which the encryption function is not set, there is a possibility that data may be leaked. Furthermore, even if the encryption function is set to a migration destination volume, if a protection level of an encryption key for a migration destination volume is lower than that of a migration source volume, this would result in data loss due to loss of the encryption key or data leakage due to leakage of the encryption key at the migration destination volume.
Furthermore, when migrating a volume during a volume life cycle, events such as cancellation of encryption at the migration destination or a level change of the encryption function occur in order to, for example, switch to a host-based encryption system. When this happens, if a storage administrator can easily cancel the encryption at the migration destination, this might result in data leakage or violation of a security policy. So, the security administrator needs to cancel or change the encryption function at the migration destination; however, just simply cancelling or changing the encryption function at the migration destination would impair flexibility of a volume mobility function.
Therefore, it is an object of the present invention to provide a computer system regarding which there is no possibility that data loss or data leakage will occur as a result of volume migration. It is another object of this invention to provide a computer system that enables the security administrator to securely and flexibly change the encryption function at a volume migration destination without impairing the flexibility of the volume mobility function.
In order to achieve the above-described objects, a computer system according to the present invention includes a memory resource to be accessed by a host computer, a storage system for providing a volume(s), which logicizes the memory resource, to the host computer, and a management device for managing migration of the volume; wherein when the management device detects a task of migration of the volume based on a request from a first administrator, it compares an encryption function setting status of the volume with the encryption function setting status of a migration destination object, and sends notice of this comparison result to a second administrator, who is different from the first administrator, for security management of the storage system.
According to the present invention, the encryption function setting status of a volume can be adjusted to match the encryption function setting status of a migration destination object of that volume in relation to migration of the volume. So, a computer system regarding which there is no possibility that data loss or data leakage will occur as a result of the volume migration can be provided. Furthermore, according to the present invention, a computer system that enables the security administrator to securely and flexibly change the encryption function at a volume migration destination without impairing the flexibility of the volume mobility function can be provided.
Next, an embodiment of the present invention will be explained.
The computer system includes a host computer 70, a first storage system (ST1) 10, a second storage system (ST2) 20, a third storage system (ST3) 30, and a management server 60 for these storage systems.
When performing volume migration, the first storage system 10 includes an original volume (Origin VOL) 100, which is a data migration source, and a first target volume (Target VOL) 100A as a data migration destination volume which is an execution target of data migration or data replication from the original volume 100. The second storage system 20 includes a second target volume 100B and the third storage system 30 includes a third target volume 100C.
The host computer 70 is connected to the first storage system 10 via a communication network 80 such as a front-end SAN. The second storage system 20 and the third storage system 30 are connected to external connection ports of the first storage system, respectively. The management server 60 is connected via a communication network 90, such as a LAN, to the first storage system 10, the second storage system 20, and the third storage system 30, respectively.
Intra-chassis data copying is performed between the original volume 100 and the first target volume 100A and inter-chassis data copying performed between the original volume 100, the second target volume 100B, and the third target volume 100C.
The original volume 100 is set to a parity group (ENCRYPTED PG) 200 to which an encryption function is set; and the first target volume 100A is set to a parity group (NORMAL PG) 200A to which the encryption function is not set. The second target volume 100B is set to a parity group 200B to which the encryption function is set. The third target volume 100C is set to a parity group 200C to which the encryption function is not set.
The data encryption function in the storage system is applied to each parity group. If the encryption function is set to a parity group and when data is written to a volume which is set to the parity group, the data written to the storage drive is encrypted. The encryption setting is executed by a controller for the storage system. As other forms of the encryption setting, there are storage-drive-based encryption and host-computer-based encryption.
A “parity group to which the encryption function is not set” means a state where the encryption function is mounted in the storage system, but that function is turned off by the controller according to the operation based on an authority of a security administrator 40; or the relevant function is not originally mounted in the storage system. A parity group is a combination of a plurality of hard disk drives according to a RAID level. Drives equipped with the encryption function are used for encryption of parity groups.
Each microprocessor package 220 processes the read/write request and the back-end package 240 writes write data to the storage drive 270 or reads data from the storage device 270. Each microprocessor package 220 has a plurality of microprocessors 221, a local memory 222, and an internal bus 223.
Each memory package 230 has: a cache memory 231 for temporarily storing write/read data; and a control memory 232 for recording control information. The reference numeral 260 represents a management interface to which the management server 60 is connected. The reference numeral 250 represents a switch for mutually connecting the respective elements such as the memory packages 220.
Data encryption is realized by the controller (back-end package 240). Encryption executed when data is written to a volume is performed by a combination of a public key and a secret key. The same encryption key (secret key) may be set to all the drives constituting a parity group or a different encryption key (secret key) may be set to each drive.
The management server 60 includes a storage management program 600 and a data encryption program 602 as shown in
The memory 610 stores a storage management table 620, a volume management table 622, a parity group management table 624, an encryption key (secret key) management table (key management table) 626, a pool management table 628, a storage management program 630, a data encryption management program 632, an account control program 634, a graphical user interface 636, and a command line interface 638.
Next, encryption key management processing for volume migration between a plurality of volumes will be explained with reference to a flowchart.
Next, the data encryption management program 632 executes the processing of the flowchart in
Next, the data encryption management program 632 refers to the volume management table 622 and checks the ID of a parity group 200 (200A, 200B, 200C) to which each of the original volume 100 and the target volume 100A (100B, 100C) belongs (S902).
Then, the data encryption management program 632 refers to the parity group management table 624 and judges whether or not the encryption function is set to the parity group 200 of the original volume 100 and the original volume 100 is encrypted (S904). If the original volume 100 is not encrypted, the management processing on the encryption key is not necessary and, therefore, the data encryption management program 632 terminates the processing of the flowchart. Then, the computer system 10 continues to execute data copying required for the volume migration between the original volume the target volume.
If the original volume 100 is encrypted, the data encryption management program 632 refers to the parity group management table 624 and judges whether or not the encryption function is set to the parity groups PG2 to PG4, to which the target volume 100A (100B, 100C) belongs, and the target volume is encrypted (S906).
If the encryption function setting status of the parity group of the target volume is [OFF] or [N/A], the data encryption management program 630 notifies the security administrator 40 that the encryption of data will be lost as a result of volume migration between the original volume and the target volume, and then rejects the data migration request from the storage administrator; or rejects the data migration request from the user without notice (S910). Either of the above-described means would be selected depends on the advance setting of the management server 60 by the storage management user 50. If the encryption function of the parity group of the target volume is [OFF], the security administrator who has received the above notice can demand that the data encryption management program should set the encryption function to [ON]. Having received this request, the data encryption management program can demand a change of the encryption function setting by the controller for the migration destination storage system.
If the encryption setting status of the parity group of the target volume is [ON] and the target volume is encrypted, the data encryption management program 632 obtains the encryption key backup type(626C) of each of the original volume and the target volume from the encryption key management table 626 (
Next, the data encryption management program 632 judges whether or not the encryption key backup type of the original volume is the same as the encryption key backup type of the target volume (S912). If they are the same, the data encryption management program 632 terminates the processing of the flowchart. Subsequently, the data encryption management program 632 notifies the storage management program 630 of the termination of the processing of the flowchart; and the storage management program 630 issues an instruction to the migration source storage system and the migration destination storage system to execute data copying between the original volume and the target volume and these storage systems executes data copying between the original volume and the target volume.
If the encryption key backup type of the original volume 100 is different from the encryption key backup type of the target volume 100A (100B, 100C), the data encryption management program 632 notifies the security administrator 40, via the GUI 636, that the encryption key backup type of the original volume is different from the encryption key backup type of the target volume; and then terminates the processing of the flowchart.
After the data encryption management program 632 terminates the processing of the flowchart, the storage management program 630 waits for confirmation by the security administrator 40 and then executes volume migration between the original volume and the target volume.
On the other hand, if a backup type level of the parity group of the target volume is lower than that of the original volume, the data encryption management program 632 may not only send the notice, but also output a request to prompt the security administrator 40 to adjust the former type to the latter type, via the GUI to the security administrator 40. Specifically speaking, it is a case where the latter backup type is the file management system and the former backup type is the KMS system and the latter management system is to be changed to the KMS system. This change is executed by the security administrator 40. Unless these encryption key backup systems are adjusted to be the same backup system, the data encryption management program may reject the volume migration request from the storage administrator.
On the other hand, if the former backup level is higher than the latter backup level, the security administrator may only receive the notice and the storage management program may execute the volume migration request. Alternatively, in this case, the notice in S914 may not be issued.
Incidentally, if the storage administrator attempts to cancel the encryption function in the volume migration destination storage system by, for example, changing the encryption to the host-computer-based encryption, the encryption management program returns a negative judgment in S906. As the security management program sends the notice in S910 and then obtains an approval from the security administrator, the storage management program can continue the volume migration processing without having the security management program change the encryption setting status of the target volume.
Furthermore, the judgment in S904 and S906 is based on whether the encryption is performed or not, but the judgment may be based on superiority of the encryption level, instead. If the encryption level of the volume migration destination storage system is lower than the encryption level of the volume migration source storage system, the data encryption management program may execute the same processing as in S910.
According to the flowchart shown in
Next, a computer system according to a second embodiment will be explained.
A volume(s) is allocated from a parity group 1010 to the pool 1000. Volumes allocated to the pool are pool volumes 1002, 1004. A pool volume is composed of a storage area with an actual capacity. The reference numeral 1006 represents a volume 1006 to be allocated from a parity group 1008 to the pool 1000.
The encryption key management method becomes a problem in this embodiment when the encryption setting status and the encryption key backup type of a parity group, which is the basis of a pool volume, are different from those of the pool. Referring to
On the other hand, data cannot be encrypted with respect to the volume 1006 from the parity group 1008 to which the encryption function is not set. So, if an attempt is made to allocate this volume 1006 as a pool volume to the pool 1000, the volume 1006 will not match the encryption status of the pool 1000. Therefore, processing for dealing with volume allocation to the pool is required.
Next, the encryption function setting processing according to thin provisioning will be explained with reference to a flowchart in
Subsequently, the data encryption management program 632 judges whether the encryption setting is set to the pool or not, by referring to the pool management table 1100 (S1204). If a negative judgment is returned in this step, the data encryption management program 632 terminates the processing of the flowchart and the storage management program 630 receives notice of termination of the flowchart processing from the encryption setting program 632 and allocates a new volume 1006 to the pool 1000.
Next, if an affirmative judgment is returned in S1204, the data encryption program 632 judges whether or not the encryption setting is set to the parity group 1008 to which the volume 1006 to be added to the pool 1000 belongs (S1206).
If a negative judgment is returned in this step, the data encryption management program 632 rejects the request from the storage administrator via the GUI 636 in order to prevent the volume 1006, which is not encrypted, from being allocated to the pool 1000 defined as an encryption target (S1208).
On the other hand, if an affirmative judgment is returned, the data encryption management program 632 obtains the encryption key backup type of the parity group 1010 related to the pool from the encryption key management table 626 based on the related parity group, that is, the parity group 1008 of the additional volume 1006 and the IDs of the pool volumes 1002, 1004 existing in the pool (S1202) (S1210).
Next, the data encryption management program 632 checks whether the backup types of all these related encryption keys are the same or not (S1212). If an affirmative judgment is returned, the data encryption management program terminates the processing of the flowchart. When this happens, the storage management program 630 issues an instruction to the controller for the storage system 10 to allocate the additional volume 1008 to the pool 1000.
On the other hand, if a negative judgment is returned in S1212, the data encryption management program 632 checks whether or not the key backup type of at least one of all the related encryption keys is the KMS management system (S1214). If an affirmative judgment is returned, the data encryption management program 632 notifies the security administrator 40 via the GUI 636 that the encryption key which has been backed up by an encryption key backup type other than the KMS system should be changed to the KMS system backup type (S1216).
On the other hand, if a negative judgment is returned in this step, the data encryption management program 632 applies a unified encryption key backup system other than KMS by, for example, prompting the security administrator to change the encryption key backup system of the additional volume 1006 to make it match the encryption key backup type of the pool to which the volume is to be added (S1218).
A unified encryption key backup type, such as the KMS system or the file management system, can be applied to the pool volumes belonging to the pool 1000 as a result of the processing in S1214. If there are a plurality of backup systems other than the KMS system, it is better to use the safest backup system as the unified backup system.
As a result of the above-described processing, the encryption key backup systems of the pool volumes can be adjusted to the same encryption key backup system as triggered by the addition of a new volume to the pool. Incidentally, the embodiment shown in
Next, a third embodiment will be explained. The aforementioned embodiments adopt the configuration in which the data encryption management program 632 of the management server 60 executes the processing of the aforementioned flowcharts to determine an optimum backup form of the encryption key. On the other hand, the third embodiment provides a system by which the data encryption management program asks for an approval of the security administrator 40 when attempting to change the encryption key backup type. For this purpose, a control function managing authorities and roles of the security administrator 40 and the storage administrator in an integrated manner is required. The management server 60 includes management tables and control programs in order to realize the above-described function.
When the account management program 634 obtains various IDs and password (S1704), it judges whether they are correct or not (S1706). If a negative judgment is returned in this step, the account management program 634 jumps to login result message creation processing without executing login session creation processing (S1708 to S1712). On the other hand, if an affirmative judgment is returned, the account management program 634 executes the login session creation processing.
Firstly, the account management program 634 generates a login session ID (S1708). Then, the account management program 634 generates an authority bitmap to be allocated to the session ID from the user ID, the user group ID, and the role ID by referring to the authority bitmap the management table (
Next, as shown in
On the other hand, if the GUI confirms the session ID, it keeps the login session ID (S1722) and creates a message to permit the user login (S1724).
If the management server 60 permits the user login, the storage management program 630 obtains the session ID from the session management table as shown in
If an affirmative judgment is returned in S1802, the storage management program 630 executes authentication processing on the security administrator before the user request processing. This authentication processing will be explained with reference to a flowchart in
Next, the storage management program 630 repeatedly requests an approval result from the security administrator (SECURITY_ADMIN) 40 from the data encryption management program 632 (S1906). Since the data encryption management program 632 has not received the approval result yet, it issues a notice of non-receipt of approval to the storage management program (S1908).
When the security administrator 40 founds by, for example, email that the approval request has arrived from the storage management program 630, the security administrator 40 accesses (logs into) the data encryption management program (S1910). In response to this access, the data encryption management program 632 issues the approval request, which has been stacked, to the security administrator (S1912). The security administrator 40 notifies the data encryption management program 632 of the approval result (S1914). The data encryption management program 632 registers the approval result (S1916). Then, after receiving an approval result notice request from the storage management program 630 (S1918), the data encryption management program 632 sends the approval result notice (S1920).
When the storage management program 630 receives the approval result by the security administrator from the data encryption management program 632, it executes processing relating to the execution of the user request (S1806).
Firstly, the storage management program 630 obtains one or more requests (all the requests) from the storage administrator 50 (S2200). The storage management program 630 obtains one request from among the plurality of user requests (S2202) and judges whether an encryption setting request relating to the above-mentioned request is approved or rejected by the security administrator 40 (S2204). If the request is approved, the storage management program 630 executes processing for executing the user request (S2208); and if the request is rejected, the storage management program 630 rejects the user request (S2206) and notifies a user-side computer to that effect. The storage management program 630 repeats the processing from S2204 to S2208 with respect to all the requests.
With the computer system in
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/007055 | 12/16/2011 | WO | 00 | 1/20/2012 |