Information
-
Patent Grant
-
6487655
-
Patent Number
6,487,655
-
Date Filed
Thursday, April 29, 199925 years ago
-
Date Issued
Tuesday, November 26, 200221 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Blakely, Sokoloff, Taylor & Zafman LLP
-
CPC
-
US Classifications
Field of Search
US
- 713 1
- 713 2
- 709 220
- 709 222
- 710 8
- 710 10
-
International Classifications
-
Abstract
A computer system is provided with a processor and a system board. The processor includes a processor core, at least one other non-processor core electronic component and a first non-volatile memory device. Stored inside the first non-volatile memory includes first programming instructions that provide initialization support for the at least one other non-processor core electronic component of the processor. The system board includes at least one non-processor electronic component and a second non-volatile memory device. Stored inside the second non-volatile memory device includes second programming instructions that provide initialization support for the at least one non-processor electronic component of the system board. Both the first and the second programming instructions further support a cooperative initialization protocol under which the first and second programming instructions cooperate with each other to initialize the computer system at power-on/reset.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of computer systems. More specifically, the present invention relates to a distributed approach to providing initialization support for a computer system.
2. Background Information
Most computer systems are provided with a set of instructions to initialize the computer systems at power-on/reset. The initialization tasks typically include a power-on self-test (POST) that tests certain basic hardware to ensure these basic hardware are present and functioning properly, detection and configuration of the system memory including the memory controller, detection and configuration of the video controller, and so forth. These instructions are typically provided as an integral part of the computer system's basic input/output system (BIOS).
Since at power-on/reset, the system memory is not configured, thus the BIOS including the initialization instructions, is typically disposed in a read-only-memory (ROM) device, such as flash memory, of the system board, and executed in place at power-on/reset. To make this in place execution possible at power-on/reset, the ROM is associated with a predetermined address range, and enabled at power on/reset. All “address handling controllers”, such as a bus bridge, that are in the access path of the ROM are designed to understand and recognize this association. Furthermore, the processor is designed to start execution at power-on/reset at a predetermined address that is within this address range.
This prior art approach to providing the initialization instructions in a ROM of the system board suffers from at least one disadvantage. That is, the different processors and associated memory controllers that can be used with the system board must be predetermined, so that the logic for their support can be properly included in the initialization instructions. Otherwise, these initialization instructions must be updated in order for the system board to be able to support a new family of processors and associated memory controllers that become available after the system board. As those skilled in the art will appreciate that the process of updating BIOS is user unfriendly and error prone.
Thus, an improved approach to providing initialization support for a computer system is desired.
SUMMARY OF THE INVENTION
A computer system is provided with a processor and a system board. The processor includes a processor core, at least one other non-processor core electronic component and a first non-volatile memory device. Stored inside the first non-volatile memory includes first programming instructions that provide initialization support for the at least one other non-processor core electronic component of the processor. The system board includes at least one non-processor electronic component and a second non-volatile memory device. Stored inside the second non-volatile memory device includes second programming instructions that provide initialization support for the at least one non-processor electronic component of the system board. Both the first and the second programming instructions further support a cooperative initialization protocol under which the first and second programming instructions cooperate with each other to initialize the computer system at power-on/reset.
BRIEF DESCRIPTION OF DRAWINGS
The present invention will be described by way of exemplary embodiments, but not limitations, illustrated in the accompanying drawings in which like references denote similar element and in which:
FIGS. 1
a
-
1
b
illustrate two example computer systems incorporated with the present invention in accordance with two embodiments;
FIG. 2
illustrates a service directory stored along with the initialization instructions in a flash memory device, in accordance with one embodiment;
FIG. 3
illustrates one approach to providing identification capability to flash memory devices, in accordance with one embodiment; and
FIG.
4
. illustrates the cooperative initialization process of the present invention in accordance with one embodiment.
DETAILED DESCRIPTION OF THE INVENTION
In the following description, various aspects of the present invention will be described, and various details will be set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced with only some or all aspects of the present invention, and the present invention may be practiced without the specific details. In other instances, well known features are omitted or simplified in order not to obscure the present invention.
Parts of the description will be presented using terminology commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art, such as controllers, flash memory, and so forth. Also, parts of the description will also be presented in terms of operations performed through the execution of programming instructions, using terms such as programming a controller, transferring execution control, and so on. As well understood by those skilled in the art, these operations take the form of electrical, magnetic, or optical signals capable of being stored, transferred, combined, and otherwise manipulated through electrical components.
Various operations will be described as multiple discrete steps performed in turn in a manner that is most helpful in understanding the present invention. However, the order of description should not be construed as to imply that these operations are necessarily performed in the order they are presented, or even order dependent. Lastly, repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment, although it may.
Referring now to
FIGS. 1
a
-
1
b
, wherein two example computer systems incorporated with the present invention in accordance with two embodiments are shown. As illustrated in
FIG. 1
a
, example computer system
100
a
is advantageously provided with processor
102
a
and system board
104
a
, which have been correspondingly provided with complementary secondary and primary initialization instructions
108
a
and
106
a
, in accordance with the present invention. As will be described in more details below, primary initialization instructions
106
a
provide initialization support for electronic components of system board
104
a
, and secondary initialization instruction
108
a
provide initialization support for electronic components of processor
102
a
. Additionally, both initialization instructions
106
a
-
108
a
complementarily support a cooperative initialization protocol of the present invention. As a result, processors and system boards that are so equipped may be employed together to form a computer system without requiring priori knowledge of the processor at the time the system board is designed, and vice versa.
Continuing to refer to
FIG. 1
a
, for the illustrated embodiment, primary and secondary initialization instructions
106
a
and
108
a
are correspondingly provided as an integral part of BIOS
110
a
and
112
a
, which are correspondingly stored in flash memory
114
a
and
116
a
. In alternate embodiments, other non-volatile memory devices known in the art, such as EEPROM, may also be used in lieu of flash memory. Additionally, also stored inside flash memory
114
a
and
116
a
are service directories (not shown) through which various device specific initialization support may be located. Furthermore, each of flash memory
114
a
and
116
a
is also provided with an identification circuitry (also not shown) to generate an identifier to uniquely identify the flash memory on the bus to which the flash memory is attached. More specifically, the identification circuitry of flash memory
114
a
(where the primary initialization instructions are stored) are strapped to generate a device identifier “00” for flash memory
114
a
, whereas the identification circuitry of flash memory
116
a
(where the secondary initialization instructions are stored) are strapped to generate a device identifier “01” for flash memory
116
a
. Both, the service directory and the identification circuitry will be further described later with references to
FIGS. 2-3
.
As shown, for the illustrated embodiment, flash memory
114
a
and
116
a
are attached to a “low pin count” (LPC) bus
118
a
, which in turn couples both flash memory devices to LPC bus controller
120
a
, disposed inside system board controller
122
a
. LPC bus
118
a
is advantageously employed to reduce the circuitry requirement on flash memory
114
a
and
116
a
, as the bus transactions required to effectuate the initialization tasks are relatively straight forward. The full functionality of a high performance bus, such as the Peripheral Component Interconnect (PCI) bus, is not needed to facilitate these transactions. The bus protocol may be any one of a number of basic bus protocols known in the art. In alternate embodiments, LPC bus controller
120
a
may be separately disposed apart from system board controller
122
a.
For the illustrated embodiment, LPC bus
118
a
is also used to support other simple I/O devices, such as keyboard and mouse, through “super” I/O controller
124
a
. In alternate embodiments, LPC bus
118
a
may be a “private” bus dedicated to the exclusive use by flash memory
114
a
-
116
a
instead.
For the illustrated embodiment, system board controller
122
a
also controls PCI bus
126
a
, integrated device electronics (IDE) devices
128
a
and universal serial bus (USB) ports
130
a
. Attached to PCI bus
126
a
are PCI agents
132
a
and PCI expansion slots
134
a
(for PCI expansion cards). These devices are known, and will not be further described.
Over in the processor side, in addition to flash memory
116
a
, for the illustrated embodiment, processor
102
a
further includes processor core
136
a
, memory controller
138
a
and graphics controller
140
a
. Memory controller
138
a
is coupled to processor core
136
a
, system memory
142
a
and graphics controller
140
a
through processor bus
144
a
, memory bus
146
a
and accelerated graphics port (AGP)
148
a
respectively. These elements are also known in the art, and will not be further described.
As in the prior art, flash memory
114
a
is associated with a predetermined address range, and enabled at power-on/reset. Both memory controller
138
a
and system memory controller
112
a
are designed to understand and recognize the association. Furthermore, processor core
136
a
is designed to start execution at power-on/reset at a predetermined address that is within this address range. However, flash memory
116
a
is not associated with any predetermined address range, nor automatically enabled at power-on/reset.
The manner in which primary and secondary initialization instructions
106
a
-
108
a
cooperate under the present invention to jointly initialize computer system
100
a
at power-on/reset, including the employment of the service directories and the device identifiers, will be further described later, after the alternate embodiment of
FIG. 1
b
, the service directory and the identification circuit have been described.
Referring now to
FIG. 1
b
, wherein another example computer system incorporated with the teachings of the present invention in accordance with an alternate embodiment is shown. As illustrated, similar to the embodiment of
FIG. 1
a
, example computer system
100
b
is advantageously provided with processor
102
b
and system board
104
b
, which have been correspondingly provided with complementary initialization instructions
108
b
and
106
b
, in accordance with the present invention. However, unlike the embodiment of
FIG. 1
a
, the initialization instructions provided to processor
102
b
are the primary initialization instructions, while the initialization instructions provided to system board
104
b
are the secondary initialization instructions instead. Primary initialization instructions
108
b
provide initialization support for electronic components of processor
102
b
, and secondary initialization instructions
106
b
provide initialization support for electronic components of system board
104
b
. Additionally, both initialization instructions
106
b
-
108
b
complementarily support the cooperative initialization protocol of the present invention. As a result, processors and system boards that are so equipped may also be employed together to form a computer system without requiring priori knowledge of the processor at the time the system board is designed, and vice versa.
Continuing to refer to
FIG. 1
b
, for the illustrated embodiment, primary and secondary initialization instructions
108
b
and
106
b
are correspondingly provided as an integral part of BIOS
112
b
and
110
b
, which are correspondingly stored in flash memory
116
b
and
114
b
instead. Similar to the embodiment of
FIG. 1
a
, also stored in flash memory
116
b
and
114
b
are service directories (not shown) through which various device specific initialization services may be located. Furthermore, each of flash memory
116
b
and
114
b
is also provided with an identification circuitry (not shown) to generate an identifier to uniquely identify the flash memory on the bus to the flash memory is attached. However, the identification circuitry of flash memory
116
b
(where the primary initialization instructions are stored) are strapped to generate a device identifier “00” for flash memory
116
b
, whereas the identification circuitry of flash memory
114
b
(where the secondary initialization instructions are stored) are strapped to generate a device identifier “01” for flash memory
114
b
. While flash memory
116
b
and
114
b
are also attached to a “low pin count” (LPC) bus
118
b
, bus
118
b
couples both flash memory devices to LPC bus controller
120
b
, which is disposed inside memory controller
138
b
instead.
Otherwise, as the earlier described embodiment, processor
102
b
includes processor core
136
b
, memory controller
138
b
and graphics controller
140
b
; and these elements are coupled to each other and system memory
142
b
through processor bus
144
b
, memory bus
146
b
and accelerated graphics port (AGP)
148
b
. Likewise, over in the system board side, system board controller
122
b
also controls PCI bus
126
b
, integrated device electronics (IDE) devices
128
b
and universal serial bus (USB) ports
130
b
; and attached to PCI bus
126
b
are PCI agents
132
b
and PCI expansion slots
134
b
(for PCI expansion cards).
However, it is flash memory
116
b
that is associated with a predetermined address range, and enabled at power-on/reset, as in the prior art. While memory controller
138
b
is still designed to understand and recognize the association, such understanding and recognition is no longer necessary for system board controller
122
b
. Processor core
136
b
is still designed to start execution at power-on/reset at a predetermined address that is within this address range. Unlike the earlier embodiment, flash memory
114
b
is not associated with any predetermined address range, nor automatically enabled at power-on/reset.
The manner in which primary and secondary initialization instructions
108
b
and
106
b
cooperate under this embodiment of the present invention to initialize computer system
100
b
at power-on/reset, including the employment of the service directories and the device identifiers, will be further described later, in conjunction with the earlier embodiment, after the service directory and the identification circuit have been described.
FIG. 2
illustrates a service directory stored along with the initialization instructions in a flash memory device, in accordance with one embodiment. The embodiment illustrated is the service directory stored in flash memory
116
a
/
116
b
of processor
102
a
/
102
b
. As shown, service directory
202
includes a number of indices
204
indexing the starting locations of the various initialization supports. For the illustrated embodiment, the location addresses are derived by multiplying the index values with a predetermined constant.
FIG. 3
illustrates one approach to providing the identification capability to the flash memory devices, in accordance with one embodiment. As illustrated, each of the two memory devices
114
and
116
are provided with a number of externally configurable identification pins
302
. Each pin may either be “strapped” to Vcc or ground, thereby allowing flash memory devices
114
and
116
to be externally configured with identification values “000” and “001” respectively. For the earlier described embodiment, flash memory device
114
strapped with identification “000” is considered to be the primary flash memory device where the primary initialization instructions are stored, where as flash memory device
116
strapped with identification “001” is considered to be the secondary flash memory device where the secondary initialization instructions are stored,
FIG. 4
illustrates the manner in which the primary and secondary initialization instructions cooperate to initialize the computer system in accordance with one embodiment.
FIG. 4
will be described in conjunction with
FIGS. 1
a
-
1
b
. Reference numbers corresponding to elements illustrated in
FIGS. 1
a
-
1
b
will be enclosed in parenthesis, to distinguish them from reference numbers referencing the operations illustrated in FIG.
4
.
As shown, at power-on/reset,
402
, by virtue of the association of the primary initialization instructions storing flash memory (
114
a
/
116
b
) to a predetermined address range, the recognition of the association by the memory controller (
138
a
/
138
b
), and if necessary, by the system board controller (
122
a
), and the manner in which the processor core (
136
a
/
136
b
) starts execution, the primary initialization instructions (
106
a
/
108
b
) are given control. At
404
, the primary initialization instructions (
106
a
/
108
b
) initialize the LPC bus controller (
120
a
/
120
b
) to render the secondary initialization instructions' storing flash memory (
116
a
/
114
b
) to be accessible.
For the embodiment of
FIG. 1
a
, the process continues at
406
, where execution control is transferred to the secondary initialization instructions (
108
a
). Then, at
408
, the secondary initialization instructions (
108
a
) initialize the components of the processor (
102
a
), e.g. the memory controller (
138
a
), thereby making the system memory available. Upon completion, at
410
, the secondary initialization instructions (
108
a
) transfer execution control back to the primary initialization instructions (
106
a
). Next, at
412
, the primary initialization instructions (
106
a
) initialize the components of the system board (
104
a
), e.g. the system board controller (
122
a
). Finally, at
414
, the primary initialization instructions (
106
a
) boot an operating system (e.g. from one of the IDE devices) to continue the system start up process.
For the embodiment of
FIG. 1
b
, after
404
, the process continues at
408
instead, where the primary initialization instructions (
106
b
) initialize the components of the processor (
102
b
), e.g. the memory controller (
138
b
), thereby making the system memory available. Upon completion, the process continues at
406
, where execution control is transferred to the secondary initialization instructions (
106
b
). Next, at
412
, the secondary initialization instructions (
106
b
) initialize the components of the system board (
104
b
), e.g. the system board controller (
122
b
). Finally, at
414
, the secondary initialization instructions (
106
b
) boots an operating system (e.g. from one of the IDE devices) to continue the system start up process.
In alternate embodiments, various modifications may be made to the above described cooperative initialization protocol. For example, once the secondary or primary initialization instructions (
106
a
/
106
b
) have completed initialization of the memory controller (
138
a
/
138
b
), the primary and secondary initialization instructions may transfer back and forth between the two initialization instruction streams, until one of the initialization instruction stream is told by the other to boot the operating system.
In general, those skilled in the art will recognize that the present invention is not limited by the details described, instead, the present invention can be practiced with modifications and alterations within the spirit and scope of the appended claims. In particular, while for ease of understanding, the present invention has been described with the initialization instructions being distributively packaged into the processor module and the system board, the cooperative manner of initialization of the present invention may also be practiced with the initialization instructions distributed in more than two components. The description is thus to be regarded as illustrative instead of restrictive on the present invention.
Thus, a distributed approach to providing initialization support for a computer system has been disclosed.
Claims
- 1. A processor comprising:a processor core; at least one other electronic component; and a non-volatile memory device having stored therein first programming instructions that provide initialization support for the at least one other electronic component, and support for a cooperative initialization protocol under which the first programming instructions cooperate with second programming instructions of a system board on initializing a computer system formed with the processor and the system board at power-on/reset, said cooperative initialization protocol being also supported by said second programming instructions of the system board.
- 2. The processor of claim 1, wherein the at least one other electronic component comprises a memory controller, and the initialization support for the at least one other electronic component includes support for detecting and configuring system memory of the computer system.
- 3. The processor of claim 1, wherein the support for the cooperative initialization protocol includes support for transferring execution control in at least one direction between the first and second programming instructions.
- 4. The processor of claim 1, wherein the support for the cooperative initialization protocol includes support for booting an operating system.
- 5. The processor of claim 1, wherein the support for the cooperative initialization protocol includes support for making a non-volatile memory device of the system board, in which the second programming instructions are stored, accessible.
- 6. The processor of claim 5, whereinthe two non-volatile memory devices are correspondingly coupled to two segments of a bus; the processor further includes the segment of the bus to which the non-volatile memory device storing the first programming instructions is coupled; the at least one other electronic component includes a bus controller to control the bus; and the support for making a non-volatile memory device of the system board, in which the second programming instructions are stored, accessible, includes programming the bus controller.
- 7. The processor of claim 6, wherein the at least one other electronic component includes a memory controller that includes the bus controller.
- 8. The processor of claim 6, wherein the non-volatile memory device further includes identification circuitry to supply a device identifier to uniquely identify the non-volatile memory device from other devices attached to the bus.
- 9. The processor of claim 1, wherein the non-volatile memory further having stored therein a data structure that can serve as a directory to the initialization support provided.
- 10. The processor of claim 1, wherein the at least one other electronic component includes a video controller, and the initialization support for the at least one other electronic component includes initialization support for the video controller.
- 11. A system board comprising:at least one non-processor electronic component; and a non-volatile memory device having stored therein first programming instructions that provide initialization support for the at least one non-processor electronic component, and support for a cooperative initialization protocol under which the first programming instructions cooperate with second programming instructions of a processor on initializing a computer system formed with the processor and the system board at power-on/reset, said cooperative initialization protocol being also supported by said second programming instructions of the processor.
- 12. The system board of claim 11, wherein the support for the cooperative initialization protocol includes support for transferring execution control in at least one direction between the first and second programming instructions.
- 13. The system board of claim 11, wherein the support for the cooperative initialization protocol includes support for booting an operating system.
- 14. The system board of claim 11, wherein the support for the cooperative initialization protocol includes support for making a non-volatile memory device of the processor, in which the second programming instructions are stored, accessible.
- 15. The system board of claim 14, whereinthe two non-volatile memory devices are correspondingly coupled to two segments of a bus; the system board further includes the segment of the bus to which the nonvolatile memory device storing the first programming instructions is coupled; the at least one non-processor electronic component includes a bus controller to control the bus; and the support for making a non-volatile memory device of the processor, in which the second programming instructions are stored, accessible, includes programming the bus controller.
- 16. The system board of claim 15, wherein the at least one non-processor electronic component includes a multi-bus controller that includes the bus controller.
- 17. The system board of claim 15, wherein the non-volatile memory device further includes identification circuitry to supply a device identifier to uniquely identify the non-volatile memory device from other devices attached to the bus.
- 18. The system board of claim 11, wherein the non-volatile memory further having stored therein a data structure that can serve as a directory to the initialization support provided.
- 19. A computer system comprising:a processor, including a processor core, at least one other non-processor core electronic component and a first non-volatile memory device having stored therein first programming instructions that provide initialization support for the at least one other non-processor core electronic component of the processor; and a system board, including at least one non-processor electronic component and a second non-volatile memory device having stored therein second programming instructions that provide initialization support for the at least one non-processor electronic component of the system board; wherein both the first and the second programming instructions further support a cooperative initialization protocol under which the first and second programming instructions cooperate with each other to initialize the computer system at power-on/reset.
- 20. The computer system of claim 19, wherein the at least one other electronic component of the processor comprises a memory controller, and the initialization support for the at least one other electronic component of the processor includes support for detecting and configuring system memory of the computer system.
- 21. The computer system of claim 19, wherein the support for the cooperative initialization protocol includes support for transferring execution control in at least one direction between the first and the second programming instructions.
- 22. The computer system of claim 19, wherein the joint support for the cooperative initialization protocol includes support for booting an operating system by the first/second of the programming instructions.
- 23. The computer system of claim 19, wherein the support for the cooperative initialization protocol includes support for making the first/second non-volatile memory device accessible.
- 24. The computer system of claim 23, whereinthe two non-volatile memory devices are correspondingly coupled to two segments of a bus correspondingly disposed in said processor and on said system board; a selected one of the at least one non-processor core electronic component of the processor and the at least one non-processor electronic component of the system board includes a bus controller to control the bus; and the support for making the first/second non-volatile memory device of the system board accessible includes programming the bus controller.
- 25. The computer system of claim 24, wherein the at least one non-processor core electronic component of the processor includes a memory controller that includes the bus controller.
- 26. The computer system of claim 24, wherein the at least one non-processor electronic component of the system board includes a multi-bus controller that includes the bus controller.
- 27. The computer system of claim 24, wherein each of the first and second nonvolatile memory devices further includes identification circuitry to supply a device identifier to uniquely identify the first/second non-volatile memory device from other devices attached to the bus.
- 28. The computer system of claim 19, wherein each of the first and second non-volatile memory devices further having stored therein a data structure that can serve as a directory to the initialization support provided by the first/second programming instructions.
- 29. The computer system of claim 19, wherein the at least one non-processor core electronic component includes a video controller, and the initialization support for the at least one non-processor core electronic component includes initialization support for the video controller.
US Referenced Citations (3)
Number |
Name |
Date |
Kind |
4622633 |
Ceccon et al. |
Nov 1986 |
A |
5978912 |
Rakavy et al. |
Nov 1999 |
A |
6199159 |
Fish |
Mar 2001 |
B1 |